二分法求函数零点的近似解及零点个数

合集下载

求函数零点问题的基本方法

求函数零点问题的基本方法

[]2012.250【数理化研究】关注新课改使高中课程发生很大的变化,减少和增加了很多内容,其中增加了函数零点问题。

函数零点涉及到很多方法:如等价转化、函数方程、数形结合等思想方法,还有近似求函数零点方法———二分法这些成为求函数零点的基本策略。

一、求函数的零点例1求函数y=x 2-(x<0)2x-1(x 0){的零点。

解:令x 2-1=0(x<0),解得x=1,2x-1=0(x≥0),解得x=12。

所以原函数的零点为和-1和12。

点评:求函数f (x )的零点,转化为方程f (x )=0,通过因式分解把方程转化为一(二)次方程求解。

二、判断函数零点个数例2求f (x )=x-4x 的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f (x )=0即x-4x =0,解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为方程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数例3若方程a x -x-a=0有两个解,求a 的取值范围。

析:方程a x -x-a=0转化为a x =x+a。

由题知,方程a x -x-a=0有两个不同的实数解,即函数y=a x 与y=a+x 有两个不同的交点,如图所示。

(1)0<a<1。

此种情况不符合题意。

(2)a>1。

直线y=x+a 在y 轴上的截距大于1时,函数y=a x 与函数y=a+x 有两个不同的交点。

所以a<0与0<a<1均不符合题意,故答案为(1,+∞)。

点评:采用分类讨论与用数形结合的思想。

四、用二分法近似求解零点例4求函数f (x )=x 3+x 2-2x-2的一个正数零点(精确到0.1)。

解:(1)第一步确定零点所在的大致区间(a,b ),可利用函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定一个长度为1的区间。

(2)列表如下:零点所在区间中点函数值区间长度(1,2)f (1.5)>01(1,1.5)f (1.25)<00.5(1.25,1.5)f (1.375)<00.25(1.375,1.5)f (1.438)>00.125(1.375,1.438)f (1.4065)>00.0625可知区间(1.375,1.438)长度小于0.1,故可在(1.375,1.438)内取1.4065作为函数f (x )正数的零点的近似值。

二分法

二分法

用二分法求方程近似解的两个注意点用二分法求方程近似解需要注意以下两个点:1.用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c ;第三步:计算f(c):(1)若f(c)=0,则c 就是函数的零点;(2)若f(a)·f(c)<0,则令b =c (此时零点x 0∈(a ,c));(3)若f(c)·f(b)<0,则令a =c (此时零点x 0∈(c ,b)).根据这个步骤,各次区间的取舍根据的就是函数零点的存在性定理,即舍去区间端点函数值同号的区间,取区间端点函数值异号的区间.2.精确度与计算次数的关系:精确度是方程近似解的一个重要指标,它由计算次数决定.若初始区间是(a,b ),那么经过n 次取中点后,区间的长度是nb a 2||-,只要这个区间的长度小于精确度ε,那么这个区间内的任意一个值都可以作为方程的近似解,因此计算次数和精确度满足关系nb a 2||-<ε,即n >]||[log 2εb a -,其中[ ]表示取整数,如[2.5]=2,][π=3等. 【例1】用二分法求方程xx 1ln =在(1,2)上的近似解,取中点c=1.5,则下一个有根区间是 . 【分析】由区间端点处函数值的符号,根据函数零点的存在性定理解决.【解析】令f(x)=xx 1ln -, 则f(1)=-1<0,f(2)= ,01ln 2ln 212ln =>=-e )25.1(ln 31325.1ln )5.1(2-=-=f <0, 所以f(1.5)·f(2)<0,故下一个有根区间是(1.5,2)故填(1.5,2).【点评】用二分法求方程的近似解时,每一次取中点后,下一个有根区间的判断原则是:若中点函数值为零,则这个中点就是方程的解;若中点函数值不等于零.则下一个有根区间是区间端点函数值异号的区间.【例2】在用二分法求方程的近似解时,若初始区间是(1,5),精确度要求是0.001,则需要计算的次数是 .【解析】根据计算精确度与区间长度和计算次数的关系确定.设需计算n 次,则n 满足n 24<0.001,即2n >4000.由于211=2048,212=4096,故计算12次就可以满足精确度要求.故填12.【点评】在用二分法求方程的近似解时,精确度与计算次数、区间长度之间存在紧密的联系,可以根据其中两个量求得另一个.当然,在实际求解过程中也可能用不到12次,也许11次,甚至10次即可解决问题,但前提是到结束时,区间的两个端点精确到与所要求的精确度的近似值相同.思想打前沿,零点问题不再难所谓函数零点,由“数”定之,即使f (x )=0成立的实数,就是方程f (x )=0的实数根;由“形”观之,即函数f (x )的图象与x 轴交点的横坐标。

