2020年高考专题训练八 立体几何(参考答案)

2020年高考专题训练八 立体几何(参考答案)
2020年高考专题训练八 立体几何(参考答案)

2020年高考专题训练八 立体几何 参考答案

5.(12分)(考点:折叠问题、面面垂直、利用空间向量求线面角的正弦值)

如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.

(1)证明:平面PEF ⊥平面ABFD ;

(2)求DP 与平面ABFD 所成角的正弦值.

解析:

(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .

又BF ?平面ABFD ,所以平面PEF ⊥平面ABFD .

(2)解:作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .

以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H ?xyz .

由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE 又PF =1,EF =2,故PE ⊥PF .

可得32

PH EH ==.

则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.

设DP与平面ABFD所成角为θ,则

3

3

4

sin||

||||3

HP DP

HP DP

θ

?

===

?

.

所以DP与平面ABFD

3

6.(12分)(考点:折叠问题、面面垂直、三棱锥的体积计算等)

如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折

痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.

(1)证明:平面ACD⊥平面ABC

(2)Q为线段AD上一点,且BP=DQ=

2

3

DA,

求三棱锥Q-ABP的体积.

7.(12分)(考点:面面垂直、四棱锥的体积、设求四棱锥的侧面积)如图,在四棱锥P-ABCD中,AB//CD,

且90

BAP CDP

∠=∠=

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,90

APD

∠=,且四棱锥P-ABCD的体积为

8

3

,求该四棱锥的侧面积.

解析: (1)证明:由已知90BAP CDP ∠=∠=,得,AB AP CD PD ⊥⊥ 由于//AB CD ,故AB PD ⊥,从而AB ⊥平面PAD

又AB ?平面PAB ,所以平面PAB ⊥平面PAD

(2)解:在平面PAD 内作PE AD ⊥,垂足为E

由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD 设AB x =,

故四棱锥P ABCD -的体积

则由已知可得22,2

AD x PE x == 31133P ABCD V AB AD PE x -=

??= 由题设得31833

x =,故2x = 从而2,22,22PA PD AD BC PB PC ======

可得四棱锥P ABCD -的侧面积为

21111sin 606232222

PA PD PA AB PD DC BC +++=+

浙江省历年高考立体几何大题总汇(题目及答案)

1.(本题满分15分)如图,平面PAC ⊥平面ABC ,ABC ?是以AC 为斜边的等腰直角三角形。,,E F O 分别为,,PA PB PC 的中点,16,10AC PA PC ===。 (I ) 设C 是OC 的中点,证明://PC 平面BOE ; (II )证明:在ABO ?内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离。 2.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP=m , (Ⅰ)试确定m ,使得直线AP 与平面BDB 1D 1所成角的正切值为 32; (Ⅱ)在线段A 1C 1上是否存在一个定点Q ,使得对任意的m ,D 1Q 在平面APD 1上的射影垂直于AP ,并证明你的结论。 3. 如图甲,△ABC 是边长为6的等边三角形,E ,D 分别为AB 、AC 靠近B 、C 的三等分 点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。 (I )求证BC ⊥平面AFG ; (II )求二面角B -AE -D 的余弦值. . x y z

4在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点. (1)求证:CM EM ⊥; (2)求CM 与平面CDE 所成的角 5. 如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥, 90BCF CEF ∠=∠=o ,3AD =2EF =. (Ⅰ)求证:AE ∥平面DCF ; (Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60o ? 6. 如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,AE=EB=AF=.43 2 =FD 沿直线EF 将AEF ?翻折成,'EF A ?使平面⊥EF A '平面BEF. (I )求二面角C FD A --'的余弦值; (II )点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长. E M A C B D D A B E F C (第18题)

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC =,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ?面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

立体几何专题训练

专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4分×10=40分) 1.直线12,l l 和α,12//l l ,a 与1l 平行,则a 与2l 的关系是 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段AB 的长等于它在平面内射影长的3倍,则这条斜线与平面所成角的余弦值为 A .1 3 B . 3 C .2 D .23 3.在正方体ABCD-A 1B 1C 1D 1中,B 1C 与平面DD 1B 1B 所成的角的大小为 A .15o B .30o C .45o D .60o 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为300,若在斜坡平面上沿着一条与斜坡底线成450角的直线前进1公里,则升高了 A .米 B . 米 C .米 D . 500米 6.已知三条直线,,a b l 及平面,αβ,则下列命题中正确的是 A .,//,//b a b a αα?若则 B .若,a b αα⊥⊥,则//a b C . 若,a b ααβ?=I ,则//a b D .若,,,,a b l a l b αα??⊥⊥则l α⊥ 7.已知P 是△EFG 所在平面外一点,且PE=PG ,则点P 在平面EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边EG 的垂直平分线上 C .边EG 的中线上 D .边EG 的高上 8 .若一正四面体的体积是3,则该四面体的棱长是 A . 6cm B . C .12cm D .9.P 是△ABC 所在平面α外一点,PA ,PB ,PC 与α所成的角都相等,且PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 10.如图,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF//AB ,EF= 32 ,C D E F

