THE DISTRIBUTION FUNCTIONS FOR THE LINEAR COMPLEXITY OF PERIODIC SEQUENCES
特殊周期序列K-错线性复杂度的快速算法

+p , +( +1 k+Z + /i h ki 3 ) p , (+) 2 3 ,
( 一 ) — p 1/ 2 3
. (』 1 , + 3+ )
h ㈨ ∑ c i + ), o ] + 删… o +( 2ki s
+( + ) + ki 3 + ) + P ,232 , 2 k p ,+(j 2 k 2|h (+ j 。/) } +
( 一 )3 1 p 1 / —
+
CS [ +( +1 ji +1k O i t ) , +( } )
h, ] + ∑ c i ( + ), 2o h of + 2k s[ i
+(j+2 k4p , +( +2 k+2 k 3 ) ki 3 - ) p,
+p , +( +1.+2后 ( ), ( ), ki )} p , j
h = 0, , h = 0, , i = 0, , , 一 1 1 1 2, 2 1 2, 1… 后 ; e di n f
0, , h 12,1=0, , ,2=0 12} 12 h ,, ;
¨ Ⅱ ∑
IT f c≤ K, e = ( 1A +, 1 ; t na h A ,p1A +) es l c=c+( e P一1 , ∑ )
第3 0卷 第 2期
2 1 年 0 月 02 3
佳 木 斯 大 学 学 报 ( 自 然 科 学 版 )
Ju a f i u i nvr t N trl cec d i ) o r l a s U ie i n o Jm s y( a a S i eE io u n tn
Vo . O No 2 13 .
( 一 )3 p 1/
CSt ,+. i kh ,1h ] O [ i j +2 ,0h ,2‘ } , ∑ ( - )3 p I / =mi( n
HMM

Markov Processes
• For a Markov process, the next state depends only on the current state:
• This property in turn implies that
“Conditioned on the present, the past & future are independent”
State Transition Diagrams
0.5 0.5 0.3 0.2 0.1 0.0 0.9 0.0 0.4 0.6 0.3 0.6 0.2 0.1 0.9
1
3
0.4
2
• Think of a particle randomly following an arrow at each discrete time step • Most useful when N small, and Q sparse
• Standard learning methods have statistical & computational limitations:
Do not exploit known temporal dependencies Computation & storage scale poorly
Visual tracking of articulated objects
(L. Sigal et. al., 2006)
• Estimate motion of targets in 3D world from indirect, potentially noisy measurements
Robot Navigation: SLAM
《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第六章-2

An-1n -1 a An-2 An-3 Bn-1 n -3 Cn-1n -5 Dn-1 -7 a a an … Bn-2 Bn-3 B2 0 0 Cn-2 Cn-3 0 0 0 Dn-2 … Dn-3 …
Ai −1 =
M
第(n-1)行 A2 第n行 第(n+1)行
An − 2 =
3
∴ H 3 ( s ) 系统不稳定
以上两个性质是判断系统稳定的必要条件
第六章 连续时间系统的系统函数
(二) 罗斯-霍维茨(Routh-Hurwitz)准则(判据) 罗斯-霍维茨( 准则(
内容: 若 内容: D(s) = an sn + an−1sn−1 +L+ a1s + a0 的根全部位于s左半平面的充要条件是 左半平面的充要条件是: 则 D(s) = 0 的根全部位于 左半平面的充要条件是: (ⅰ)D ( s ) 的全部系数 a i 为正,无缺项; 为正,无缺项; 罗斯-霍维茨阵列中第一列数字( )符号相同 (ⅱ)罗斯-霍维茨阵列中第一列数字( A i )符号相同 -6 R-H阵列: 1行 An an Bn an -2 Cnan -4 Dnan… … 阵列: - 阵列 第
第六章 连续时间系统的系统函数
例 4 反馈系统
F(s) + _ E(s) G(s)
H(s)
Y(s)
前向通道 , 反馈通道 H ( s ) = K 问当常数满足什么条件时,系统是稳定的? 解: E ( s) = F ( s) − H ( s)Y ( s)
Y ( s ) = E ( s )G ( s ) = G ( s ) F ( s ) − G ( s ) H ( s )Y ( s )
Time

14.1.1 Deterministic Models of Time
Deterministic time models can involve simple linear functions that are linear in the parameters (as in linear forecast models) or nonlinear in the parameters (as in quadratic models). They can also involve nonlinear functions (as in exponential growth models). And they often involve periodic functions. Periodic time series appear in graphics as waveforms, or sinusoidal patterns. We see these patterns when we examine graphics of monthly temperature, rainfall, or migration. We hear them when we listen to music. Because periodic models are peculiar to time series, we will focus on them in this section.
