量子物理基础选择题
大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。
量子力学选择题库(含答案)

量子力学选择题1.能量为100ev 的自由电子的De Broglie 波长是A A. 1.2A 0. B. 1.5A 0. C.2.1A 0. D. 2.5A 0. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 A.1.3A 0. B. 0.9A 0. C. 0.5A 0. D. 1.8A 0. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 A.1.4A 0. B.1.9⨯1012-A 0. C.1.17⨯1012-A 0. D. 2.0A 0.4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的De Broglie 波长是A.8A 0. B. 5.6A 0. C. 10A 0. D. 12.6A 0.5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )AA.E n n = ω.B.E n n =+()12 ω. C.E n n =+()1 ω. D.E n n =2 ω.6.在0k 附近,钠的价电子的能量为3ev ,其De Broglie 波长是 A.5.2A 0. B.7.1A 0. C.8.4A 0. D.9.4A 0.7.钾的脱出功是2ev ,当波长为3500A 0的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25⨯1018-J. B. 1.25⨯1018-J. C. 0.25⨯1016-J. D. 1.25⨯1016-J.8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.2μc . B. 22μc . C. 222μc . D. 22μc .pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性. 10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动,设粒子的状态由ψπ()sinx C xa =描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4a .12. 设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为DA.δ()x .B.δ()x dx .C.δ2()x .D.δ2()x dx .13. 设粒子的波函数为 ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为CA.ψ(,,)x y z dxdydz 2.B.ψ(,,)x y z dx 2. C.dxdydz z y x )),,((2⎰⎰ψ.D.dx dy dz x yz ψ(,)⎰⎰⎰2.14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为DA.c c 112222ψψ+. B. c c 112222ψψ++2*121ψψc c . C.c c 112222ψψ++2*1212ψψc c . D.c c 112222ψψ++c c c c 12121212****ψψψψ+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述是 A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D. A, B, C. 17.已知波函数ψ1=-+u x i Et u x i Et ()exp()()exp(), ψ21122=-+u x i E t u x iE t ()exp()()exp(), ψ312=-+-u x i Et u x iEt ()exp()()exp(), ψ41122=-+-u x i E t u x iE t ()exp()()exp().其中定态波函数是A.ψ2.B.ψ1和ψ2.C.ψ3.D.ψ3和ψ4. 18.若波函数ψ(,)x t 归一化,则A.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都是归一化的波函数.B.ψ(,)exp()x t i θ是归一化的波函数,而ψ(,)exp()x t i -δ不是归一化的波函数.C.ψ(,)exp()x t i θ不是归一化的波函数,而ψ(,)exp()x t i -δ是归一化的波函数.D.ψ(,)exp()x t i θ和ψ(,)exp()x t i -δ都不是归一化的波函数.(其中θδ,为任意实数) 19.波函数ψ1、ψψ21=c (c 为任意常数), A.ψ1与ψψ21=c 描写粒子的状态不同.B.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是1: c .C.ψ1与ψψ21=c 所描写的粒子在空间各点出现的几率的比是2:1c. D.ψ1与ψψ21=c 描写粒子的状态相同.20.波函数ψ(,)(,)exp()x t c p t ipx dp =⎰12π 的傅里叶变换式是CA. c p t x t ipx dx (,)(,)exp()=⎰12π ψ. B. c p t x t i px dx (,)(,)exp()*=⎰12π ψ.C.c p t x t ipx dx (,)(,)exp()=-⎰12πψ.D.c p t x t i px dx (,)(,)exp()*=-⎰12π ψ.21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r t iμ∂∂),,(),,(2121t r r t r r Uψ+ B.