2020新版工程力学习题库
工程力学习题集

第9章 思考题在下面思考题中A 、B 、C 、D 的备选答案中选择正确的答案。
(选择题答案请参见附录)9.1 若用积分法计算图示梁的挠度,则边界条件和连续条件为。
(A)x=0: v=0; x=a+L: v=0; x=a: v 左=v 右,v /左=v /右。
(B)x=0: v=0; x=a+L: v /=0; x=a: v 左=v 右,v /左=v /右。
(C)x=0: v=0; x=a+L: v=0,v /=0; x=a: v 左=v 右。
(D)x=0: v=0; x=a+L: v=0,v /=0; x=a: v /左=v /右。
9.2梁的受力情况如图所示。
该梁变形后的挠曲线为图示的四种曲线中的(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。
9.3等截面梁如图所示。
若用积分法求解梁的转角和挠度,则以下结论中是错误的。
oxxx x(A)(B)(C)(D)Ax(A) 该梁应分为AB 和BC 两段进行积分。
(B) 挠度的积分表达式中,会出现4个积分常数。
(C) 积分常数由边界条件和连续条件来确定。
(D) 边界条件和连续条件的表达式为:x=0:y=0; x=L,v 左=v 右=0,v/=0。
9.4等截面梁左端为铰支座,右端与拉杆BC 相连,如图所示。
以下结论中 是错误的。
(A) AB(B) 挠度的积分表达式为:y(x)=q{∫[∫-(Lx-x 2)dx]dx+Cx+D} /2EI 。
(C) 对应的边解条件为:x=0: y=0; x=L: y=∆L CB (∆L CB =qLa/2EA)。
(D) 在梁的跨度中央,转角为零(即x=L/2: y /=0)。
9.5已知悬臂AB 如图,自由端的挠度vB=-PL 3/3EI –ML 2/2EI,则截面C 处的挠度应为。
(A) -P(2L/3)3(B) -P(2L/3)3/3EI –1/3M(2L/3)2/2EI 。
(C) -P(2L/3)3/3EI –(M+1/3 PL)(2L/3)2/2EI 。
2020年中国石油大学网络教育060101工程力学-20考试试题及参考答案

《工程力学》课程综合复习资料
一、计算题
1. 已知:受力构件内某点的原始单元体应力如图示。
单位:MPa。
求:指定斜面AB上的应力。
2. 已知:简支梁AB,中点C 处有集中力P,AC段有均匀分布力q,DB段有线性分布力,其最大值为q。
求:A、B两处的约束反力。
(先画出受力图)
3. 已知:静不定梁AB,分布载荷q、长度4a,横截面抗弯刚度EIZ 。
求:支座B的反力。
提示:首先选定多于约束,并画出相当系统,列出几何条件。
4. 图示铣刀C的直径D = 9 cm,切削力PZ = 2.2 kN,圆截面刀杆AB长L= 32 cm,许用应力[] = 80 MPa,Me为绕x轴外力偶矩,AB处于平衡状态。
试用第三强度理论,求刀杆AB的直径d。
提示:首先把P Z力向C点平移,明确指出组合变形种类。
工程力学第1页共9页。
工程力学静力学练习题

B
60°
A
FAB FC D
45°
A
C
FN P 30°
3.146kN FAC FAC 0.414kN FAB FAB
可知,结构中AB、AC杆均被压缩。
C
工程力学电子教案
作业:2-7
7
2-7:构架ABCD在A点受力F=1000N作用。杆AB和CD处在C 点用铰链连接,B,D两点处均为固定支座。如不计杆重及 摩擦,试求杆CD所受的力和支座B的约束力。
FAy q A
F
MA
FAx l
B
工程力学电子教案
21
4-7 某活塞机构如图所示,与ED垂直的作用在手柄上的 力F=800N。假设活塞D和缸壁间的接触面是光滑的,各构 件重量均不计。试求活塞D作用于物块C上的压力。
30°
F
E
B
30°
C D
A
45°
工程力学电子教案
22
首先分析AB杆,受力如图所示。于是知道AB杆作用DE杆 B 上的力F'B的方向。 FB DE杆的受力如图所示, 假定各力的方向如图所示, 列平衡方程如下
工程力学电子教案
16
向O2点合成。 各力分别向O2点简化,得各自的作用于简化中心的力和 一个力偶矩。 F1 F1 , M 1 F1d1 80 4 5 2 3 N m 666.4 N m
