扬声器的振膜材料
扬声器材料之锦丝线

扬声器材料之锦丝线
锦丝线是一种用于制作扬声器的特殊材料。
它由蚕丝或其他纤维素材料制成,因其优异的声学性能而被广泛采用。
锦丝线具有以下几个优点:
首先,锦丝线具有很高的拉伸强度和耐磨性。
这使得它可以承受较大的张力,不易断裂或变形。
这对于扬声器来说非常重要,因为高音频信号需要较高的拉伸强度来推动扬声器振膜的运动。
此外,耐磨性也确保了锦丝线能够在长时间使用中不容易损坏。
其次,锦丝线具有较低的内部耗散和失真。
声音通过锦丝线传输时,由于其较低的内部耗散,能量损失较小,从而保持了较高的声音质量。
此外,锦丝线的失真也相对较低,音频信号经过扬声器时能够更加真实地还原原始音源。
再次,锦丝线具有较好的耐候性能。
它能够在不同的环境条件下保持稳定的性能,不易受到湿度、温度和紫外线的影响。
这对于户外和汽车音响等特殊应用环境的扬声器来说非常重要。
此外,锦丝线还具有良好的导电性能。
这对于扬声器的导线部分来说非常关键,能够确保信号传输的准确性和稳定性。
然而,锦丝线也存在一些不足之处。
首先,由于其较高的成本,相对于其他材料来说更加昂贵。
其次,锦丝线的生产过程相对复杂,需要特殊的工艺和设备来制作,这也增加了生产成本和难度。
总的来说,锦丝线作为扬声器材料具有很多优势,如高拉伸强度、耐磨性、较低的内部耗散和失真、良好的耐候性能以及良好的导电性能。
尽
管其成本较高且生产过程较为复杂,但这些优点使得锦丝线在扬声器制造领域得到广泛应用。
未来,随着技术的进步和成本的下降,锦丝线有望在音频领域发挥更重要的作用。
扬声器振膜资料介绍[探析]之欧阳法创编
![扬声器振膜资料介绍[探析]之欧阳法创编](https://img.taocdn.com/s3/m/eb29bfb625c52cc58ad6be36.png)
扬声器振膜资料介绍[探析]扬声器振膜材料介绍纸盆振膜应该算是最古老的材质了。
简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。
而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了(注1)……。
(注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。
我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。
)一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。
因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。
这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。
别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。
再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15,以上。
虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。
Audax的6.5吋纸盆中音PR170系列,效率便高达100dB/W。
纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。
至于这样的改变是好是坏也很难说,英国的Lowther俱乐部成员便宣称在下雨天时,家里的Lowther喇叭特别好听。
较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。
音色与音质的基础——告诉你有关“音箱振膜”的详细知识

音色与音质的基础——告诉你有关“音箱振膜”的详细知识如果用汽车零件来比喻,磁铁是引擎,音圈相当于传动轴,那么振膜就是带动汽车前行的轮胎了。
喇叭之所以会发声,是扩大机输出的电流讯号与磁铁产生交互作用,进而带动磁场中的音圈做活塞式的往覆运动,由于振膜与音圈是黏在一起的,振膜便跟着前后震动而压缩空气产生声波。