∑=ψ∇=ψ21212221),,(2),,(i i t r r t r r tμ∂∂),,(),,(2121t r r t r r Uψ+ C.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t μ∂∂),,(),,(2121t r r t r r U ψ+ D.∑=ψ∇=ψ21212221),,(2),,(i i i t r r t r r t i μ∂∂),,(),,(2121t r r t r r U ψ+ 23.几率流密度矢量的表达式为CA. J =∇ψ-2μ()**ψψ∇ψ.B. J i =∇ψ-2μ()**ψψ∇ψ. C. J i =-∇ψ2μ()**ψ∇ψψ. D. J =-∇ψ2μ()**ψ∇ψψ.24.质量流密度矢量的表达式为CA. J =∇ψ-2()**ψψ∇ψ. B. J i =∇ψ-2()**ψψ∇ψ. C. J i =-∇ψ2()**ψ∇ψψ. D. J =-∇ψ2()**ψ∇ψψ.25. 电流密度矢量的表达式为CA. J q =∇ψ-2μ()**ψψ∇ψ. B. J iq =∇ψ-2μ()**ψψ∇ψ. C. J iq =-∇ψ2μ()**ψ∇ψψ. D. J q =-∇ψ2μ()**ψ∇ψψ.26.下列哪种论述不是定态的特点DA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为D A.πμ22224 n a ,B.πμ22228 n a ,C.πμ222216 n a , D.πμ222232 n a .28. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子的能级为C A.πμ22222 n a , B.πμ22224 n a , C.πμ22228 n a , D.πμ222216 n a .29. 在一维无限深势阱U x x b x b (),/,/=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为AA.πμ22222 n b ,B.πμ2222 n b , C.πμ22224 n b , D.πμ22228 n b .30. 在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0,B.x a =,C.x a =-,D.x a =2.31. 在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于第一激发态,其位置几率分布最大处是A.x a =±/2,B.x a =±,C.x =0,D.4/a x ±=. 32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 33.线性谐振子的能级为CA.(/),(,,,...)n n +=12123 ω. B.(),(,,,....)n n +=1012 ω. C.(/),(,,,...)n n +=12012ω. D.(),(,,,...)n n +=1123 ω. 34.线性谐振子的第一激发态的波函数为ψαα()exp()x N x x=-122122,其位置几率分布最大处为 A.x =0. B.x =±μω. C.x =μω. D.x =±μω.35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的. 36.线性谐振子的能量本征方程是AA.[]-+= 222222212μμωψψd dx x E .B.[]--= 22222212μμωψψd dx x E .C.[] 22222212μμωψψd dx x E -=-.D.[] 222222212μμωψψd dx x E +=-.37.氢原子的能级为DA.- 2222e n s μ.B.-μ22222e n s .C.242n e s μ -. D. -μe n s 4222 .38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为DA.r r R nl )(2. B.22)(r r R nl . C.rdr r R nl )(2. D.dr r r R nl22)(. 39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.),(ϕθlmY . B. 2),(ϕθlm Y . C. Ωd Y lm ),(ϕθ. D. Ωd Y lm 2),(ϕθ. 40.波函数ψ和φ是平方可积函数,则力学量算符 F为厄密算符的定义是C A.ψφτφψτ***F d F d =⎰⎰. B.ψφτφψτ** ( )F d F d =⎰⎰.C.( ) **F d Fd ψφτψφτ=⎰⎰. D.***F d Fd ψφτψφτ=⎰⎰.41. F和 G 是厄密算符,则 A. FG必为厄密算符. B. FG GF -必为厄密算符. C.i FG GF ()+必为厄密算符. D. i FG GF ()-必为厄密算符.42.已知算符 xx =和 pi x x =- ∂∂,则AA. x和 p x 都是厄密算符. B. xp x 必是厄密算符. C. xp p x x x +必是厄密算符. D. xpp x x x -必是厄密算符. 43.自由粒子的运动用平面波描写,则其能量的简并度为 A.1. B. 2. C. 3. D. 4.44.二维自由粒子波函数的归一化常数为(归到δ函数)A.1212/()/π .B.12/()π .C.1232/()/π .D.122/()π45.角动量Z 分量的归一化本征函数为CA.12πϕ exp()im . B.)ex p(21r k i⋅π. C.12πϕexp()im . D.)ex p(21r k i ⋅π.46.波函数)ex p()(cos )1(),(ϕθϕθim P N Y ml lm m lm -=A. 