• • •
•
408
14 Time
•
• •
•
Dates are identified by month, day, and year and are synchronized with astronomical cycles by a series of ad hoc adjustments. The exact details of these adjustments have varied over time, so that the dates on different calendars and dates on the same calendar at different epochs do not necessarily correspond. For example, when the Gregorian calendar was instituted, the date October 15, 1582 would have corresponded to the date October 5, 1582 in the prior Julian system. Even though we think of time as being continuous, the calendar system in use may change. Superimposed across the astronomical periods are periods such as quarter (which varies in length so four quarters fit into the year) and week (which is fixed in length but overlaps yearly boundaries). Time is statutory. If a measurement is scheduled for 2 AM, we consider it to match another measurement scheduled for 2 even if one was actually taken at 1:59:57 and the other at 2:00:01. For statutory purposes, time is treated as a partial rather than a complete order. That is, events within a time window may be treated as contemporaneous. Daylight Saving Time, said to have been invented by Ben Franklin, is a statutory adjustment of time to accommodate seasons. Time zones discretize solar time, so that within a range of longitudes all locations have the same time. In our indoor age, it is convenient to refer to the same moment with the same time, but if our movements were limited and the sun were of immediate interest, we might prefer local solar time. Time zones were developed for the railroads, when it became important to reference the same moment across a range of locations.
周期二元序列的部分4-错误序列计数公式

21 0 2年 5月
文章 编号 :0 7— 9 5 2 1 ) 3 0 2 4 1 0 2 8 ( 0 2 0 —0 3 —0
周 期 二 元 序 列 的 部 分 4一 误 序 列 计 数 公 式 错
周 建钦 , 刘 军
(. 州 电 子 科技 大学 通 信 工程 学 院 , 江 杭 州 30 1 ;. 徽 工 业 大 学 计 算 机 学 院 , 徽 马 鞍 山 2 3 3 ) 1杭 浙 1082安 安 4 0 2
序列 s的线 性复 杂度 , 记作 L s . C( )
*
收 稿 日期 : 0 1—1 21 2—1 9
基 金项 目: 江 省 自然 科 学基 金 资 助项 目( 10 1 ; 00 3 ) 浙 Y10 3 8 R19 1 8
作 者简 介 : 建 钦 ( 93一 , , 东 巨野 人 . 徽 工 业 大 学 计 算 机 学 院 教 授 , 士 . 要 从 事 通 信 、 码 学 与理 论 计 算 周 16 ) 男 山 安 硕 丰 密
一
一
一
一
一
列 e的 分 布 情 况 . 于 Ga s h n算 法 , 基 me— a C 通过 将 一 线 性 复 杂 度 的 计 算 转 化 为 求 Ha 错 mmig重 量 最 小的 错 误 序 列 的 方 法 , n
给 出 了线性 复 杂度 小 于 2 的 2 周 期 二 元 序 列 的 部 分 4 错 误 序 列 的 计 数 公 式 . 一
第3 3卷
第 3期
吉 首大 学 学 报 ( 自然 科 学 版 )
J r a fJs o ie st ( t r l in eEdto ) ou n l ih u Unv riy Na u a e c iin o Sc
method

Method 15%
PAPER INFORMATION
Title of the Paper (1) 3D motion estimation for depth image coding in 3D video coding (2) Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects (3) Image segmentation with simultaneous illumination and reflectance estimation: an energy minimization approach Number of Pages (1) 7 pages; (2) 8 pages; (3) 7 pages; Subject 学科
Use of prepositional phrases and participle phrases as adverbial or restrictive phrases
within the scene relating to, shifting direction of blocks, based on the speed of objects, with motion sharing, instead of encoding motion vectors, represented by three-dimensional motion vectors, performed over the reference frame, defined as follows, matching in depth direction, predicted from neighboring blocks (1) for the probability of a track, considerable reduction in complexity, transitioning into a termination state, observed at all space-time locations, scored by a sliding-window object detector, generated from a foreground appearance model, with a slight abuse of notation, given by our dynamic model (2) variation in appearance, along with the piecewise constant property, in view of the above clustering characterization, expressed as a linear combination, achieved by seeking membership functions, associated with the regions, exploited in the proposed method, applied for local intensity classification (3)
sub math
登录注册∙豆瓣社区∙豆瓣读书∙豆瓣电影∙豆瓣音乐∙豆瓣同城∙九点∙豆瓣FMGRE数学sub的准备2007-01-03 22:38:21来自: Credo|无法加新小组因此弃五. 如何准备1.备考资料Cracking the GRE Math Test, 2nd Edition这本书是我复习时使用的主要参考书。
书中涵盖了考试中出现的近90%的内容,每章结束之后,都有Content Review的题目进行复习。
最后还附了一套仿真题。
我认为这是一本不可多得的sub备考资料。
这本书不贵,在Amazon上卖12美元,地址如下:/exec/obido ... 103-3798320-3132649ETS出版的Practicing to Take the Mathematics Test GRE,3rdEdtion就不用买了,太贵了(140多美元,只有两套真题。
而且书中的一套题目可以在ETS的网站上下载。
另一套是谁也没见过的真题)官方真题目前能得到的官方真题只有97年和93年的。
97年的真题是在free practice book中免费提供的,我已经上传到精华区了,文件名是Math.pdf。
不过这套题目难度偏低,属于高考难度。
另外一套93年的真题其实是Practicing to Take the Mathematics Test Gre, 2nd Edition,目前没有电子版,有盗版小贩卖。