由此可知,我们所听到声音完全得自于振膜的运动模式,并决定了音色与音质会是个什么模样,就是所谓的声底,好比你细胞里的基因,会影响你的高矮胖瘦与美丑。
低音使用金属震膜的音质大多速度会较快且精准,但缺点就是会比较没有感情。
高硬度 VS. 低密度我们可以从几个简单的指标来检视,什么样的振膜符合好声的标准?一项是硬度,我们希望振膜够坚硬,还要有点儿韧性,能承受剧烈的往覆运动,且不会变形甚至破裂,通常以材质的杨氏系数做为指标。
在体积相同的条件下,系数越高表示硬度越高,传递声音的速度也越快,无怪乎前阵子某家大厂推出钻石高音,其宣传要求中便一再强调钻石的杨氏系数极高。
但光有硬度还不够,我们还希望它的密度极低,就是要够轻,不然就不能轻快地运动啦!高硬度且低密度的振膜材质有助于能量发散,使音染降至最低,但高硬度与低密度根本是两相矛盾的东西,因此,振膜设计最大的的困难度就是要找寻适合的材质,并且在这天平的两端取得最佳的平衡点。
除此之外,振膜尺寸、形状、涂料、相位锥与防尘罩,对于声音也都有影响。
Dynaudio的MSP振膜从表面看起来像一般的塑料成行产品,但里面却拥有独家配方的硅酸镁盐聚合物。
振膜的材质振膜材质的种类何其多,尤其是近来材料科学进步,有愈来愈多的材料拿来振膜,但我们可以将其大致分为人造材质、天然材质,以及复和式材质三大类。
人造材质如PP、功夫龙(KEVLAR)、碳纤维、玻璃纤维等化学纤维,以及各类金属如铝、铍、钛等,或是陶瓷、钻石等等。
虽然种类非常多,其特性与优点就是材质专一,结构固定,音色单纯且容易凸显,制程与质量稳定、容易控制,例如功夫龙的中频特性佳,铝振膜则极坚韧且动态优秀。
扬声器应用的原理

扬声器应用的原理1. 简介在现代科技中,扬声器是一种非常常见的设备,它广泛应用于各种电子产品中,如手机、电视、音响等。
扬声器的作用是将电信号转化为声音信号,并输出到空气中。
本文将介绍扬声器的工作原理和应用。
2. 基本原理扬声器的工作原理基于电磁感应和振动原理。
其基本组成包括振膜、磁场、线圈和磁铁。
2.1 振膜振膜是扬声器中的重要组件,通常由柔软的材料制成,如塑料或纸。
当振膜受到电流通过线圈产生的力作用时,会产生振动。
这种振动会使空气分子振动,从而产生声音。
2.2 磁场扬声器中的磁场通常通过一块永磁体(磁铁)产生。
磁铁的作用是创建一个恒定的磁场,用于与振膜上的线圈相互作用。
2.3 线圈线圈是扬声器的另一个重要组件,通常由铜线制成。
线圈固定在振膜上,并通过连接电路与电源相连。
当电流通过线圈时,线圈会受到磁场的作用,从而产生力,使振膜振动。
3. 工作过程扬声器的工作过程通常可以分为四个步骤:电流输入、磁场作用、振膜振动和声音输出。
3.1 电流输入当电流输入到扬声器的线圈时,线圈会受到磁场的作用。
3.2 磁场作用电流通过线圈时会产生磁场,这个磁场与磁铁上的磁场相互作用,产生力使振膜振动。
3.3 振膜振动当振膜受到力的作用时,会产生振动。
振膜的振动会使周围的空气分子振动,并产生声音。
3.4 声音输出通过扬声器的输出端口,声音信号以声波的形式输出到外部环境中。
4. 扬声器的应用扬声器的应用非常广泛,以下是一些常见的应用场景:• 4.1 移动设备:扬声器广泛应用于智能手机、平板电脑和笔记本电脑中,用于播放音乐、视频和电话通话等。
• 4.2 家庭娱乐系统:扬声器广泛应用于电视、音响和家庭影院系统中,用于提供更好的音质和观影体验。
• 4.3 汽车音响:扬声器被安装在汽车音响系统中,用于播放音乐和接收车载通话。
• 4.4 广播系统:扬声器广泛应用于公共场所的广播系统中,如学校、商场和体育场等,用于传播信息和播放背景音乐。
扬声器的工作原理

扬声器的工作原理扬声器是一种将电信号转换为声音信号的设备,广泛应用于音频播放、通信系统和娱乐设备中。
它能够将电流信号转换为机械振动,进而产生声音。
下面将详细介绍扬声器的工作原理。
一、基本构造扬声器通常由磁系统、振动系统和辅助系统三部份组成。
1. 磁系统:磁系统由磁铁、磁场和磁线圈组成。
磁铁通常采用永磁材料,如铁硼磁铁。
磁场是由磁铁产生的,它在磁线圈周围形成一个稳定的磁场。
2. 振动系统:振动系统由振膜和振膜支撑结构组成。
振膜是一个薄膜,通常由纸、塑料或者金属制成。