立体几何练习题

数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上 的点,A 1M =AN = 2a 3 ,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 3.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60o,则直线PC 与平面PAB 所成的角的余弦值为( ) A . 12 B C D 4.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的余弦值是 A . 15 B 。13 C 。 12 D 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、 AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( ) A .510 B .3 2 C .55 D .515 6.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为( ) A . 4 3 B . 2 3 C . 4 3 3 D .3 7.在正三棱柱ABC-A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 ( ) A.60o B. 90o C.105o D. 75o 8.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面 A 1ECF 成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则 sin 〈CM ,1D N 〉的值为_________. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面ABCD 的距离是 . A B M D C

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA丄矩形ABCD所在平面,M、N分别为AB、PC的中点; ⑴求证: 2Q.证明江1〉取FD的中点AE,NE t 丁Nft PC 的中点.A NEX^CD . 又四边形ABCU为矩形且M星BA中点' MN :* 寺CD垒MA , £ :■ NEXMA.KP四边形MAEN是平行四也形, 昇 MN〃AE* 由于AEU罕面PAD,MN(Z^ffi PAD? A MN"平廊PAD, (2>V FA 丄平ABCD,ZPDA-45\ 代APAD是等 B?三肃形?桩AE」PH 由题意,CD丄AD,CD丄叭 :.CD丄平面PAD. 从而AE_LCD, 代AE丄平面PCD,故VIN丄平而PCH . Ml、If :< 1)「1 {' 的方程为(x —a)* + (y 一h J —pf (2a+ b?0* ... IQ* V ■ ■ ■ V ■] ... 12* ……r ABC PA PC ABC 90 PEF PBC EF Q E F AC BC EF // AB....2 分又EF 平面PAB,AB 平面PAB, EF //平面PAB. ? (5) (2)Q PA PC,E为AC的中点, PE AC (6) P ABC E,F AC, BC EF // PAB PAC 又Q平面PAC 平面ABC PE 面ABC ................. 8 分 PE BC ............... 9 分 又因为F为BC的中点, Q ABC 900, BC EF .................... 10 分BC 面PEF ............... 11 分 又Q BC 面PBC 面PBC 面PEF ............... 12分 3.如图,在直三棱柱ABC-ABQ中,AC=BC点D是AB的中点

2018年高考立体几何大题练习

1.(14分)如图,在底面是正方形的四棱锥P ABCD -中,PA ⊥面ABCD ,BD 交AC 于点,E F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG //平面PBD ,并说明理由; (Ⅲ)当二面角B PC D --的大小为23 π时,求PC 与底面ABCD 所成 角的正切值。 2.(本小题满分14分) 如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在, 确定点E 的位置. 1 A B C O A 1 B 1

3.如图1,在直角梯形ABCD 中,AD //BC ,D 2 π ∠BA = ,C 1AB =B =,D 2A =,E 是D A 的中点, O 是C A 与BE 的交点.将?ABE 沿BE 折起到1?A BE 的位置,如图2. (I )证明:CD ⊥平面1C A O ; (II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 4.(2016·兰州诊断)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB ∥ CD ,=21AB BC CD ==,,顶点1D 在底面ABCD 内的射影恰为点C (1)求证:1AD ⊥BC ; (2)若直线1DD 与直线AB 所成的角为3 π ,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦值.

最新高中立体几何题型分类训练(附详细答案)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

立体几何大题训练与答案解析

1、如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰 直角三角形,2,,45AB AE FA FE AEF ? ===∠= (1)线段CD 的中点为P ,线段AE 的中点为M , 求证://PM BCE 平面; (2)求直线CF 与平面BCE 所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴面PMN //面EBC ,∴//PM BCE 平面 ………………………5分 (2)先证出FE ⊥面EBC , ………………………8分 FCE ∴∠为直线CF 与平面BCE 所成角, ………………………11分 tan FE FCE EC ∠= = ………………………14分 2、己知多面体ABCDE 中,DE ⊥平面ACD ,//AB DE ,AC=AD=CD=DE=2,AB =1,O 为CD 的中点. (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 A B C D E F P M . . A B C E O

3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F . 沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. B P F P A B F C ' B ' A E

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

立体几何证明平行的方法及专题训练

D B A 1 立体几何证明平行的方法及专题训练 罗虎胜https://www.360docs.net/doc/dd9967556.html, 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。 (2) 利用三角形中位线的性质。 (3) 利用平行四边形的性质。 (4) 利用对应线段成比例。 (5) 利用面面平行的性质,等等。 (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形 2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形 3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB (第1题图)

M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA 4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; 分析::取PD 的中点F ,连EF,AF 则易证ABEF 是 平行四边形 (2) 利用三角形中位线的性质 5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证: AM ∥平面EFG 。 分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG 6、如图,直三棱柱///ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。 A B C D E F G M

2016高考文科立体几何大题

立体几何综合训练 1、证明平行垂直 1.(2013?辽宁)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点. (1)求证:BC⊥平面PAC; (2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC. 2.(2013?北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证: (Ⅰ)PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD. 3.(2011?福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

4.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知 .M是PD的中点. (Ⅰ)证明PB∥平面MAC (Ⅱ)证明平面PAB⊥平面ABCD (Ⅲ)求四棱锥p﹣ABCD的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M﹣ACD的体积. 6.(2011?辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD. (Ⅰ)证明PQ⊥平面DCQ; (Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值.