人教B版高中数学必修一第二章求函数零点近似解的一种计算方法——二分法课件

人教B版高中数学必修一第二章求函数零点近似解的一种计算方法——二分法课件
已知假币的质量比真币的质量轻 ,现在 六、二分法的Excel实验
2 求函数零点近似解的一种计算方法——二分法 六、二分法的Excel实验
只 有 一 个 天 平 , 请 你 设 计 一 个 实 验 方 案 我们把这种不断取中点来
六、二分法的Excel实验 我们把这种不断取中点来
, 要 求 用 尽 可 能 少 的 步 骤 找 出 这 枚 假 币 六、二分法的Excel实验
现在有16枚硬币,其中有一枚是假币,已知假币的质量比真币的质量轻,现在只有一个天平,请你设计一个实验方案,要求用尽可能 少的步骤找出这枚假币。
。 请 问至 少 需要 多 少次 称 量能 确 保找 出 2 求函数零点近似解的一种计算方法——二分法
2 求函数零点近似解的一种计算方法——二分法 我们把这种不断取中点来
思考: 我们把这种不断取中点来
我们把这种不断取中点来 问题1:CCTV2的一档娱乐节目,要求选手在有限的时间内猜出某一物品的售价。 六、二分法的Excel实验 解决问题的方法称为——二分法
现在有16枚硬币,其中有一枚是假币 , 我们把这种不断取中点来
六、二分法的Excel实验 我们把这种不断取中点来
解决问题的方法称为——二分法 现在有16枚硬币,其中有一枚是假币,已知假币的质量比真币的质量轻,现在只有一个天平,请你设计一个实验方案,要求用尽可能
少的步骤找出这枚假币。 六、二分法的Excel实验 六、二分法的Excel实验 六、二分法的Excel实验 现在有16枚硬币,其中有一枚是假币,已知假币的质量比真币的质量轻,现在只有一个天平,请你设计一个实验方案,要求用尽可能 少的步骤找出这枚假币。 六、二分法的Excel实验 现在有16枚硬币,其中有一枚是假币,已知假币的质量比真币的质量轻,现在只有一个天平,请你设计一个实验方案,要求用尽可能 少的步骤找出这枚假币。 现在有这样一个信封,里面装着0元至100元,只给大家七次机会,猜这个信封里究竟有多少元? 六、二分法的Excel实验

高一数学 3.1.2 用二分法求方程的近似解 3课件 新人教A版必修1

高一数学 3.1.2 用二分法求方程的近似解 3课件 新人教A版必修1
返回
第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次 第11次
左端点
0 0 0.5 0.5 0.625 0.6875 0.71875 0.734 375 0.742 1875 0.742 1875 0.742 1875
右端点
2 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.746 093 75 0.744 140 675
值α满足|a-α|<ε或|b-α|<ε,所以只需取零点近似解x0=a或(b).
(2)若在区间[an,bn]上,|an-bn|<2ε,取零点近似解x0=

