80211协议
802.11协议标准ppt详解

物理层结构
物理层管理(Physical Layer Management):物理层管理与
MAC层管理相连,为物理层提供管理功能。
物理层汇聚子层(PLCP):媒体访问控制(MAC)子层和物理层
汇聚(PLCP)子层通过物理层服务访问点(SAP)利用原语进行通信
。MAC发出指示后,PLCP就开始准备需要传输的媒体协议数据单元(
STA4 STA6
DS
BSS1
AP
DS
AP BSS2
DS(Distribution System):分布式系统
ESS
BSS1
Service set identify (SSID1)
ESS
属于同一VLAN的客户端
AP1 AP2
DS
Service set identify (SSID1)
BSS2
802.11e — QoS
802.11h —动态调整 802.11i —安全增强 802.11f — 漫游和切换 802.11s — mesh
IEEE802.11的工作方式及802.11网络 基本元素
802.11定义了两种类型的设备,一种是无线站,通常 是通过一台PC机器加上一块无线网络接口卡构成的, 另一个称为无线接入点(Access Point,AP),它的 作用是提供无线和有线网络之间的桥接。一个无线接 入点通常由一个无线输出口和一个有线的网络接口 (802.3接口)构成,桥接软件符合802.1d桥接协议。 接入点就像是无线网络的一个无线基站,将多个无线 的接入站聚合到有线的网络上。无线的终端可以是 802.11 PCMCIA卡、PCI接口、ISA接口,或者是在非 计算机终端上的嵌入式设备(例如802.11手机)。
中文802.11协议

竭诚为您提供优质文档/双击可除中文802.11协议篇一:802.11协议ieee802.11是ieee(电气和电子工程师协会)制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中的用户与用户终端之间的无线接入。
ieee802.11业务主要限于数据存取,传输速率最高只能达到2mbps。
由于ieee802.11在速率上的不足,已不能满足数据应用的需求;因此,ieee又相继推出了ieee802.11b和ieee802.11a这两个新的标准。
三者之间技术差别主要在于mac (mediumaccesscontrol,媒介访问控制)子层和物理层。
(注:ieee802.11协议只规定了开放式系统互联参考模型(osi/Rm)的物理层和mac层,其mac层利用载波监听多重访问/冲突避免(csma/ca)协议,而在物理层,ieee802.11定义了三种不同的物理介质:红外线、跳频扩谱方式(Fhss)以及直扩方式(dsss)。
)ieee802.11b标准ieee802.11b(wi-Fi)使用开放的2.4ghz直接序列扩频,最大数据传输速率为11mbps,无需直线传播。
(注:其实际的传输速率在5mbps左右,与普通的10base-t规格有线局域网处于同一水平。
)使用动态速率转换,当射频情况变差时,可将数据传输速率降低为5.5mbps、2mbps和1mbps。
且当工作在2mbps和1mbps速率时可向下兼容ieee802.11。
ieee802.11b的使用范围在室外为300米,在办公环境中则最长为100米。
使用与以太网类似的连接协议和数据包确认,来提供可靠的数据传送和网络带宽的有效使用。
ieee802.11b运作模式基本分为两种:点对点模式和基本模式,点对点模式是指无线网卡和无线网卡之间的通信方式。
基本模式是指无线网络规模扩充或无线和有线网络并存时的通信方式,这是ieee802.11b最常用的方式。
ieee802.11a标准ieee802.11a工作在5ghzu-nii频带,从而避开了拥挤的2.4ghz频段。
简述ieee 802.11标准的基本内容。

简述ieee 802.11标准的基本内容。