7.(2013?安徽)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (Ⅰ)证明:PC⊥BD (Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积. 8.(2008?山东)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,. (Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD; (Ⅱ)求四棱锥P﹣ABCD的体积. 3、三视图 9.已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点. (Ⅰ)求出该几何体的体积; (Ⅱ)求证:直线BC1∥平面AB1D;

近年高考理科立体几何大题总汇编

近几年高考理科立体几何大题汇编 1.(2018年III卷)如图,边长为2的正方形 ABCD所在的平面与半圆弧CD所在平面垂直,M是 CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC 体积最大时,求面MAB与面MCD所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD中,底 面ABCD为矩形,PA⊥平面ABCD,E为PD的中 点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD= 3,求三棱锥E-ACD的体积.

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图

三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面 AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, DF为折痕把DFC ⊥. △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

立体几何综合训练

立体几何综合性训练 一、单选题 1.下列说法中不正确...的是( ) A .圆柱的侧面展开图是一个矩形 B .直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥 C .圆锥中过轴的截面是一个等腰三角形 D .圆台中平行于底面的截面是圆面 2.下列命题中错误的是:( ) A .如果α⊥β,那么α内一定存在直线平行于平面β; B .如果α⊥β,那么α内所有直线都垂直于平面β; C .如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D .如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ. 3.已知,m n 是两条不同的直线,,αβ是两个不同的平面.在下列条件中,可得出αβ⊥的是( ) A .,,//m n m n αβ⊥⊥ B .//,//,m n m n αβ⊥ C .,//,//m n m n αβ⊥ D .//,,m n m n αβ⊥⊥ 4.一个几何体的三视图如图所示,则该几何体的体积为( ) A . 10 3 B .3 C .8 3 D .73 5.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形 D .正六边形 6.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,点,,E F G 分别是1DD , AB ,1CC 的中点,则异面直线1A E 与GF 所成的角是 A .90o B .60o C .45o D .30o 7.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有( )条

立体几何练习题

E O A C B F D 立体几何练习题 1.在直四棱住1111D C B A ABCD -中,12AA =,底面是边长为1的正方形,E 、F 、 G 分别是棱B B 1、D D 1、DA 的中点. (Ⅰ)求证:平面E AD 1//平面BGF ; (Ⅱ)求证:1D E ⊥面AEC . 2.如图,正方体1111D C B A ABCD -的棱长为2,E 为AB 的中点. (1)求证: 1BDD AC 平面⊥(2)求点B 到平面EC A 1的距离. 3.如图所示,在三棱柱111ABC A B C -中,1AA ⊥平面,90ABC ACB ∠=,2AB =1BC =13AA =. (Ⅰ)求三棱锥111A AB C -的体积; (Ⅱ)若D 是棱1CC 的中点,棱AB 的中点为E , 证明:11//C AB DE 平面 4.如图,在棱长均为2的三棱柱ABC DEF -中,设侧面四边形FEBC 的两对角线相交于O ,若BF ⊥平面AEC , AB AE =. (1) 求证:AO ⊥平面FEBC ; (2) 求三棱锥B DEF -的体积. 5.如图,在体积为1的三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,AB AC ⊥, 11==AA AC ,E 为线 段AB 上的动点. F E A B D C G 1 C 1 A 1 B 1D 1 B 1 C E D C B A 1 D 1 A A B C A 1 B 1 C 1 D C 1 C

(Ⅰ)求证: CA 1C CA 11⊥C 1E ; (2)线段AB 上是否存在一点E ,使四面体E-AB 1C 1的体积为 6 1 ?若存在,请确定点E 的位置;若不存在,请说明理由. 6.已知三棱柱ABC —A 1B 1C 1的直观图和三视图如图所示,其主视图BB 1A 1A 和侧视图A 1ACC 1 均为矩形,其中AA 1=4。俯视图ΔA 1B 1C 1中,B 1C 1=4,A 1C 1=3,A 1B 1=5,D 是AB 的中点。 (1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1; (3)求异面直线AC 1与B 1C 所成角的余弦值。 7.如图,在底面为平行四边形的四棱锥ABCD P -中,AC AB ⊥, ABCD PA 面⊥,点E 是PD 的中点。 (Ⅰ)求证:PB AC ⊥(Ⅱ)求证:AEC PB 平面// 8. 如图,在四棱锥ABCD P -中,ABCD 是矩形,ABCD PA 平面⊥,3,1===AB AD PA , 点F 是PD 的中点,点E 在CD 上移动。 (1) 求三棱锥PAB E -体积; (2) 当点E 为CD 的中点时,试判断EF 与 平面PAC 的关系,并说明理由; (3) 求证:AF PE ⊥ 9.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AB ==,E ,F ,G 分别为PC 、PD 、BC 的中点. (1)求证:PA //平面EFG ; (2)求证:GC PEF ⊥平面; (3)求三棱锥P EFG -的体积. A B C D P E F

相关文档
最新文档