是 L2的本征函数,不是 L z 的本征函数. B.不是 L 2的本征函数,是 L z 的本征函数.C 是 L2、 L z 的共同本征函数. D. 即不是 L 2的本征函数,也不是L z 的本征函数. 47.若不考虑电子的自旋,氢原子能级n=3的简并度为 A. 3. B. 6. C. 9. D. 12. 48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为n 2,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为W r dr R r dr 323222()=,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是 A.a 0. B. 40a . C. 90a . D. 160a . 51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,. B.E E 321232,;,-. C.E E 321232,;,. D.E E 323414,;,. 52.接51题,该体系的角动量的取值及相应几率分别为A.21 ,.B. ,1.C.212,. D.212,.53. 接51题,该体系的角动量Z 分量的取值及相应几率分别为A.01434,;,- . B. 01434,;,. C.01232,;, -. D. 01232,;,-- . 54. 接51题,该体系的角动量Z 分量的平均值为A.14 .B. -14 .C. 34 .D. -34 .55. 接51题,该体系的能量的平均值为A.-μe s 4218 .B.-3128842μe s .C.-2925642μe s . D.-177242μe s. 56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12 k.57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3. 58.接56题, 体系的动量平均值为A.0.B. k .C. - k .D. 12 k.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252 ωω,.C. 3272 ωω,.D. 1252 ωω,.60.接上题,该振子的能量取值E E 13,的几率分别为A.2321,c c . B.232121c c c +,232123c c c +. C.23211c c c +,23213c c c +. D.31,c c .61.接59题,该振子的能量平均值为A.ω232123215321c c c c ++. B. 5 ω. C. 92 ω. D.ω232123217321c c c c ++.62.对易关系[ ,()]pf x x 等于(f x ()为x 的任意函数) A.i f x '().B.i f x ().C.-i f x '(). D.-i f x (). 63. 对易关系[ ,exp()]piy y 等于A.)exp(iy .B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于 A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于A. .B. 0.C. i .D. - . 69. 对易关系[ , ]p p y z 等于A.0.B. i x. C. i p x . D. p x . 70. 对易关系[ ,]L L x z 等于 A.i L y. B.-i L y. C. L y. D.- L y.71. 对易关系[ , ]L L z y等于A.i L x. B. -i L x. C.L x . D. -L x .72. 对易关系[ , ]L L x 2等于 A. L x . B. i L x . C.i L L z y ( )+. D. 0. 73. 对易关系[ , ]L L z 2等于 A. L z . B. i L z . C.i L L x y ( )+. D. 0.74. 对易关系[, ]L px y 等于A.i L z .B. -i L z .C. i p z .D. -i p z . 75. 对易关系[,]p L z x 等于 A.-i py . B.i py . C.-i L y. D.i L y.76. 对易关系[ , ]L p zy 等于A.-i px . B. i p x . C. -i L x. D. i L x. 77.对易式[ , ]L x y 等于A.0.B. -i z. C. i z . D. 1. 78. 对易式[ , ]F F m n 等于(m,n 为任意正整数)A. Fm n+. B. Fm n-. C. 0. D. F. 79.对易式[ , ]F G 等于A. FG. B. GF . C. FG GF -. D. FG GF +. 80. .对易式[,]F c 等于(c 为任意常数)A.cF. B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ]F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆FG k 2224≥. C.( )( )∆∆F G k 2224≥. D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]xp i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ . C. ( )( )∆∆x p x 222≥ . D.( )( )∆∆xp x 2224≥ . 83. 算符L x和 L y 的对易关系为[ , ] L L i L x y z= ,则Lx、 L y 的测不准关系是A.