F2 F2 , M 2 F2 d 2 100N m F4 F4 , M 4 F4 d 4 160N m
x
F'AC
y
FD cos 45 FP cos30 0 Fx 0 , FAC FD sin 45 FP sin 30 0 Fy 0 , FAB
工程力学测试题(附答案)1

1、如图1所示,已知重力G ,DC=CE=AC=CB=2l ;定滑轮半径为R ,动滑轮半径为r ,且R=2r=l, θ=45° 。
试求:A ,E 支座的约束力及BD 杆所受的力。
1、解:选取整体研究对象,受力分析如图所示,列平衡方程()045sin ,0045 cos ,002522,0=-+==+==⨯+⨯⨯=∑∑∑G F F FF F F lG l F F M Ey A yEx A xA E解得:81345 sin ,825GF G F G F A Ey A =-=-=选取DEC 研究对象,受力分析如图所示,列平衡方程()02245 cos ,0=⨯-⨯+⨯=∑l F l F l FF M Ey K DBC解得:823,85,2GF G F G F DB Ex K ===2、图2示结构中,已知P=50KN ,斜杆AC 的横截面积A1=50mm2,斜杆BC 的横截面积A2=50mm2, AC 杆容许压应力[σ]=100MPa ,BC 杆容许应力[σ]=160MPa 试校核AC 、BC 杆的强度。
解:对C 点受力分析:所以,kN F N 8.441=; kN F N 6.362= 对于AC 杆:[]MPa A F N 100892111=≥==σσ, 所以强度不够; 30cos 45cos 21⋅=⋅N N F F P F F N N =⋅+⋅30sin 45sin 21对于BC 杆:[]MPa A F N 160732222=≥==σσ, 所以强度不够。
3、图3传动轴上有三个齿轮,齿轮2为主动轮,齿轮1和齿轮3消耗的功率分别为KW 756.0和KW 98.2。
若轴的转速为min /5.183r ,材料为45钢,[]MPa 40=τ。
根据强度确定轴的直径。
3、解:(1) 计算力偶距 m N nP m .3.39954911== m N nP m .155954933== m N m m m .3.194312=+=(2) 根据强度条件计算直径从扭矩图上可以看出,齿轮2与3 间的扭矩绝对值最大。
(完整版)工程力学试题..

《工程力学》试题第一章静力学基本概念1. 试写出图中四力的矢量表达式。
已知:F1=1000N,F2=1500N,F3=3000N,F4=2000N。
解:F=F x+F y=F x i+F y jF1=1000N=-1000Cos30ºi-1000Sin30ºjF2=1500N=1500Cos90ºi- 1500Sin90ºjF3=3000N=3000 Cos45ºi+3000Sin45ºjF4=2000N=2000 Cos60ºi-2000Sin60ºj2. A,B两人拉一压路碾子,如图所示,F A=400N,为使碾子沿图中所示的方向前进,B应施加多大的力(F B=?)。
解:因为前进方向与力F A,F B之间均为45º夹角,要保证二力的合力为前进方向,则必须F A=F B。
所以:F B=F A=400N。
3. 试计算图中力F对于O点之矩。
解:M O(F)=Fl4. 试计算图中力F对于O点之矩。
解:M O(F)=05. 试计算图中力F对于O点之矩。
解:M O(F)=Fl sinβ6. 试计算图中力F对于O点之矩。
解:M O(F)=Flsinθ7. 试计算图中力F对于O点之矩。
解: M O(F)= -Fa9. 试计算图中力F对于O点之矩。
解:受力图13. 画出节点A,B的受力图。
14. 画出杆件AB的受力图。
16.画出杆AB的受力图。
17. 画出杆AB的受力图。
18. 画出杆AB的受力图。
19. 画出杆AB的受力图。
20. 画出刚架AB的受力图。
21. 画出杆AB的受力图。
24. 画出销钉A的受力图。
25. 画出杆AB的受力图。
物系受力图26. 画出图示物体系中杆AB、轮C、整体的受力图。
27. 画出图示物体系中杆AB、轮C的受力图。
28.画出图示物体系中杆AB、轮C1、轮C2、整体的受力图。