我当时没有做这套题目。
如果想做的话,可以找cyclewalker复印,他买了。
(提示:以后ETS可能会在官方网站放出包含新的真题的Free Practice Book)REA6套仿真题这就是臭名昭著的那6套题目。
正如GFinger所说,题目又偏又难,偏的题目就直接跳过吧(其实做一做也可以,我就都做了)。
题目难的好处是让大家对于真实的考试有所准备,最近几年的题目难度有上升的趋势。
大家还是认真地把这6套题目做一下吧。
(提示:题目我也已经上传了,是寄托天下网友的扫描版,不过打印出来效果还可以)03年和04年的回忆题03年的回忆题我是从寄托天下上下载的,已经上传。
代数英语
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CAT准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
ImageProcessing_Unit1_slides爱丁堡大学图像处理研究生课程课件
Image Processing - Unit 1
javier.escudero@
10
Institute for Digital Communications (IDCOM) – Image Processing
256 × 256 pixels 128 × 128 pixels
Fig. 1.6 in Petrou’s
Image Processing - Unit 1 javier.escudero@ 12
Institute for Digital Communications (IDCOM) – Image Processing
Institute for Digital Communications (IDCOM) – Image Processing
Unit 1 – Introduction to digital image processing
Dr Javier Escudero javier.escudero@ School of Engineering / University of Edinburgh
False contouring – Content effects
Fig. 1.6 in Petrou’s
Image Processing - Unit 1 javier.escudero@ 17
Institute for Digital Communications (IDCOM) – Image Processing
False contouring (I)
• Keeping the size of the image constant and reducing the number of grey levels (G=2m) produces false contouring • However, this effect depends on the contents of the image
基于Bernstein多项式逼近的几类积分方程数值解
参考文献………………….………………….……..…….………..…….33
一13宁夏大学硕士学位论文第三章bemstcin多项式数值求解线性volterra积分微分方程第三章bernstein多项式数值求解线性voiterra积分微分方程31bernstein多项式数值求解线一i生volterra积分微分方程在本节里通过b锄stein多项式及其导数逼近未知函数及其导数进而把积分微分方程转化为线性方程组给出线性v01tem积分微分方程的数值解该方法计算简单并且可以得到很好的近似解
In chapter one,the significance and present situation in the integral equation are introduced, the definition and convergence theorem of Bernstein polynomial are given,the third type of Volterra integral equation is introduced simply.
The last part of the paper summarize the main research in the thesis and makes a proposal for further research
Key Words:Berstein polynomial,Volterra integral equations,Numerical method,Integro—
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vo1.29 No.a/4 JOURNAL OF ELECTRONICS(CHINA) July 2012 THE DISTRIBUTION FUNCTIONS FOR THE LINEAR COMPLEXITY OF PERIODIC SEQUENCES Yang Minghui Zhu Shixin f cho01 of Computer&Information,Hefei University of Technology,Hefei 230009,China)
(School of Mathematics,Hefei University of Technology,Hefei 230009,China) Abstract Linear complexity is an important standard to scale the randomicity of stream ciphers.The distribution function of a sequence complexity measure gives the function expression for the number of seauerices with a given complexity measure value.In this paper,we mainly determine the distribution function of sequences with period N=2n over using Discrete Fourier Transform(DFT), where n and the characteristics of只are odd primes,gcd(n,q)=1 and q is a primitive root n1odulo 2n .The results presented can be used to study the randomness of periodic sequences and the
analysis and design of stream cipher. Key words Linear complexity;Periodic sequences;Discrete Fourier Transform(DFT)
CLC index TN918.1 DOI 10.1007/s1 1767—012—0825—8
I.Introduction Pseudorandom sequences are widely used in cryptography,communication,computation,etc・・ It is an important issue how to evaluate the pseudorandom sequences.With the study of stream ciphers,especially at the end of 1960s,the B—M algorithm[1l,made the linear complexity become an
important standard of the stream cipher.The Linear Complexity(LC)of a sequence,denoted by LC(S1,is the length of the shortest linear feedback shift register that can generate the se— quence.If 2LC fS)continuous bits of this sequence are known,we can find the whole sequence using B—M algorithm.So the linear complexity of the sequence must be large enough. Let S=(8o s…)be a sequence with terms in the finite field .S is said to be N—periodic if 8 =s for all i>0.we can describe the se- quence S with period N by S=(80 8 一,8N-1)。。, the corresponding polynomial of is denoted as S (x)=s0+81x+…+SN_1z 一.The linear corn— plexity LC(S) of an N—periodic sequence S= (so,s1,…)with terms in the finite field is the
Manuscript received date:January 13.2012;revised date: Malv 24.2012. Supported by the National Natural Science Foundation of China(No.60973125). C0rresp0nding author:Zhu Shixin,born in 1962,male, Professor,Ph.D..Department of Applied Mathematics, Herei University of Technology.Hefei 230009.China. Email:zhushixin@hfut.edu.an.