( )( ) ∆∆L L L x y z 22224≥. B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆FG L z 22224≥ . D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s .B. []-∇+= 22222μψψze r E s.C.[]-∇-= 2222μψψze r E s .D.[]-∇-= 22222μψψze r E s .85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222 . B.-μ224222z e n s . C.-μze n s 2222 . D. -μz e n s 24222 .86. 在一维无限深势阱U x x ax x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42aa x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,,D.524222222πμπμ aa ,. 87.接上题,能量可测值E 1、E 3出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接86题,能量的平均值为A.52222πμ a ,B.2222πμ a ,C.72222πμ a ,D.5222πμ a .89.若一算符 F 的逆算符存在,则[ , ]F F -1等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符 F 和 G 满足对易关系[ , ]F G =0, 则A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值. B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]p p f x x x 2等于A.-i p f x x '()2.B. i p f x x '()2 .C.-i p f x x ()2.D. i p f x x ()2.93.定义算符yx L i L L ˆˆˆ±=±, 则[ ,]L L +-等于A.z L ˆ .B.2 L z .C.-2 L z .D.z L ˆ-. 94.接上题, 则[,]L L z +等于A. L +.B. L z .C. -+ L .D. -L z .95. 接93题, 则[ ,]L L z -等于A. L -.B. L z .C. -- L .D. -L z .96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数. 97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数. 98.对易关系式[ ,]FG H 等于A.[ , ] [ , ]F H G F G H +.B. [ , ] F H GC. [ , ]F G H .D. [ , ] [ , ]F H G F G H -.99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'ex p(21)('x p ix Pπψ=,它在动量表象中的表示是A.δ(')p p -.B.δ(')p p +.C.δ()p .D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x . 101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是BA.⎪⎪⎪⎪⎪⎭⎫⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是B A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001. B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D.0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(, L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ∂∂在 Q 表象中的矩阵元的表示是B A.F u x F x i x u x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i x u x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i x u x dx mnn m =⎰()(,)()* ∂∂. D.F u x F x i x u x dxmn m n =⎰()(,)()*∂∂.106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵. B 一个上三角方阵. C.一个下三角方阵. D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂.108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ . B.p p 2222212μμω∂∂-. C.22222212p p ∂∂μωμ -. D.--p p 2222212μμω∂∂.109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i .110.