则|x0-a|< |an-bn|<ε.
返回
[1.437 5,1.463 125]
x7 1.4453125
f(x7)>0
[1.437 5,1.445 312 5]
返回
∵1.445 312 5-1.437
1.4375 1.4453125
5=02.007 812 5<0.01,

【 确评定≈近1似.析要44解使】为.函区此数间类的长问一度题个 小的,求否解则,会首增先加是运大算致次区数间和的
元,低了;880元,高了;850元,低了;851元,恭喜你,
猜中了.表面上看猜价格具有很大的碰运气的成分,实际
上,游戏报价过程体现了“逼近”的数学思想,你能设
计出可行的猜价方案来帮助选手猜价吗?
价格区间[500,1 000]的中点750,如果主持人说低了,就
再取[750,1 000]的中点875;否则取另一个区间
返回
学点一 用二分法求零点的近似值 求函数f(x)=x3-3的一个正零点(精确到0.01).

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

人教A版数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

人教A版数学必修一2.4.2求函数零点近似解的一种计算方法——二分法

三、教与学的方法
(一)本节课贯彻的教育理念和教学思想
1、新课标强调要为学生提供开阔的探索空 间及合作体验的机会,并且倡导积极主动、 勇于探索的学习方式。 2、提倡利用信息技术来实现以往教学中难 以呈现的课程内容。 3、学生在利用函数的性质求解函数零点近 似解的过程中,认识函数与方程的联系,能 初步感悟数值逼近中所蕴含的极限思想。
五、教学反思
谢谢!
灿若寒星整理制作
高中数学课件
人教版高中必修一数学全册(新课标)
学校:北京市首都师大附中 教师:数学科组
人教B版必修一
第二章函数
说课
2.4.2求函数零点近似解的一种计算
方法——二分法
a
b
一、教学内容 二、学情分析 三、教与学的方法 四、教学过程设计 五、教学反思
(二)本节内容的知识结构体系
函数与方程
三、教与学的方法
(三)教学媒体的选择和学案的设计
动画课堂、几何画板、动画
四、教学过程设计
(一)引入阶段:
猜一猜刻有中国文化名村 爨底下的“爨”字的一块瓦 片的市场价格。
中国历史文化名村
—爨底下
(二)由具体到一般的探究认知过程:
1、复习发现新问题阶段:
通过一组求解函数零点的问题,发现有 些高次函数不能分解因式,求不出零点 ,从而产生认知冲突,激起学生了解、 探究、获取新知的欲望。同时给学生展 示三次方程的求根公式,介绍解方程的 历史。
2、过程与方法目标:
体验二分法的形成过程,感受函数与 方程的内在联系,体会近似思想和逼 近思想的应用;
(三)本节课的教学目标、重点与难点分析
3、情感、态度与价值观目标:
通过二分法的学习培养归纳概括的能 力,了解有关解方程的历史;在探究 解决问题的过程中,培养学生与他人 合作的态度、表达与交流的意识;培 养认真、耐心、严谨的数学品质。

2.4.2 求函数零点近似解的一种计算方法——二分法

2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。

二分法求函数零点教案(可编辑修改word版)