振膜支撑结构用于支撑振膜,并使其能够自由振动。
3. 辅助系统:辅助系统包括导线、连接器和固定装置等。
导线用于连接扬声器的磁线圈与音频设备的电路。
连接器用于连接扬声器与音频设备。
固定装置用于固定扬声器的各个部份。
二、工作原理扬声器的工作原理基于法拉第电磁感应定律和霍尔效应。
1. 法拉第电磁感应定律:当电流通过磁线圈时,会在磁场中产生一个力,使振膜开始振动。
这是因为电流在磁场中受到力的作用,产生了机械振动。
2. 霍尔效应:扬声器中的磁线圈通常由导电材料制成,当电流通过磁线圈时,会产生一个磁场。
通过霍尔效应,当电流通过磁线圈时,会在磁场中产生电势差。
这个电势差会与振膜上的电势差相互作用,从而产生机械振动。
当电流通过磁线圈时,磁场会受到电流的作用而发生变化,进而产生力。
这个力会作用于振膜上,使其开始振动。
振膜的振动会产生声音,并通过扬声器的喇叭传播出去。
三、工作过程扬声器的工作过程可以分为信号输入、电流产生、磁场形成、振膜振动和声音输出五个阶段。
1. 信号输入:音频设备会将声音信号转换为电信号,并通过导线输入到扬声器的磁线圈中。
2. 电流产生:当电流通过磁线圈时,根据法拉第电磁感应定律,会在磁场中产生一个力。
3. 磁场形成:磁铁产生的磁场会使磁线圈周围形成一个稳定的磁场。
4. 振膜振动:根据霍尔效应,电流通过磁线圈时会在磁场中产生电势差。
这个电势差会与振膜上的电势差相互作用,从而产生机械振动。
扬声器振膜资料介绍[探析]之欧阳科创编
![扬声器振膜资料介绍[探析]之欧阳科创编](https://img.taocdn.com/s3/m/a25724abc850ad02df8041d2.png)
扬声器振膜资料介绍[探析]扬声器振膜材料介绍纸盆振膜应该算是最古老的材质了。
简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。
而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了(注1)……。
(注1:多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。
我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。
)一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。
因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。
这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。
别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。
再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15,以上。
虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。
Audax的6.5吋纸盆中音PR170系列,效率便高达100dB/W。
纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。
至于这样的改变是好是坏也很难说,英国的Lowther俱乐部成员便宣称在下雨天时,家里的Lowther喇叭特别好听。
较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。
内陷型喇叭振膜的结构

内陷型喇叭振膜的结构
内陷型喇叭振膜,通常指的是在喇叭单元设计中,振膜中心部分向后凹陷的结构。
这种类型的振膜在技术上被称为“穹顶式(Dome)”或“半球形”振膜。
内陷型喇叭振膜的基本结构特点如下:
1. 几何形状:振膜整体呈碗状或者半球状,中间部分向后凹陷,边缘与音圈相连。
这样的设计有助于分散音圈驱动产生的应力,使得整个振膜运动更加均匀,从而减少分割振动和失真。
2. 材料选择:振膜材料可以是纸质、金属(如铝镁合金、钛)、高分子聚合物、布质复合材料等,根据不同的应用场合和声音特性需求来选择。