IEEE 802.11是无线局域网(WLAN)技术标准的一种,IEEE 802.11标准规定了无线局域网中各种设备之间的通信规则,如数据传输速率、信道选择、加密和身份验证等。
以下是IEEE 802.11标准的基本内容:
物理层(PHY):定义了无线通信信号的传输方式和频带。
IEEE 802.11采用了多种不同的频率带和信号调制方式,如2.4GHz和5GHz 频带、OFDM和DSSS等。
媒体访问控制层(MAC):规定了无线局域网中各个设备之间的数据传输方式和控制方法。
IEEE 802.11标准采用了CSMA/CA(带碰撞避免)协议来控制设备之间的通信,以避免数据冲突。
数据传输速率:IEEE 802.11标准规定了多种不同的数据传输速率,包括1、2、5.5、6、9、11、12、18、24、36、48和54 Mbps。
其中,2.4GHz频带的速率是低于5GHz频带的速率。
信道选择:IEEE 802.11标准规定了多种不同的信道,如2.4GHz 频带上有11个信道,5GHz频带上有23个信道。
为避免干扰,不同的设备要选择不同的信道进行通信。
加密和身份验证:IEEE 802.11标准采用了多种不同的安全协议,如WEP、WPA和WPA2等。
这些协议能够保证无线局域网中数据传输的安全性,并且要求用户在接入无线网络时进行身份验证,以确保网络的安全性。
综上所述,IEEE 802.11标准是无线局域网技术的基础,并且在实际应用中得到了广泛的应用。
无线协议标准

无线协议标准通常是指无线网络中设备之间通信的规范和标准。
以下是常见的无线协议标准:
1.IEEE 80
2.11系列协议:这是最常用的无线协议标准,包括802.11a、802.11b、802.11g、802.11n和802.11ac 等。
这些标准规定了无线网络的物理层和数据链路层,以及如何实现无线网络安全等。
2.蓝牙协议:蓝牙是一种短距离无线通信协议,用于连接和传输数据。
它可以在各种设备之间进行无线传输,例如手机、电脑和耳机等。
3.HomeRF协议:HomeRF是一种专门为家庭和小型企业设计的无线通信协议,旨在与现有的家庭电话和计算机系统集成。
它支持语音和数据传输,并具有较好的安全性。
4.ZigBee协议:ZigBee是一种低速率的无线通信协议,适用于需要低功耗和低数据速率的场景,如智能家居和工业自动化等。
5.WiMax协议:WiMax是一种无线宽带接入技术,旨在提供高速无线数据传输。
它可以在较远的距离上实现高速数据传输,常用于移动通信和宽带接入等领域。
6.无线HART协议:无线HART是一种专为工业自动化领域设计的无线通信协议,支持多种工业设备之间的无线通信。
7.Sub-1GHz无线协议:这种无线协议通常用于智能家居和工业自动化领域,具有较低的传输速率和较远的传输距离。
8.LoRa协议:LoRa是一种长距离无线通信协议,适用于物联网应用,尤其是需要低功耗和长距离传输的场景。
这些无线协议标准各有特点和适用场景,可以根据实际需求选择合适的协议来实现无线通信。
wifi协议对应的版本

wifi协议对应的版本WiFi协议版本一、802.11b协议802.11b是WiFi协议的一种版本,它是最早的无线局域网(WLAN)标准之一。
该协议于1999年发布,工作在2.4GHz频段,提供最高11Mbps的传输速率。
802.11b协议使用了直接序列扩频(DSSS)技术,具有较好的兼容性,可以与其他版本的WiFi设备互相通信。
然而,由于其传输速率相对较低,现在已被更先进的协议所取代。
二、802.11a协议802.11a是WiFi协议的另一种版本,于1999年发布。
与802.11b 协议不同,802.11a协议工作在5GHz频段,提供最高54Mbps的传输速率。
该协议使用了正交频分复用(OFDM)技术,能够在较短的时间内传输更多的数据。
然而,由于其工作频段的限制,信号穿透能力较差,覆盖范围相对较小。
三、802.11g协议802.11g协议是在802.11b协议基础上进行改进的版本,于2003年发布。
它与802.11b协议使用相同的2.4GHz频段,但提供了更高的传输速率,最高可达54Mbps。