29. 画出图示物体系中支架AD、BC、物体E、整体的受力图。
选择题(120道)工程力学题库全解

一、单选题1、A01 B01 外力偶圆轴的扭转变形 2分汽车传动主轴所传递的功率不变,当轴的转速降低为原来的二分之一时,轴所受的外力偶的力偶矩较之转速降低前将()。
A.增大一倍B.增大三倍C.减小一半D.不改变2、A02 B01 安全系数强度 2分目前的一般机械制造中,塑性材料的安全系数()一般脆性材料的安全系数。
A.小于B.大于C.等于D.无法比较3、A01 B01 扭矩计算轴扭转时扭矩 2分一传动轴上主动轮的外力偶矩为m1,从动轮的外力偶矩为m2、m3,而且m1=m2+m3。
开始将主动轮安装在两从动轮中间,随后使主动轮和一从动轮位置调换,这样变动的结果会使传动轴内的最大扭矩()。
A.减小B.增大C.不变D.变为零4、A01 B01 外力偶矩圆轴的扭转变形 2分传动轴转速为n=250r/min(如图所示),此轴上轮C的输入功率为P=150kW,轮A、B的输出功率分别为 P a=50kW、P b=100kW,使轴横截面上最大扭矩最小,轴上三个轮子的布置从左至右应按顺序()排比较合理。
A. A、C、BB. A、B、CC. B、A、CD. C、B、A5、A01 B01 剪应力(切应力)计算圆轴的扭转应力 2分实心圆轴扭转时,已知横截面上的扭矩为T,在所绘出的相应圆轴横截面上的剪应力分布图(如图所示)中()是正确的。
6、A03 B01 极惯性矩和抗扭截面模量圆轴的扭转应力 2分空心圆轴的内径为d,外径为D,其内径和外径的比为d/D=α,写出横截面的极惯性矩和抗扭截面系数的正确表达式应当是()A.Ip=πD4/64(1-α4),W P=πD3/32(1-α3)B.Ip=πD4/32(1-α4),W P=πD3/16(1-α3)C.Ip=π/32(D4-α4),W P=π/16(D3-α3)D.Ip=πD4/32(1-α4),W P=πD3/16(1-α4)7、A03 B01 抗扭截面系数圆轴的扭转强度 2分一空心钢轴和一实心铝轴的外径相同,比较两者的抗扭截面系数,可知()A.空心钢轴的较大B.实心铝轴的较在大C.其值一样大D.其大小与轴的切变模量有关8、A01 B01 横截面上扭矩与直径关系 圆周的扭转变形 2分使一实心圆轴受扭转的外力偶的力偶矩为m ,按强度条件设计的直径为D 。
工程力学习题
工程力学习题一、单项选择题1. 如图所示的力三角形中,表示力F 1 和力F 2 和合力F R 的图形是( )。
2. 如题图所示,一平面力系向O 点简化为一主矢和主矩M o ,若进一步简化为一个合力,则( )A .合力矢F 位于B () B .合力矢F 位于OC .合力矢F =F ′位于B() D .合力矢F =F ′位于A ()3.关于应力,下面说法正确的是( ) A .在弹性范围内才成立 B .应力是内力的集度C .杆件截面上的正应力比斜截面的正应力大D .轴向拉、压杆在任何横截面上正应力都是均匀分布的4.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 ( ) A .等值、同向、作用线与杆轴线重合 B .等值、反向、作用线与杆轴线重合 C .等值、反向、作用线与轴线垂直 D .等值、同向、作用线与轴线垂直 5.如题图所示扭矩图对应的轴的承受载荷情况是( )A.B.C.D.,图中所画圆轴扭转时横截面上切应力分布正确的是6.如图所示,受扭圆轴的扭矩为T,设max()A.B.C.D.7.在无荷载作用的梁段上,下列论述正确的是()。
A.F S>0时,M图为向右上的斜直线B.F S>0时,M图为向下凸的抛物线C.F S<0时,M图为向右上的斜直线D.F S<0时,M图为向上凸的抛物线8.几何形状完全相同的两根梁,一根为钢材,一根为铝材。
若两根梁受力情况也相同,则它们的( )A.弯曲应力相同,轴线曲率不同B.弯曲应力不同,轴线曲率相同C .弯曲应力与轴线曲率均相同D .弯曲应力与轴线曲率均不同9.工程实际中产生弯曲变形的杆件,如火车机车车轮轴、房屋建筑的楼板、主梁。
在计算简图时需要将其支承方式简化为( )A .简支梁B .轮轴为外伸梁,楼板主梁为简支梁C .外伸梁D .轮轴为简支梁,楼板主梁为外伸梁10.细长压杆,若长度系数μ增加一倍,则临界压力cr P 的变化是( )。