内陷的设计有助于提高刚性和强度,同时减轻重量。
3. 声学特性:内陷型振膜能较好地兼顾高低频响应,其内陷部分在低频时能够提供更大的有效振动面积,有助于提升低频下潜能力;而在高频时,由于质量较轻且集中于边缘部分,可实现较快的瞬态响应和较好的高频延伸。
4. 工艺制作:制造过程中,振膜的厚度、材质分布以及内陷的深度和曲率都需要精确控制,以确保其在大动态范围内的稳定性和耐用性。
5. 悬挂系统:内陷型振膜一般配合合适的悬挂系统(折环或弹波),保证振膜在前后移动时保持线性运动,并防止因超出物理极限而损坏。
总之,内陷型喇叭振膜通过其独特的结构设计,在声学性能上有一定的优势,常被应用于对音质有较高要求的音响设备中。
扬声器的结构设计

扬声器的结构设计扬声器是将电信号转化为声音信号的设备,其结构设计直接影响到声音的产生效果和音质的表现。
下面,将详细介绍扬声器的结构设计。
1.外壳设计:外壳是扬声器的外部保护结构,它的设计应该具有稳固性和吸音性能。
常见的扬声器外壳设计有封闭式、开放式和反射孔式。
封闭式外壳设计适用于低音扬声器,能够产生更浑厚的声音;开放式外壳设计适用于中高音扬声器,能够产生更明亮的声音;反射孔式外壳设计可增加低音的延展性。
2.振膜设计:振膜是扬声器的重要组成部分,它的设计直接决定了声音的发射效果。
振膜应该具有轻质、坚固和弹性,以便能够准确地模拟声音信号。
常见的振膜材料有纸质、塑胶、金属等,选择合适的振膜材料能够提高扬声器的音质表现。
3.音圈设计:音圈是扬声器的驱动器,它通过电磁感应原理将电信号转化为声音信号。
音圈的设计应注重提高磁场强度和线圈的响应能力,以实现更准确的音质表现。
通常,音圈由导线缠绕而成,导线的选择和缠绕技术都会对音圈的性能产生影响。
4.磁体设计:磁体是扬声器的重要组成部分,它产生的磁场能够驱动音圈振动,从而产生声音。
磁体应具有足够的磁场强度和稳定的磁场分布,以确保音频信号能够被准确地转化为声音信号。
常用的磁体材料有永磁铁、钕铁硼等,选择合适的磁体材料能够提高扬声器的灵敏度和音质表现。
5.阻尼器设计:阻尼器用于减震和减小音圈振动的过冲,以提高音频信号的准确性。
阻尼器的设计应注重提高耐高温性能和减震效果,以确保声音的稳定性和清晰性。
常见的阻尼器材料有橡胶、聚酯纤维等,选择合适的阻尼器材料能够改善扬声器的音质细节。
6.隔振设计:隔振设计旨在减少扬声器与外界的物理接触和共振效应。
通过合理的隔振设计,能够降低各个部件之间的干扰和失真,提高声音的纯净度和音质的表现。
常用的隔振材料有橡胶、泡沫、木材等。
综上所述,扬声器的结构设计对其声音的产生效果和音质的表现有着直接的影响。
合理选用各个部件的材料和设计,能够提高扬声器的音质细节、稳定性和清晰度,从而实现更好的声音效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬声器的振膜材料 纸盆振膜 这应该算是最古老的材质了。简单的说,把纸浆悬浮液流入事先设计好的盆型网状模子上,纸浆便沉积其上,将沉积至适当厚度的纸浆抄出,再行干燥等后续加工处理,便成了一个纸盆振膜。而其中纸浆的成份,如纤维的种类、长短,及填料成份,和抄纸的制程及后段处理方式(如风干或热压等),都会影响最后成品的特性,也直接影响了发声特性,这些当然就是各家不外传的商业机密了。
多年前曾读过一篇洪怀恭先生现身说法所写的一篇有关纸盆制作的文章,除了浩叹纸盆所含的学问博大精深之外,更令我深深佩服洪前辈的研究精神。我在本文中轻描淡写的几句话,可是无法道尽多少年来先贤先烈们流血流汗所累积的精髓。)
一般来说,纸盆的声音特性为平顺自然,明快清晰而不神经质。因为内含无数的纤维相互交织,因此在其中传递的能量可以很快被吸收掉,形成很好的阻尼,因此在发声频域的高端造成的盆分裂共振不明显,滚降的截止带也就很平顺。这可说是一种很好的特性,因为这样就可以用很简单的分音器,不需额外的剪裁,系统的整合也就很健康。