802.11g协议采用了OFDM技术,具有更好的抗干扰能力和较远的传输距离。
由于其与802.11b协议的兼容性,802.11g设备可以与802.11b设备互通。
四、802.11n协议802.11n是WiFi协议的一种高级版本,于2009年发布。
该协议工作在2.4GHz和5GHz频段,最高可提供300Mbps或更高的传输速率。
802.11n采用了多输入多输出(MIMO)技术,通过同时使用多个天线来提高传输速率和网络覆盖范围。
此外,802.11n还支持多个信道的绑定,进一步提高了网络性能。
五、802.11ac协议802.11ac是目前WiFi协议中最先进的版本,于2013年发布。
该协议工作在5GHz频段,并提供最高可达7Gbps的传输速率。
802.11ac 采用了更高级的MIMO技术,支持多个天线和更宽的信道宽度,以实现更快的速率和更稳定的连接。
无线协议有哪些

无线协议有哪些无线协议指的是无线通信中用于传输数据的相关规范和标准,它定义了无线通信设备之间如何建立连接、传输数据和维持通信的方式。
下面将介绍几种常见的无线协议。
1. Wi-Fi(IEEE 802.11系列)Wi-Fi是一种常见的无线局域网协议,它使用无线电波传输数据,可支持高速数据传输。
Wi-Fi协议定义了网络接入方式、数据传输速率和无线电频率等规范,使得移动设备可以通过无线接入点连接到互联网。
2. Bluetooth(IEEE 802.15.1)Bluetooth协议主要用于短距离无线通信,它使用低功耗的无线电波传输数据,可支持数千个设备同时连接。
Bluetooth协议定义了设备之间的连接方式、数据传输速率和通信保密性等规范,使得智能手机、耳机和其他蓝牙设备可以互相通信。
3. ZigBee(IEEE 802.15.4)ZigBee协议主要用于低功耗的无线传感器网络,它使用短距离的无线通信来连接传感器设备。
ZigBee协议定义了设备之间的连接方式、数据传输速率和能耗管理等规范,使得传感器设备可以进行数据采集和远程控制。
4. NFC(Near Field Communication)NFC是一种短距离无线通信技术,它用于移动支付和设备之间的近场通信。
NFC协议定义了设备之间的连接方式、数据传输速率和安全性等规范,使得智能手机和其他支持NFC的设备可以通过近距离触碰或靠近进行数据传输。
5. LTE(Long-Term Evolution)LTE是一种移动通信标准,用于4G和5G网络。
LTE协议定义了无线接入、数据传输和无线电资源管理等规范,使得移动设备可以通过无线基站连接到互联网并实现高速数据传输。
综上所述,无线协议在无线通信中起到了关键的作用,它们定义了设备之间的连接方式、数据传输速率和通信保密性等规范,使得无线设备可以实现高效、安全和稳定的无线通信。
随着无线技术的不断发展,新的无线协议不断涌现,为无线通信提供了更多的选择和可能性。
IEEE 80211及802154协议剖析

重大干扰时,发送节点将自动逐
次降低速率,以
距离
5.5Mb/s 、2Mb/s 或1Mb/s 等速率
进行发射。
类似地,如果无线设备从低速
率环境进入高速率环境,发射速
率将会随之自动逐次提高。 这种
动态速率漂移技术对上层协议是
透明的。
IEEE802.11
802.11 标准中的 MAC层
无线局域网虽然也是多个站点共享无线信 道,却不能简单地搬用以太网的 CSMA/CD 协 议,这里主要有两个原因:
IEEE802.11
FHSS 的发送与接收※
FHSS signals
FH
Data Modulator
spreader
X
Pseudo-random frequency generator
Transmitter
FH
despreader
X
Demodulator
Data
Pseudo-random frequency generator