A .增加一倍B .为原来的四倍C .为原来的四分之一D .为原来的二分之一 11.在平面弯曲时,其横截面上的最大拉、压应力绝对值不相等的是( )梁。
工程力学习题
第一部分 静力学1、力的三要素是大小、方向、作用线。
( )2、两个力只能合成唯一的一个力,故一个力也只能分解为唯一的两个力。
( )3、力偶对其作用面内任意一点之矩恒等于力偶矩,与矩心位置无关。
( )4、作用于刚体上的力F ,可以平移到刚体上的任一点,但必须同时附加一个力偶。
( )5、作用力和反作用力必须大小相等、方向相反,且作用在同一直线上和同一物体上。
( )1、物体的形心不一定在物体上。
( )2、作用力与反作用力是一组平衡力系。
( )3、两个力在同一轴上的投影相等,此两力必相等。
( )4、力系的合力一定比各分力大。
( )5、两个力在同一轴上的投影相等,此两力必相等。
( ) 1、作用力与反作用力是一组平衡力系。
( ) 2、作用在任何物体上的力都可以沿其作用线等效滑移 ( ) 3、图示平面平衡系统中,若不计定滑轮和细绳的重力,且忽略摩擦,则 可以说作用在轮上的矩为m 的力偶与重物的重力F 相平衡。
( )4 ( )5 的。
( ) 选择题1、如果力F R 是F 1、F 2两力的合力,用矢量方程表示为 F R = F 1 + F 2,则三力大小之间的关系为 。
A .必有F R = F 1 + F 2B .不可能有F R = F 1 + F 2C .必有F R >F 1,F R >F 2D .可能有F R <F 1,F R <F 2 计算题1、组合梁受力和约束如图,其中q =1kN/m , M =4kN ·m , 不计梁的自重。
求支座A 和D 处的约束力。
(1) 取CD 杆研究0F m C )(=∑(2) 取整体研究5kN1R02R q 4-M R 6 0F m A A D B .2)(-==-⋅⋅-⋅=∑已知:P =20kN ,q = 5kN /m ,a = 45°;求支座A 、C 的反力和中间铰B 处的压力。
第二部分 材料力学部分 判断题1、杆件的基本变形有四种:轴向拉伸或压缩、剪切、挤压和弯曲。
工程力学习题册第三章 答案
第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。
2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。
3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。
4、平面一般力系向已知中心点简化后得到一力和一力偶距。
5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。
6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。
三个独立的方程,可以求解三个未知量。
7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。
8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。
9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。
10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。
它是平面一般力系的特殊情况。
11.平面平行力系有两个独立方程,可以解出两个未知量。
12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。
(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。
(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。
(√)(2)该力在坐标轴上的投影一定为负值。
工程力学习题集
第9章思考题在下面思考题中A、B、C、D的备选答案中选择正确的答案。
(选择题答案请参见附录)9.1若用积分法计算图示梁的挠度,则边界条件和连续条件为。