接上题, F 的归一化本征态分别为A.22112211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.B. 1111⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.C. 12111211⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪,.D.22102201⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,. 111.幺正矩阵的定义式为A.S S +-=. B.S S +=*. C.S S =-. D.S S *=-. 112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符()( )/axip=+μωμω212,则对易关系式[ , ]a a +等于 A. [ , ]a a +=0. B. [ , ]a a +=1. C. [ , ]a a +=-1. D.[ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E nnn mn nmm()()()''0200++-∑. B.E H H E E nnn mn nmm()()()'''0200++-∑.C.E H H E E nnn mn mnm()()()'''0200++-∑. D.E H H E E nnn mn mnm()()()''0200++-∑.115. 非简并定态微扰理论中第n 个能级的一级修正项为 A.H mn '. B.H nn '. C.-H nn '. D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为A.H EE mnnmm'()()200-∑. B.''()()H EE mnnmm200-∑. C.''()()H EE mnmnm200-∑. D.H EE mnmnm'()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H EE mnnmmm '()()()000-∑ψ. B.''()()()H E E mn nmm m000-∑ψ.C.''()()()H E E mn mnm m000-∑ψ. D.H EE mnmnm m'()()()000-∑ψ.118.沿x 方向加一均匀外电场ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε.B. H d dx x q x =-++ 2222212μμωε.C. H d dx x q x =-+- 2222212μμωε. D. H d dx x q x =-+- 22222212μμωε.119.非简并定态微扰理论的适用条件是A.H E E mkkm'()()001-<<. B.H E E mk km'()()001+<<. C.H mk '<<1. D.E E km()()001-<<.120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B. ε ⋅+-=D I L H 2ˆˆ2.C. ε⋅-=D I L H 2ˆˆ2. D. ε ⋅--=D I L H 2ˆˆ2.121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nmmm H E E =+-∑()()()()''0000. B.ψψψn n mn nmmm H E E =+-∑()()()()''0000.C.ψψψn n mn mnmm H E E =+-∑()()()()''0000. D.ψψψn n nm mnmm H E E =+-∑()()()()''0000.122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为 A. 五个子能级. B. 四个子能级. C. 三个子能级. D. 两个子能级. 123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.202' )'ex p('1⎰tmk mkdt t i H ω . B.2' )'ex p('⎰tmk mkdt t i H ω.C.22')' ex p(1⎰tmk mkdt t i Hω . D.2' )'ex p(⎰tmk mkdt t i Hω.124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿. B 选取合理的尝试波函数.C 计算体系的哈密顿的平均值.D 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.126. S 为自旋角动量算符,则[ , ]S S y x 等于 A.2i . B.i. C. 0 .D.-i S z.127. σ为Pauli 算符,则[ , ]σσx z 等于A.-i y σ. B.i y σ. C.2i y σ. D.-2i y σ.128.单电子的自旋角动量平方算符 S2的本征值为 A.142 . B.342 . C.322 . D.122 .129.单电子的Pauli 算符平方的本征值为 A. 0. B. 1. C. 2. D. 3. 130.Pauli 算符的三个分量之积等于 A. 0. B. 1. C. i . D. 2i .131.电子自旋角动量的x 分量算符在S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪ 21001.B. S i i x =-⎛⎝ ⎫⎭⎪ 200.C. S x =⎛⎝ ⎫⎭⎪ 20110.D.S x =-⎛⎝ ⎫⎭⎪21001. 132. 电子自旋角动量的y 分量算符在S z 表象中矩阵表示为A. S y =⎛⎝ ⎫⎭⎪ 21001.B. S i y =-⎛⎝ ⎫⎭⎪ 20110.C. S i i i y =-⎛⎝ ⎫⎭⎪ 200.D.S i i y =⎛⎝ ⎫⎭⎪ 200. 133. 