Industry: 902 ~ 928 Mhz (26MHz) Science: 2.4~2.4835 GHz (83.5MHz) Medicine: 5.15~5.35 GHz and 5.725~5.825 GHz (300MHz) 扩频技术主要又分为 跳频 和 直接序列 两种技术。
IEEE802.11
Receiver
IEEE802.11
DSSS(直接序列扩频)
Direct Sequence Spread Spectrum
(Chip code 也称为 pseudo-noice 或 spreading code )
DSSS系统则将要传输的数据流通过扩展码调制而人为地扩展带宽,即 使在传输波段中存在部分噪声信号,接收机也可以无错误地接收数据。
无线技术-802.11协议介绍-2

WLAN拓扑介绍
802.11a 54Mbps吞吐能力 采用正交频分复用(OFDM) 支持6,9,12,18,24,36,48& 54Mbps数据速率 工作在无需许可的5GHz频段“Unlicensed National Information Infrastructure”(U-NII)频段 23个非重叠信道。 802.11a早在1999年就已经成为标准,但是经过很长一段时间后 相关产品才开始出现。 802.11a的硬件最早出现在2001年底。
采用40MHZ频宽模式,可以成倍增加无线网络的支持速率,但是2.4G网络 和5G网络支持的40M频宽的信道数量不同。 在2.4G模式上最多可以有一个40M信道,在5G模式上40M信道数目因国家不 同而不同,理论上最多有11个40M信道。
WLAN拓扑介绍
MIMO技术
采用802.11a/b/g技术的无线接入点和客户端是通过单个天线单个 空间信道(SISO)来实现数据传送的。 采用802.11n技术的无线接入点和客户端可以利用两个或者更多的 空分信道同时传送数据,如果终端也支持MIMO技术的话,能够采用 多个接收天线和高级信号处理技术来重建从多个信道发送过来的数据 MIMO技术就是利用其它技术来改进接收端的信噪比
WLAN拓扑介绍
802.11n MAC层改进技术
802.11 MAC层协议耗费了相当多效率作用链路的维护,从而大大降低 了系统的吞吐量。802.11n通过改善MAC层来减少固定的开销及拥塞造 成的损失。 帧聚合技术 块确认技术
WLAN拓扑介绍
802.11MAC层协议耗费了相当多效率用作链路的维护,从而大大降低 了系统的吞吐量。 在802.11的MAC层协议中,有很多固定的开销,尤其在两个帧之间以 及传输完每个帧所收到的确认信息。在最高数据率的传输下,这些多余 的开销甚至比需要传输的整个数据帧还要长。例如:802.11g理论传输 速率为54Mbps,实际上却只有22Mbps,将近有一半多的速率浪费了 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
802.11b/g/n协议 一、 符合IEEE的移动通信技术
二、 802.11四种主要物理组件 1. 工作站(Station) 构建网络的主要目的是为了在工作站间传送数据。所谓工作站,是指配备无线网络接口的计算设备,即支持802.11的终端设备。如安装了无线网卡的PC,支持WLAN的手机等。
2. 接入点(Access Point) 802.11网络所使用的帧必须经过转换,方能被传递至其他不同类型的网络。具备无线至有线的桥接功能的设备称为接入点,接入点的功能不仅于此,但桥接最为重要。为STA提供基于802.11的接入服务,同时将802.11mac帧格式转换为以太网帧,相当于有限设备和无线设备的桥接器。
3. 无线媒介(Wireless Medium) 802.11标准以无线媒介在工作站之间传递帧。其定义的物理层不只一种,802.11最初标准化了两种射频物理层(2.4GHz和5GHz)以及一种红外线物理层。
4. 分布式系统(Distribution System) 当几个接入点串联以覆盖较大区域时,彼此之间必须相互通信以掌握移动式工作站的行踪。分布式系统属于802.11的逻辑组件,负责将帧传送至目的地,将各个AP连接起来的骨干网络。