(A) x=0: v=0; x=a+L: v=0; x=a: v左=v右,v/左=v/右。
(B) x=0: v=0; x=a+L: v/=0; x=a: v左=v右,v/左=v/右。
(C) x=0: v=0; x=a+L: v=0,v/=0; x=a: v左=v右。
(D) x=0: v=0; x=a+L: v=0,v/=0; x=a: v/左=v/右。
9.2梁的受力情况如图所示。
该梁变形后的挠曲线为图示的四种曲线中的(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。
x(A)9.3等截面梁如图所示。
若用积分法求解梁的转角和挠度,则以下结论中(A) 该梁应分为AB 和BC 两段进行积分。
(B) 挠度的积分表达式中,会出现4个积分常数。
Ax(C) 积分常数由边界条件和连续条件来确定。
(D) 边界条件和连续条件的表达式为:x=0:y=0; x=L,v 左=v 右=0,v/=0。
9.4是错误的。
(A) AB 杆的弯矩表达式为M(x)=q(Lx-x 2)/2。
(B) 挠度的积分表达式为:y(x)=q{∫[∫-(Lx-x 2)dx]dx+Cx+D} /2EI 。
(C) 对应的边解条件为:x=0: y=0; x=L: y=∆L CB (∆L CB =qLa/2EA)。
(D)在梁的跨度中央,转角为零(即x=L/2: y /=0)。
9.5已知悬臂AB 如图,自由端的挠度vB=-PL 3/3EI –ML 2/2EI,则截面C 处的挠度应为。
AxM(A) -P(2L/3)3/3EI –M(2L/3)2/2EI 。
(B) -P(2L/3)3/3EI –1/3M(2L/3)2/2EI 。
(C) -P(2L/3)3/3EI –(M+1/3 PL)(2L/3)2/2EI 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(X) (V) (X) (X)则该力系是工程力学习题集第一篇静力学第一章静力学公理及物体的受力分析、判断题1. 二力杆是指在一构件上只受两个力作用下的构件,对吗?2. 刚体的平衡条件对变形体平衡是必要的而不是充分的,对吗?3. 三力平衡汇交定理是三力平衡的充要条件,对吗?4. 如图所示两个力三角形的含义一样,对吗?5, 如图所示,将作用于AC 杆的力P 沿其作用线移至 BC 杆上而成为P',结构的效应不变, 对吗?(X )7.所谓刚体就是在力的作用下, 其内部任意两点之间的距离始终保持不变的物体。
(V )8.力的作用效果,即力可以使物体的运动状态发生变化,也可以使物体反生变形。
(V )9. 作用于刚体上的平衡力系, 如果移到变形体上, 该变形体也一定平衡。
(X ) 10. 在两个力作用下处于平衡的杆件称为二力杆,二力杆一定是直杆。
(X )二、填空题1. 力对物体的作用效果取决于力的大小、方向和作用' _____2. 平衡汇交力系是合力等于零且力的作用线交于一点的力系:持静物体在平衡力系作用下总是保止或匀速运动状态;平面汇交力系是最简单的平衡力系。
3. 杆件的四种基本变形是拉彳、剪切扭转和弯曲4•载荷按照作用范围的大小可分为集中力和分布______5. 在两个力作用下处于平衡的构件称为二力杆(或二力构件),此两力的作用线必过这两力作用点的连线。
6. 力对物体的矩正负号规定一般是这样的,力使物体绕矩心逆时针方向转动时力矩取正号, 反之取负号。
7. 在刚体上的力向其所在平面内一点平移,会产生附加矢___8. 画受力图的一般步骤是,先取隔离体,然后画主动力和约束反力。
c)(a)10.关于材料的基本假设有均匀性、连续性和各向同性。
三、选择题1、F i,F2两力对某一刚体作用效应相同的充要条件是(B)。
A、F i,F2两力大小相等B、F i,F2两力大小相等,方向相同,作用在同一条直线上C、F i,F2两力大小相等,方向相同,且必须作用于同一点上D、力矢F i与力矢F2相等2、作用与反作用力定律的适用范围是( D )。
A、只适用于刚体B、只适用于变形体C、只适用于物体处于平衡态D、对任何物体均适用3、如图所示,在力平行四边形中,表示力F i和力F2的合力R的图形是(A)。
C )。