另外,纸盆的刚性颇佳,对于瞬时反应和听感的细节表现有很好的成绩。别看手边常见的纸张都是软软的,在适当的形状和厚度下,纸的刚性是能够做得很不错。再者,若设计和制作得当,纸盆可以做得很轻,比最轻的塑料振膜还轻15%以上。虽比起最新的高科技合成纤维材料,纸质还是稍重了点,但其实相差不大,因此发声效率高。audax的6.5吋纸盆中音pr170系列,效率便高达100db/w。
纸盆可能的弱点是其特性会随环境湿度而变化,因纸吸收了湿气后其密度会变高(变重)、刚性会变差(变软),所以发声的特性也会受影响。至于这样的改变是好是坏也很难说,英国的lowther俱乐部成员便宣称在下雨天时,家里的lowther喇叭特别好听。
较令人担心的应该是干湿循环次数多了之后,可能会造成材料本身的疲劳,进而改变其原本的特性。但君不见许多古董纸盆单元在工作了数十年后还是照样唱得很好,所以这种情况应该还算轻微而渐进,有点像是熟化后进入另一个稳态的阶段,对我们用家来说应该是不成问题才对。
近年来生产的纸盆单元,有一大部分便在这方面有各种改善的方式,使纸盆的特性可以更加稳定。常见的有表面涂膜,或是在纸质配方上作文章,有些厂家就宣称他们的纸盆能防水,从某些户外用的pa喇叭看来,应该有相当的可*度。当然,就像先前提到的,对于这类事情,我们一般人顶多看看热闹,要瞧出门道就不是那么容易了。
另外,千万别把纸盆的悠久历史和“落伍”划上等号。若以整体音响产业的视野来看,纸质锥盆喇叭单元所占的比重稳居各类单元的首位。不信瞧瞧你家的电视、手提收录音机、床头音响、计算机……等等,是不是大部分都采用纸盆单元的小喇叭?你说,嗐!这些东西怎么能跟我的高科技high-end喇叭相比!但换个角度看,若这些“次级品”都换用非纸盆单元,保证更难听,而且更贵。这是因为纸盆这种材料可说已经发展得相当成熟,所以能够获得很好的成本效益比。再者,更有许多经得起时间考验的传奇老喇叭和超级制作的新世代霸主都有纸盆的身影:we/altec
755a全音域、goodman axiom 80全音域、altec a5/a7、ar3a、lowther全音域、tad……等等族繁不及备载。一些热爱此道的资深玩家更是直接了当的说:“给我纸盆,其余免谈!”很多人也认为,将纸盆的制作称为科学还不如说是一项艺术,足见其引人入胜之魅力。
塑料振膜 因石化工业的发达,在我们日常生活环境中便随处可见塑料制品,低廉的原料和加工程序简便自然就获得了各种产业的青睐,其中当然也包括音响工业。
这里说的塑料振膜,是指用塑料射出成型或其它方式做出的一体成型锥盆,最常用的材质应属聚丙烯(polypropylene,简称pp)。这种pp材质,我们最常接触到的应该就是微波炉用容器和保鲜盒一类制品,都是属于射出成型的。另外,常用于各类纸箱外加强用,黄色或灰色的打包带也是由聚丙烯纤维制成。由此我们可以体认到一件事,这种材料实在是非常的强韧。多数高分子聚合物的物理特性便是韧性特强,因为分子结构巨大且排列不规则,所以机械能在其中传递时会很快的被吸收消耗,阻尼特性很好。这项优点和纸盆类似,就是高端的滑落很平顺,除了听感上柔顺自然外,能够使用低阶、简单的分音器也是一项利多。我们可以从许多欧系二音路小喇叭上感受到这些良好的特质,
proac所采用的6.5吋透明pp振膜的scan中低音单元,就可称之为这类单元当中最佳的典范。
然而,相较于其它振膜材质,pp的刚性不甚佳,质量也较重。虽然用保鲜盒往脑门上k下去是很痛,但并不表示它在微观的高速小范围运动下就有很好的刚性,而这样的工作条件才是我们在单元振膜选用上所在意的。
pp材质较弱的刚性造成了高速微动作时(高频段工作时),音圈发出的动能无法完全且一致的传达到整个振膜,也就是发生了“盆分裂现象”。虽然有良好的阻尼止住了盆分裂共振,但毕竟已无法作完美的活塞运动,失真率相对提高,听感上便是柔顺有余,解析力及动态却不足,有些以8吋pp振膜中低音单元为基础的二音路喇叭,
会在中音到中高音域容易出现迟缓呆滞的症状,病因便在此。若在低音部份不要太贪心,选用较小口径的单元,便可在某种程度上减轻这样的问题。因为雪上加霜的是在大面积下要做到足够刚性所需的厚度相对较大,整体质量便水涨船高。所以,另一方面你也找不到高效率喇叭是采用pp振膜的单元。 虽不像纸盆那样有吸水气的问题,但pp振膜会有随温度改变特性的倾向。幸好这点应该不至于困扰我们,因为就像纸盆和湿度的问题一样,这样的变化应属缓慢而渐进,就别太担心了!