三、 无线局域网的网络类型
Infrastructure网络架构可以实现多终端共用一个AP。需要AP提供接入服务,AP负责基础结构型网络的所有通信。这种网路可以提供丰富的应用,较多的STA接入数量。
Ad-hoc网络没有有线基础设施,网络节点由移动主机构成,无线网卡之间的通讯,不需要通过AP。一般是少数几个STA为了特定目的而组成的一种暂时性网络,又称特设网络。 802.11-基础结构网络的架构 注意: BSS(basic service set)基本服务集由能互相通信的STA组成,是802.11网络提供服务的基本单元; ESS扩展网络由多个BSS构成,是采用相同SSID的多个BSS形成的更大规模的虚拟BSSS,是为了解决单个BSS覆盖范围小的问题而定义的; SSID(服务集标识),标识一个ESS网络,相当于网络的名称; BSSID是AP的MAC地址,用来标识AP管理的BSS。 BSS和ESS的关系如下图: 802.11-自组织网络的架构 四、 802.11-层次和功能 各种PHY层技术的区别在于不同的编码调制方式、不同的速率以及不同的PHY层帧格式。
802.11基本物理层(2.4 GHz频段) DSSS:1, 2 Mbps FHSS:1, 2 Mbps IR: 1, 2 Mbps 802.11b (2.4 GHz频段) HR/DSSS:DBPSK:1, DQPSK :2 Mbps,CCK:5.5,11 Mbps 802.11g (2.4GHz频段)--ERP(Extended Rate PHY) ERP-DSSS/CCK:1, 2, 5.5, 11 Mbps ERP-OFDM:6,9,12,18,24,36,48,54 Mbps ERP-PBCC(可选):22, 33 Mbps DSSS-OFDM(可选):6,9,12,18,24,36,48,54 Mbps 802.11n ( 2.4GHz 、5GHz频段) MIMO-OFDM 802.11与ISO对比 802.11协议主要工作在ISO协议的最低两层上。
802.11 PHY分层结构 物理层管理实体PLME(Physical Layer Management Entity) 与MAC层管理相连,上层通过该模块对PHY进行管理、控制,主要是PHY MIB寄存器。 物理层汇聚过程PLCP(Physical Layer Convergence Procedure)子层 规定如何将MAC层协议数据单元(MPDU)映射为合适的物理层帧格式,可以理解为PHY层的编码和封包过程。
物理媒介相关PMD(Physical Medium Dependent)子层 直接与无线媒介发生关联,主要是最底层涉及编码、调制和无线收发的部分。 MSDU:MAC Service Data Unit,MAC层业务数据单元。这是最原始的待发数据信息; MPDU:MAC Protocol Data Unit,MAC层协议数据单元。将MSDU按一定帧结构包装后的待发数据信息; PSDU:PLCP Service Data Unit,PLCP子层业务数据单元。实际就是从MAC层传来的MPDU信息 PPDU:PLCP Protocol Data Unit,PLCP子层协议数据单元。将PSDU按照特定的帧格式进行数据封装后的数据包,这也是最终将经由物理介质发送出去的数据封装。
PLCP子层将MAC层传来的数据MPDU转换为PSDU,然后,加上PLCP头(PLCP Header)信息和前导码(Preamble Code)就构成了PPDU数据帧结构。IEEE定义了两种前导码和头信息组成的PPDU帧结构:长前导码(Long Preamble)和头信息组成的长PPDU帧以及短前导码(Short Preamble)和头信息组成的短PPDU帧。
802.11的物理帧结构分为前导信号(Preamble)、信头Header和负载Payload。Preamble主要用于确定移动台和接入点之间何时发送和接收数据,传输进行时告知其它移动台以免冲突,同时传送同步信号及帧间隔。Preamble完成,接收方才开始接收数据。Header 在Preamble之后用来传输一些重要的数据比如负载长度、传输速率、服务等信息。由于数据率及要传送字节的数量不同,Payload的包长变化很大,可以十分短也可以十分长。