电子自旋角动量的z 分量算符在S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪ 21001.B. S z =-⎛⎝ ⎫⎭⎪ 20110.C. S z =-⎛⎝ ⎫⎭⎪ 21001.D.S i z=-⎛⎝ ⎫⎭⎪ 21001. 134. , J J 12是角动量算符, J J J =+12,则[ , ] J J 212等于 A. J 1. B.- J 1. C. 1 . D. 0 . 135.接上题, [ , ] J J z 12等于 A.i J J xy( )11+. B.i J z1. C.Jz1. D. 0.136.接134题, ]ˆ,ˆ[12z J J 等于 A.i J J x y ( )11+. B.i J z1. C.J z 1. D. 0.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C. 22,.D.22,-.138.接上题,测得s z 为 22,-的几率分别是A.a b ,.B.a b 22,. C.a b 2222/,/. D. a a b b a b 222222/(),/()++.139.接137题, s z 的平均值为A. 0.B. )(222b a - . C. )22/()(2222b a b a +- . D. .140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为A. ,-.B. /,2.C. /,/22-.D. ,/-2. 141.接上题,测量s z 的值为 /,/22-的几率分别为 A.3212/,/. B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4. 142.接140题,s z 的平均值为A. /2.B. /4.C.- /4.D.- /2. 143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性. 145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.146. 下列各物体哪个是绝对黑体 (B)(A)不辐射任何光线的物体 (B)不能反射任何光线的物体 (C)不能反射可见光的物体 (D)不辐射可见光的物体147. 金属的光电效应的红限依赖于:(C )(A)入射光的频率 (B)入射光的强度 (C)金属的逸出功 (D)入射光的频率和金属的逸出功148. 关于不确定(测不准)关系有以下几种理解:(1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定(3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:( )(A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) 149. 完全描述微观粒子运动状态的是:( )(A) 薛定谔方程 (B)测不准关系 (C)波函数 (D) 能量 150. 完全描述微观粒子运动状态变化规律的是:( )(A)波函数 (B) 测不准关系 (C) 薛定谔方程 (D) 能级151,卢瑟福粒子实验证实了[ ];斯特恩-盖拉赫实验证实了[ ];康普顿效应证实了[ ];戴维逊-革末实验证实了[ ].(A)光的量子性. (B) 玻尔的能级量子化假设. (C)X 射线的存在. (D)电子的波动性(E)原子的有核模型. (F) 原子的自旋磁矩取向量子化.152. 关于光电效应有下列说法:(1)任何波长的可见光照射到任何金属表面都能产生光电效应;(2)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,释出的光电子的最大初动能也不同;(3)若入射光的频率均大于一给定金属红限,则该金属分别受到不同频率,强度相等的光照射时,单位时间释出的光电子数一定相等;(4)若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍. 其中正确的是:( )(A) (1),(2),(3) (B) (2),(3),(4) (C) (2),(3) (D) (2),(4) 153. 已知氢原子从基态激发到某一定态所需能量为10.19eV,若氢原子从能量为-0.85eV 的状态跃迁到上述定态时,所发射的光子的能量为:( )(A)2.56eV (B)3.41eV (C) 4.25eV (D) 9.95eV 154. 若光子与电子的波长相等,则它们:( )(A)动量及总能量均相等 (B) 动量及总能量均不相等 (C)动量相等,总能量不相等 (D)动量不相等,总能量相等155.量子力学能够正确地描述______的运动规律( ) A.宏观物体 B.微观粒子 C.高速运动 D.低速运动156、下列选项中不属于波函数标准条件的是( ) A 连续性; B 有限性; C 周期性;D 单值性。
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子场论考试题及答案