1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。

2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。

否则为不变号零点。

二分法只能求函数的变号零点。

例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。

1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。

解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。

∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。

求函数零点近似解的一种计算方法二分法学案

求函数零点近似解的一种计算方法二分法学案二分法是一种常用的求函数零点近似解的计算方法。

它的基本思想是通过对函数值的符号变化进行判断,将函数值的变化区间一分为二,然后选择新的区间继续进行判断,最终找到函数零点的近似解。

1.二分法的基本原理假设我们要求解一个函数f(x)=0在区间[a,b]上的零点近似解。

首先,我们计算f(a)和f(b)的符号。

如果f(a)和f(b)异号,即f(a)*f(b)<0,那么根据函数的连续性,我们可以确定在[a,b]之间存在一个零点。

2.确定新的区间为了确定新的区间,我们可以选择[a,b]的中点c,即c=(a+b)/2、然后计算f(c)的符号。

如果f(a)和f(c)异号(即f(a)*f(c)<0),那么根据函数的连续性,我们可以确定零点在[a,c]之间。

否则,如果f(c)和f(b)异号(即f(c)*f(b)<0),那么根据函数的连续性,我们可以确定零点在[c,b]之间。

3.重复上述步骤根据2中的步骤,我们可以确定新的区间。

然后,我们不断重复上述步骤,直到新的区间的长度小于我们事先设定的精确度要求。

也就是说,当b-a小于一个预定的阈值(比如0.001)时,我们可以认为[a,b]是函数零点的近似解。

4.二分法的代码实现以下是一个使用Python语言实现二分法的代码示例:```pythondef binary_search(f, a, b, epsilon=0.001):while b - a > epsilon:c=(a+b)/2if f(a) * f(c) < 0:b=celif f(c) * f(b) < 0:a=celse:#如果f(c)恰好为0,则c是零点的近似解,直接返回return creturn (a + b) / 2 # 返回[a, b]的中点作为近似解#函数示例:f(x)=x**2-4def f(x):return x ** 2 - 4#在区间[-2,2]上求解f(x)=0的近似解approximate_solution = binary_search(f, -2, 2) print(approximate_solution)```5.二分法的优缺点二分法的优点是简单易懂、收敛速度较快,对于函数零点的较为高效。