综观以上,pp好象因为刚性较差和质量较高的关系而不适于制作振膜,其实应该说是看我们如何在诸多妥协下作取舍了。就像前面提到的scan单元,虽然用上被我批评得很惨的pp振膜,但一样还是可以做出很成功的产品,整体表现一样很出色。
或者,更积极的作法是对这种材质加以改良,也就是以pp为基础,再混入一些添加物,以加强其刚性。这个动作的确能带来一定程度的改善,使得制作出来的单元在动态、失真率、细节表现,和发声效率上都有不同程度的进步。如dynaudio和infinity/genesis都有采用此类处理的单元,虽然混入的添加物和制作方式不尽相同,但成效都颇明显。
另外,既然石化原料和射出成型是这么的方便,所以当然有人会开发不同于pp的新材质,如bextrene、tpx,或neoflex的材质,其化学成份不详,虽看起来和pp很像,但这些材质的较佳刚性和较低质量能带来更好的动态及解析力,你应该能从各家喇叭的广告和型录上看到上述的材质,不妨有机会时验证一下。
金属振膜 既然刚性较弱会导致动态和解析力的缺失,那么利用高刚性的金属材质来制作振膜,应该会得到很好的效果才对。若不谈号角喇叭用的压缩驱动器,一般能看到用于直接放射的中音或低音单元所用的金属材质,应属铝金属或其合金产物为最多,最大的优势便是刚性很强,在一定范围的工作条件下不会变形,其结果便是很低的失真和很好的细节解析力。但是刚性强的另一面便是内损低,就像我上次提过的“一指蒋”高音一样,能量不会被振膜材质本身吸收,所以发生盆分裂时会有很明显的共振峰出现在频率响应的高端,若不妥善处理,就很容易出现“金属声”。
所谓妥善处理,首先可以在分音器的设计上尽可能将此共振峰压制,也就是把共振峰安排在滤波的截止带或以外,让进入单元的讯号不要含有会激起高频共振的频率,于是共振峰便会被分音器所“隐藏”起来,我们就不会听到金属声了。为达此目的,通常必须要采用至少二阶以上的分频斜率,才能有效滤除;若用一阶,斜率太缓,不足以有效压制。若再把分频点往低端移动,又会牺牲掉可用的频宽,这样的作法不太健康。因此,高阶分频和慎选分频点是采用金属振膜单元所必须特别注意的。
或者,相对于消极的避让,也可积极的改进缺点,那就是加强振膜的阻尼:三明治夹层结构、涂布阻尼物都是不错的方式。市面上这类的产品已经愈来愈多,其中也不乏相当成功的例子,如上一期“彻底研究”介绍的elac,或是声音和价钱都很高贵的瑞士ensemble。
除了高频共振不好对付之外,振膜重量是另一项不利因素。因为成本的关系,还没见过用钛金属制作的中音单元。所以,金属盆的中音或低音单元虽可在强劲驱动下表现出色的动态,但整体的发声效率事实上还是偏低,一般需要较大的功率来伺候。 合成纤维材质 历来似乎最先进的材料都会先用在杀人武器上,真是好斗成性的人类之最大悲哀,要是拿来用在音响上让大家聆赏音乐,岂不是一片祥和?在硼碳纤维及蜂巢式三明治结构应用于战斗机上获致极佳成效的多年以后,才有人将这类的材料用在音响上。
既然是航空级的材料,当然就兼具了质轻和高强度的双重优点,可以做到比纸还轻,刚性比金属还强,而且强度不只超过铝很多,甚至还高过钢铁(注2),用来制作喇叭单元的振膜应该是再理想不过了!所以各家制造kevlar或碳纤维单元的厂家,无不用力的标榜其高刚性、低质量、还有高阻尼的特性。前二项优点是成立的,但自体阻尼这一项则要视条件而定,并不一定就比较好。
这是指其它的成形方式所能得到的最佳成果,并不是指薄薄的单元振膜可以会你家的菜刀还硬,至少目前还做不到。)
若没有妥善处理,这类高刚性的人造纤维会和金属盆面临类似的问题,也就是高频盆分裂共振。虽不至于像金属振膜那么严重,但这个盆分裂共振的确存在,也轻易地达到扰人的程度。在没有妥善处理之下,听感上容易造成硬质的中频上段和高频下段,更厉害些便开始刺耳了。我在几年前曾读到一篇器材评论,其中主笔对kevlar中音的表现便是颇有微词。