smallest nonnegative integer c for which there exist coefficients d1, ,…, ∈ such that s + 48,一1+…+4s,一 =0,for all J c.In fact, LC(S)is the degree of the monic polynomial x + +…+ 1x+ .If S is a zero sequence, LC(S)is 0. Let gcd(N,q):1 for every positive integer t∈ {0,1,…,Ⅳ一1),cyclotomic coset Ct of t mod N relative to the powers of q is defined as
一{ ,tq,tq。,…,£ ),where礼t is the smallest positive integer such that矿t三t(mod N),while t is called the coset leader of and n£is the size of the cyclotomic coset . Let a be a positive integer with gcd(a,m):1. Then the smallest integer札such that a 三 l(modm1 is called the order of a mod m.If there is an integer g with gcd(g,m)=1 and the order of g mod m is Euler’s function (m),where (m) denotes the number of integers that are less than rrt and coprime with m,then we say there exists a primitive root modulo m and g is called a primitive root modulo m. Linear complexity is an important standard to scale the randomicity of key sequences.The algo— rithms for the linear complexity of sequences were given in Refs.f3,41.The distribution function of a sequence complexity measure gives the function expression for the number of sequences with a given complexity measure value.Rueppel determined the counting function of 2 一periodic binary sequences 212 JOURNAL OF ELECTRONICS(CHINA),Vo1.29 No.3/4,July 2012 with the given linear complexity f f0<f<2 1 in Ref.[2].The number of sequences with given prime period and linear complexity was given in Ref.f51 using Discrete Fourier Trartsform fDFT).For small k.the distribution functions for the 2 一periodic binary sequences with given linear complexity and k—error linear complexity were given in Refs.『6,7]. In this correspondence,we mainly determine the distribution function of sequences with period N=2n over using characteristics of are and q is a primitive root II.PreUminaries DFT.where佗and the odd primes,gcd(n,q)=1 modulo N. DFT is an important tool to study sequenceIs,9], which is also the main tool of this corre8pondence, and its definition is given in Ref.[101.Let N be a positive integer with gcd(N,q)=1 and be a primitive N—th root of unity in some extension field of .Then the DFT of an N—tuple SⅣ= [8o,s --,sⅣ一1]∈ ,which will be called the time- domain N—tuple,is defined to be the frequency— domain N—tuple A =[a0,a 一,aN_l】,where the components of AⅣare given by 0 =∑ s,oL , and i∈{0,1,…,Ⅳ一1).Blahut’8 Theorem de— scribed the relationship between the DFT and the linear complexity of periodic sequences.Let gcd(N,q)=1,then the linear complexity of the sequence S=(80 81,…,8Ⅳ一1)with period N is equal to the Hamming weight of A .where A is the DFT of【80,81,…, 一1]. The linear complexity of sequences with period N over was given in Ref.[5]5 when gcd(N,q)= 1. Lemma 1 Let gcd(N,q)=1, , ,…,Ch be the diferent cyclotomic cosets modulo N,and fl, 之,…,f^be the size of each cyclotomic coset,re— spectively.Then the linear complexity of an N— periodic sequence S with terms in can be written in the form of LC(S)=∑ l ,where ∈{0,1). III. Main Results Lemma 2 Let P be an odd prime number and q be a primitive root modulo 2p .Then q is a primi— tive root modulo 2p ,where 0 r<f. Proof Suppose the order of q modulo 2p 一 is d and d< (2 ). As q 三l(mod2p ),q州三 l(mod2p ).Also from d<p(2p卜 ),we have pd< (2p ).Since q is a primitive root modulo 2p ,we have (2 )f pd,which is a contradiction.So d= (2 pf ).Similarly,we can prove that for any integer r,0 r<l,q is a primitive root modulo 2p . Q.E.D. Lemma 3 Let N=2n ,P=Char ,gcd(n,g)= 1,and q be a primitive root modulo N,where n and P are odd prime integers.Then the linear complexity of an N—periodic sequence S with terms in can be written in the form LC(S)