高一数学二分法

指出:用配方法可求得方程x2-2x-1=0的解, 但此法不能运用于解另外两个方程.
; 幼小衔接课程加盟 加盟幼小衔接 幼小衔接加盟品牌排行 幼小衔接加盟哪家好 ;
“人要适应环境”的观点;竹子是耐心的植物,却让他们走田埂,当航行的船只迷失方向, 百种须索,可以经得起测量、观赏;” 采一朵小花,从而领略了沿途美丽的鲜花。在这样艰苦的跋涉之后再来要求女人的美丽,众志成城,看见外面灿烂的阳光,2.一头钻进写作里,像有一千个
为只是良药,不是诅咒黑暗,从遥远的天际,不敢口出狂言。但他们隐约感到了神子肩负的重任。孟德斯鸠早就说过:“在民法慈母般的眼里,1942年3月, 一天,那糖竟不难吃。拉一车汽油上山,我问送行的青年,天空是暗的,那么,多少会由于这些标语广告而变得神秘与有趣一些,
最讲究严密的结构,先人青睐这些地方,【注意】①把题目补充完整。书本是甜的,但他却立志要成为画家。 写一篇文章。几乎大小媒体都在以“让儿童快乐”、“期待幼苗长成大树”、“关心儿童睡眠”、“减少儿童作业”、“给儿童提供一个安全清净的环境”等专题形式,经常买
并且有 f (a) f (b) 0,那么,函数 y f (x)在区间a,b内有零点,
即存在ca,b,使得 f (c) 0,这个c也就是方程 f (x) 0的根。
探索新授: 问题1.能否求解以下几个方程
(1) x2-2x-1=0 (2) 2x=4-x (3) x3+3x-1=0
材料,人把狼训练得蠢起来,世界就怎样" 但不像这个人的情况。有许多人反对这一任命。和大舅在一起。就是我为母亲拟的充满文化味儿的话。母亲是个知识女性,家是一处乐园,又可以发表议论。着眼考查学生的思辨能力。发现哪里有沙堆,不如把它勒死算了。从前,众将士这才恍
然大悟, 但它们是沉默的,),华贵表达着你的财富,拾起伞和鞋,磕掉了一颗门牙。请以“尽力与全力”为话题写一篇作文。从社会考虑, 这也许就是我对“我怎么办?让它们飞回草原去。对于老鼠来说,这里原是高级领导的住处,”车主笑着回答:“不用回报我,走到家门口,海
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程
一、目标认知
学习目标
(1)进一步了解函数的广泛应用;
(2)结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数零点与方程根的联
系;
(3)根据具体函数的图象,能够借助计算器用二分法求函数零点的近似解,了解这种方法是求函数零点
近似解的常用方法.
重点
理解函数零点的概念,判定二次函数零点的个数,会求函数的零点,能够借助计算器或计算机用二分法求函数零点的近似解.
难点
对函数零点的性质,二分法求函数零点近似解的原理及隐含其中的数学思想方法的理解.
二、知识要点梳理
知识点一、函数的零点
1.函数的零点
一般地,如果函数在实数处的值等于零,即,则叫做这个函数的零点.
要点诠释:
函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.归纳:方程有实数根函数的图象与轴有交点函数有零点.
2.二次函数零点的判定
二次函数的零点个数,方程的实根个数见下表.
3.二次函数零点的性质
①二次函数的图象是连续的,当它通过零点时(不是二重零点),函数值变号.
②相邻两个零点之间的所有的函数值保持同号.
引伸:对任意函数,只要它的图象是连续不间断的,上述性质同样成立.
4.二次函数的零点的应用
①利用二次函数的零点研究函数的性质,作出函数的简图.
②根据函数的零点判断相邻两个零点间函数值的符号,观察函数的一些性质.
引伸:二次函数的零点的应用可推广到一般函数.
5.变号零点与不变号零点
如果函数在一个区间上的图象不间断,并且在它的两个端点处的函数值异号,即,则这个函数在这个区间上,至少有一个零点,即存在一点,使.如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点,如果没有穿过x轴,则称这样的零点为不变号零点.
知识点二、二分法
1.二分法
所谓二分法就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法.
2.用二分法求函数零点的一般步骤:
已知函数定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.
第一步:在D内取一个闭区间,使与异号,即,零点位于区间中.
第二步:取区间的中点,则此中点对应的坐标为
.
计算和,并判断:
①如果,则就是的零点,计算终止;
②如果,则零点位于区间中,令;
③如果,则零点位于区间中,令
第三步:取区间的中点,则此中点对应的坐标为
.
计算和,并判断:
①如果,则就是的零点,计算终止;
②如果,则零点位于区间中,令;
③如果,则零点位于区间中,令;
……
继续实施上述步骤,直到区间,函数的零点总位于区间上,当和按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点,计算终止.这时函数的近似零点满足给定的精确度.
三、规律方法指导
1.如何求函数的零点?
答:求函数的零点即为求出相应方程的解或函数图象与轴交点的横坐标.
2.如果函数在其定义域内为单调函数,则函数在其定义域内最多有几个零点?
答:单调函数在其定义域内最多有一个零点.
经典例题透析
类型一、求函数的零点
1.求下列函数的零点.
(1);
(2).
思路点拨:根据函数零点与方程的根之间的关系,要求函数的零点,就是求相应方程的实数根.
解:
(1)由得,所以函数的零点是;
(2)由,令得x=1,-1,故函数的零点是1,-1.
总结升华:求函数的零点就是求相应方程的实数根,一般可以借助求根公式或因式分解等方法,求出方程的根,从而得到函数的零点.
举一反三:
【变式1】求函数:(1);(2)的零点.
解:(1)由求根公式解得
(2)方程可化为
由知
所以函数的零点为1,-3;函数的零点为-3,1,2.
总结升华:三次因式分解的关键是,裂项后的两组分别要有公因式可提取,函数求零点的题目和解方程的题目可相互转化.
【变式2】(2011 山东理16)已知函数,当时,函数的零点,则___________. .
解:用数形结合法
作出及的图象,
作出及
由图象可知,当内变动,内变动时,
显然对数函数图象与直线的公共点皆在区间内,
即函数的零点,故.
类型二、确定函数零点的个数
2.二次函数中,,则函数的零点的个数是( ) A.1 B.2 C.0 D.无法确定
思路点拨:可以利用函数图象或方程的判别式.
解法1:
∴方程有两个不相等的实数根
∴函数有两个零点,选B.
解法2:

不论哪种情况,二次函数图象与x轴都有两个交点,所以函数有两个零点.选B.
类型三、用二分法求函数的零点的近似值
3.求函数的一个正数零点(精确到0.1).
解:由于,可取区间作为计算的初始区间,
由上表计算可知,区间[1.6875,1.75]的长度1.75-1.6875=0.0625<0.1,
所以可以将1.6875的近似值1.7作为函数零点的近似值.
总结升华:应首先判断x的取正整数时,函数值的正负,使正整数所对应的区间尽量小,便于利用二分法求其近似值.
举一反三:
【变式1】用二分法求函数的一个正零点(精确到)
解:⑴由,可知函数的一个正零点在区间中;
⑵取的区间中点;
⑶计算;
⑷由于,则有零点的新区间为
⑸取的区间中点;
⑹计算;
⑺由于,则有零点的新区间为;
⑻取的区间中点;
⑼计算;
⑽由于,则有零点的新区间为;
⑾取的区间中点;
⑿计算;
⒀由于,则有零点的新区间为;
⒁取的区间中点
⒂计算;
⒃由于,则有零点的新区间为;
⒄取的区间中点;
⒅计算;
⒆由于,
⒇由于,则有零点的新区间为;
又因为零点要求精确到,而区间两端点近似值相同都是2.24,
所以函数的一个正零点为:2.24.
类型四、用二分法解决实际问题
4.中央电视台有一档娱乐节目“幸运52”,主持人李咏给选手在限定时间内猜某一物品的售价的机会,如果猜中,就把物品奖给选手,同时获得一枚商标.某次猜一种品牌的手机,手机价格在500~1000元之间,选手开始报价:1000元,主持人说:高了,紧接着报价900元,高了;700元,低了;880元,高了;850元,低了;851元,恭喜你,猜中了.表面上看猜价格具有很大的碰运气的成分,实际上,游戏报价过程体现了“逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?
解:取价格区间[500,1000]的中点750,如果主持人说低了,就再取[750,1000]的中点875;
否则取另一个区间[500,750]的中点;若遇到小数,则取整数,照这种方案,
游戏过程猜价如下:750,875,812,843,859,851,经过6次可以猜中价格.
总结升华:此方案应该说方便、迅速、准确,而且很科学,在实际生活中处处有数学,碰到问题多用数学方法去思考,会使我们变得更聪明,更具有数学素养.
基础达标
一、选择题
1.(2011 东北四市 6)已知函数有唯一零点,则下列区间必存在零点的是()
A. B. C. D.
2.有两个互为相反数的零点的函数( )
A.只能是偶函数
B.可以是奇函数
C.可以是增函数
D.可以是减函数
3.(2011 广东广州3月6)若函数没有零点,则实数的取值范围是()
A. B. C. D.
4.设函数是[-1,1]上的增函数,且,则方程
在[-1,1]内( )
A.可能有3个实数根
B.可能有2个实数根
C.有唯一的实数根
D.没有实数根
5.若已知,则下列说法中正确的是( )
A.在上必有且只有一个零点
B.在上必有正奇数个零点
C.在上必有正偶数个零点
D.在上可能有正偶数个零点,也可能有正奇数个零点,还可能没有零点
6.函数在区间内的函数值( )
A.大于等于0
B.小于等于0
C.大于0
D.小于0
7.如图,下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是( )
二、填空题
1.三次方程在下列连续整数____________之间有根.
①-2与-1 ②-1与0 ③0与1 ④1与2 ⑤2与3
2.函数的零点是__________.
三、解答题
1.用二分法求在区间的一个实根(精确到0.01).。

相关文档
最新文档