在一帧信号的传输过程中,Preamble和Header所占的传输时间越多,Payload用的传输时间就越少,传输的效率越低。
在接收PPDU数据包时,需要CCA(Clear Channel Assessment):空闲信道评估,它的作用是PHY根据某种条件来判断当前无线介质是处于忙还是空闲状态,并向MAC通报。高速PHY至少应该按照下面三个条件中的一个来进行信道状态评估: -CCA模式1:根据接收端能量是否高于一个阈值进行判断。如果检测到超过ED(能量检测,Energy Detection)阈值的任何能量,CCA都将报告介质当前状态为忙。 -CCA模式2:定时检测载波。CCA启动一个3.65ms长的定时器,在该定时范围内,如果检测到高速PHY信号,就认为信道忙。如果定时结束仍未 检测到高速PHY信号,就认为信道空闲。3.65ms是一个5.5Mbps速率的PSDU数据帧可能持续的最长时间。 -CCA模式3:上述两种模式的混合。当天线接收到一个超过预设电平阈值ED的高速PPDU帧时,认为当前介质为忙。 当接收机收到一个PPDU时,必须根据收到的SFD字段来判断当前数据包是长PPDU还是短PPDU。如果是长PPDU,就以1Mbps速率按 BPSK编码方式对长PLCP头信息进行解调,否则以2Mbps速率按QPSK编码方式对短PLCP头信息进行解调。接收机将按照PLCP头信息中的信令 (SIGNAL)字段和业务(SERVICE)字段确定PSDU数据的速率和采用的调制方式。
五、 IEEE 802.11b/g/n标准对比表
2.4Ghz频段还有其他应用包括蓝牙无线连接,手机甚至微波炉,这个频段应用的干扰会进一步限制WLAN用户的可用带宽。 1 802.11b 扩展的DSSS; 动态变速—1,2,5.5,11Mbit/s,取决于SNR,BPSK、QPSK、CCK(5.5,11),用户数据传输率最大达到6Mbit/s; 频率--3非重叠ISM频带,自由2.4Ghz ISM频段; 传输范围--户外300m,室内30m最大数据传输率要在室内10m内; 安全—WEP 802.11b数据传输率
2 802.11g 使用DSSS从1Mbps到5.5Mbps—与802.11b相同 使用OFDM从6Mbps到54Mbps—与802.11a相同 与802.11b向后兼容 当802.11b站点存在时(只是相关)吞吐量严重降低,这是由于802.11b/g混合模式互用机制的开销造成的 802.11b站点不能解译OFDM帧,所以CS失败 前传输CTS:在DSSS模式(低速)中发送CTS来设定NAV RTS/CTS:处理隐藏终端 两种时槽时间(短/长) 为性能提升进行的专有扩展 封包突发 信道绑定
3 802.11n 数据传输率支持1、2、5.5、6、9、12、18、24、36、48、54Mbps; 正交频分复用(OFDM)、多输入/多输出(MIMO)和通道捆绑(CB),高达4个空间流; 扩展信道40Mhz; 更短的保护间隔:400ns代替了800ns—最大600Mbps MAC开销减少,更高效的数据传输率; 3非重叠ISM频带,频率为2.4Ghz; 12非重叠需要许可证的国家信息基础设施(UNII)频道,5Ghz频带; 向后兼容。 802.11n OFDM调制方法、编码和数据率 六、 频谱划分 WiFi总共有14个信道,如下图所示:
1) IEEE 802.11b/g标准工作在2.4G频段,频率范围为2.400—2.4835GHz,共83.5M带宽 2) 划分为14个子信道 3) 每个子信道宽度为22MHz 4) 相邻信道的中心频点间隔5MHz 5) 相邻的多个信道存在频率重叠(如1信道与2、3、4、5信道有频率重叠) 6) 在只允许11个频道的地区,整个频段内只有3个(1、6、11)互不干扰信道