A .B .C . 4、如图所示的力三角形中,表示力F i 和力F 2和合力R 的图形是(C )。
5、柔性体约束的约束反力,其作用线沿柔性体的中心线( A 、其指向在标示时可先任意假设 B 、 其指向在标示时有的情况可任意假设 C 、 其指向必定是背离被约束物体 D 、 其指向也可能是指向被约束物体6、R 是两力的合力,用矢量方程表示为 R=F i +F 2,则其大小之间的关系为(D )。
A .必有 R= F 1 + F 2B •不可能有R= F 什F 2 C. 必有 R> F i , R> F 2 D .可能有 R< F i , R< F 27、大小和方向相同的三个力 F i , 如图所示,其中两个等效的力是( F i , F 2 F 2, F 3 F i , F 3加减平衡力系公理适用于( A •刚体 B .变形体 C.刚体及变形体 D .刚体系统9、 以下几种构件的受力情况,属于分布力作用的是( B )。
A .自行车轮胎对地面的压力B •楼板对房梁的作用力C.撤消工件时,车刀对工件的作用力 D •桥墩对主梁的支持力10、 “二力平衡公理”和“力的可传性原理”适用于( D )。
A .任何物体 B .固体 C.弹性体D .刚体 四、计算题A BCDA )。
F 2,B )。
i 画出下图所示杆 AB的受力图,假定所有接触面都是光滑。
2、画出下图所示构件 ABC的受力图,假定所有接触处均光滑。
3、画出下图所示构建 AB的受力图,A,B,C处均为光滑铰链。
解:在整个系统中,构建 BC为二力杆,由构建 BC可确定B处左右两部分的约束反力方向(RB,R'B)。
对构建AB,力P, R'B, RA三力必汇交于一点。
构建 AB的受力图如图所解。
图一图二4、画出下图所示杆 A0、杆CBD的受力图,假定所有接触均光滑5、画出下图所示杆AB、杆图,假定所有接触处均光滑。
解:整个杆系中杆DE为二力杆。
其受力图如第.............. -力为R A,对杆AC,P, R / 杆AC在A处约(2)所示。
杆AB在B受力图如第,1 —54题解图(3)所示。
0' 整个系统1 —54题解图(1)所示。
CD, RA三力必汇交,其受力图如第5题解图RB7 IR/ E, A处为R/ A , F处约束反力为NF ,£F,在B处受到约束反力为RB,整个系统在三力P, NF ,__ B—54题解图(4)所示。
°'''' n =WWWR E解:图中AO 杆在O 点受到固定铰链约束,约束反力为R o; A处受到光滑接触约束,约束反力为N A; D处受到光滑接触面约束,约束反力为N D。
AO杆所受三力N A,N D,R O必汇交与一点。
AO杆的受力图如第1-53题解图(1)所示。
图中,CBD杆在B处受到的约束反力为R B;杆CBD所受三力P,R B,N'必汇交于一点。
杆 CBD的受力图如第1-53题解图(2)所示。
N D第5题解图6、画出下图所示杆 AB、杆AC、杆DE、杆FG及整个系统的受力图,假定所有接触处均桿DE及整个系统的受力为YB , XB,在E处为F处受衡—力必汇交。
其受力图如第解:光滑。
7、画出下图所示 AB 杆受力图,滑轮及各杆自重不计。
所有接触处均光滑。
解:整个结构中BE 杆为二力杆,AB 杆在B 处受BE 杆的约束反力为 RB ,方向沿BE 方向。
滑轮受三里作用, W 、T 及AB 杆在C 处对其约束反力 Rc ,其受力如图一,三力必汇交于 一点(T=W )。
AB 杆在A 处受约束反力 Ra, C 处受滑轮对其约束反力 R'c B 处受约束反力 Rb ,三力平 衡必汇交,如图二所示。
图一图二RF8、画出图所示两梁 AC,CD的受力图,假使所有接触处均光滑。
解:F1作用在AC梁与C(F梁铰接处,属于外载荷。
将C铰链作为分析对象,则、AC梁对铰链C的约束力为X1,Y1,DC梁对铰链C 的约束反力为X2 , Y2,铰链C上还作用有外荷载FD,其受力图如图一所示。
AC梁在A处受约束反力一XA,YA;B处受约束反力—NB,C处受铰链C的约束反力X ',Y',受力如图二所示。
DC梁在D处受约束反力「-XD,YD,C处受铰链C的约束反力X ',Y '2,还有外载荷 F2,受力图如图三。
图二图三第二章平面汇交力系、判断题1、用解析法求汇交力系的合力时,若取不同的坐标系(正交或非正交坐标系) ,所求的合力相同,对吗? (V)2、一个刚体受三个力,且三个力汇交于一点,此刚体一定平衡,对吗?(X)3、汇交力系的合力和主矢两者有相同的概念,对吗? (X)4、当作力多边形时,任意变换力的次序,可得到不同形状的力多边形,故合力的大小和方向不同 (X)5、几何法求力的主矢的多边形均是平面多边形,对吗? (X)6、解析法中投影轴必须采用直角坐标形式,对吗? (X)7、力沿某轴分力的大小不总是等于该力在同一轴上的投影的绝对值,对吗? (X)8、已知F i,F2,F3, F4为一平面汇交力系,而且这四个力之间有如图2-1所示的关系,因此,这个力系是平衡力系。
(X)9、五杆等长,用铰链连接如图2-2所示,F i , F2为一对平衡力,节点 B, D未受力,故BD杆受力为零。
(X)图2-2二、填空题1 •力的作用线垂直于投影轴时,则此力在该轴上的投影值为零。
2•平面汇交力系平衡的几何条件为:力系中各力组成的力多边形自行封闭。
3 •合力投影定理是指合力对某一轴的投影值等于各分力对此轴投影代数和_________ 。
4 •力偶对平面内任意一点的矩恒等于力偶矩,与矩心位置无关。
5 •力偶不能与一个力等效,也不能被一个力平衡。
6•平面任意力系的平衡条件是:力系的合力_和力系合力矩—分别等于零。
7•系统外物体对系统的作用力是物体系统的处—力,物体系统中各构件间的相互作用力是物体系统的内力。
画物体系统受力图时,只画外力,不画内力。
&建立平面任意力系平衡方程时,为方便求解,通常把坐标轴选在与未知力垂直的方向上,把矩心选在未知力的作用点上。
9 •静定问题是指力系中未知反力个数等于—独立平衡方程个数,全部未知反力可以由独立平衡方程求解的工程问题个数,而静不定问题是指力系中未知反力个数超出独立平衡方程个数,全部未知反力不能完全求解的工程问题。
三、选择题1、已知F i, F2, F3, F4为作用在一刚体上的平面汇交力系,其力矢之间的关系有如图2-3 所示的关系,所以.............................. (C)A •其力系的合力为 R= F4B •其力系的合力为 R=0C.其力系的合力为R=2F4 D •其力系的合力为R=- F4图2-32、如图2-4所示的四个力多边形,分别由平面汇交力系的几何法与平衡的几何条件作出, 其中,表示原力系平衡的图形是.............................. (A)图2-43、一力F与X轴正向之间的夹角a为钝角,那么该力在X轴上的投影为............................................................ ( D)A. X= - Feos aB.X= Fsin aC.X= - Fsin aD.X= Feos a4、力沿某一坐标轴的分力与该力在同一坐标轴上的投影之间的关系是( B)A.分力的大小必等于投影B •分力的大小必等于投影的绝对值C.分力的大小可能等于、也可能不等于投影的绝对值A • S AB =7.5kNB •S =15kNC . S AB =12.99kND • S AB =30kN图2-67、如图2-7,已知Ox , Oy 轴的夹角为 1120。
,力F 在Ox , Oy 轴上的投影为2 F ,力F 沿着Ox , Oy 轴上的分力大小为 A • 2FD • 0.866FD •分力与投影的性质相同的物理量5、 如图2-5所示的某平面汇交力系中四力之间的关系是 ...... A • F l +F 2+F 3+F 4=0 B • F 1 + F 3 = F 4— F 2 C • F l =F 2 + F 3+F 4 D • F l + F 2=F 3+F 46、 女口 2-6图所示的结构,在铰 A 处挂一重物,已知 W=15kN ,各杆自重不计,则AB 杆的受力大小 为 ( A) 如图2-78、如图2-8所示三角钢架,A , B 支座处反力方向一定通过……( C) A • C 点B • D 点C • E 点D • F 点图2-5 B •0.5FC • FA . FB . 2FB . F 4=F 1+F 2+F 3 D . F 2=F 1+F 3+F 49、三个大小均为 F 的力作用于一点,如图 2-9所示,要使质点处于平衡状态,必须外加外力。