量子场论考试题及答案一、单项选择题(每题 2 分,共 10 题)1. 量子场论中,场的量子化是将哪个经典理论推广到量子理论?A. 经典力学B. 经典电磁学C. 经典场论D. 相对论答案:C2. 量子场论中,哪个粒子是自旋为1/2的费米子?A. 光子B. 电子C. 胶子D. W和Z玻色子答案:B3. 量子场论中,哪个粒子是自旋为1的矢量玻色子?A. 电子B. 胶子C. W和Z玻色子D. 光子答案:D4. 量子场论中,哪个粒子是自旋为0的标量玻色子?A. 胶子B. Higgs玻色子C. W和Z玻色子D. 光子答案:B5. 量子场论中,哪个粒子是自旋为1的矢量费米子?A. 电子B. 胶子C. 中微子D. 夸克答案:C6. 量子场论中,哪个粒子是自旋为1的标量玻色子?A. 胶子B. Higgs玻色子C. W和Z玻色子D. 光子答案:B7. 量子场论中,哪个粒子是自旋为2的张量玻色子?A. 胶子B. 引力子C. W和Z玻色子D. 光子答案:B8. 量子场论中,哪个粒子是自旋为1的旋量玻色子?A. 胶子B. W和Z玻色子C. 光子D. Higgs玻色子答案:B9. 量子场论中,哪个粒子是自旋为1/2的旋量费米子?A. 胶子B. W和Z玻色子C. 光子D. 夸克答案:D10. 量子场论中,哪个粒子是自旋为1/2的旋量费米子?A. 胶子B. W和Z玻色子C. 光子D. 电子答案:D二、多项选择题(每题 2 分,共 10 题)11. 量子场论中,以下哪些粒子是规范玻色子?A. 光子B. 胶子C. W和Z玻色子D. 引力子答案:ABC12. 量子场论中,以下哪些粒子是费米子?A. 电子B. 胶子C. W和Z玻色子D. 夸克答案:AD13. 量子场论中,以下哪些粒子是标量玻色子?A. 胶子B. Higgs玻色子C. W和Z玻色子D. 光子答案:BD14. 量子场论中,以下哪些粒子是矢量玻色子?A. 电子B. 胶子C. W和Z玻色子D. 光子答案:BCD15. 量子场论中,以下哪些粒子是张量玻色子?A. 胶子B. Higgs玻色子C. W和Z玻色子D. 引力子答案:D16. 量子场论中,以下哪些粒子是旋量玻色子?A. 胶子B. W和Z玻色子C. 光子D. Higgs玻色子答案:B17. 量子场论中,以下哪些粒子是旋量费米子?A. 胶子B. W和Z玻色子C. 光子D. 夸克答案:D18. 量子场论中,以下哪些粒子是自旋为1/2的?A. 电子B. 胶子C. W和Z玻色子D. 夸克答案:AD19. 量子场论中,以下哪些粒子是自旋为1的?A. 电子B. 胶子C. W和Z玻色子D. 光子答案:BCD20. 量子场论中,以下哪些粒子是自旋为0的?A. 胶子B. Higgs玻色子C. W和Z玻色子D. 光子答案:B三、判断题(每题 2 分,共 10 题)21. 量子场论是量子力学和经典场论的结合。
量子物理试题及答案

量子物理试题及答案1. 请解释普朗克常数在量子力学中的作用。
答案:普朗克常数是量子力学中一个基本常数,它标志着能量与频率之间的联系。
在量子力学中,普朗克常数用于描述粒子的能量量子化,即粒子的能量只能以普朗克常数的整数倍进行变化。
2. 描述海森堡不确定性原理。
答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量。
具体来说,粒子的位置不确定性与动量不确定性的乘积至少等于普朗克常数除以2π。
3. 什么是波函数坍缩?答案:波函数坍缩是指在量子力学中,当进行测量时,系统从一个不确定的量子态(波函数描述的状态)转变为一个确定的经典态的过程。
4. 简述薛定谔的猫思想实验。
答案:薛定谔的猫是一个思想实验,用来说明量子力学中的超位置原理。
在这个实验中,一只猫被放置在一个封闭的盒子里,盒子内还有一个装有毒气的瓶子和一个放射性原子。
如果原子衰变,毒气瓶就会打开,猫就会被毒死。
在没有观察之前,猫处于既死又活的超位置状态。
只有当观察者打开盒子时,猫的状态才会坍缩为一个确定的状态。
5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个粒子之间存在一种特殊的关联,使得即使它们相隔很远,一个粒子的状态也会立即影响到另一个粒子的状态。
6. 解释泡利不相容原理。
答案:泡利不相容原理指出,在同一个原子内,两个电子不能具有相同的四个量子数(主量子数、角量子数、磁量子数和自旋量子数)。
这个原理解释了原子的电子排布和元素周期表的结构。
7. 描述量子隧穿效应。
答案:量子隧穿效应是指粒子能够穿越一个在经典物理学中不可能穿越的势垒。
这种现象是由于量子力学中的波函数具有非零的概率在势垒的另一侧存在,即使粒子的能量低于势垒的高度。
8. 什么是量子比特?答案:量子比特,又称为量子位,是量子计算中的基本信息单位。
与经典比特不同,量子比特可以处于0和1的叠加态,这使得量子计算机能够同时处理大量信息。
9. 简述狄拉克方程。
昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
中科院考研量子力学真题
中科院考研量子力学真题量子力学是现代物理学的重要分支,掌握其基本原理和应用是物理学研究的基础。
为了更好地理解和掌握量子力学的知识,我将对中科院考研量子力学真题进行分析和解答。
一、选择题1. 在电子在角动量z分量上的本征值问题中,其量子数m取值范围是:A. m = 0B. m = -1, 0, 1C. m = -1/2, 0, 1/2D. m = -l, -l+1, ..., l-1, l解析:根据角动量量子数的定义,对于给定的角量子数l,m的取值范围是从-l到l的整数。
因此,选项D是正确答案。
2. 下列哪个量不是量子力学的基本物理量?A. 动量B. 势能C. 能量D. 时间解析:量子力学的基本物理量包括动量、位置、角动量、能量和时间。
在这些选项中,只有时间是与经典物理学中的概念相对应的。
因此,选项D是正确答案。
二、填空题1. 一束光照射到金属表面上,当光的频率大于(小于)某个临界频率时,光电效应才会发生。
解析:根据光电效应的规律,只有光的频率大于某个临界频率时,光电子才能从金属表面被释放出来。
因此,答案中应填写“大于”。
2. 根据ABC关系,一个粒子以速度v飞过Y轴上的电磁场,其在Z轴上的磁感应强度为B,则在X轴上的电场强度为E = (v/c)B。
解析:根据ABC关系,当一个粒子以速度v通过电磁场时,其在垂直于速度方向的电场强度为E = (v/c)B。
因此,答案为E = (v/c)B。
三、简答题1. 请简述光电效应的基本原理。
解析:光电效应是指当光照射到金属表面时,如果光的频率大于某个临界频率,光的能量将被金属表面的电子吸收,电子从原子中解离出来形成自由电子。
其基本原理包括两个方面:首先,光的能量以量子的形式存在,被吸收的电子获得能量的大小与光的频率有关,而与光的强度无关;其次,金属中的电子形成了带电粒子,受到光电场的作用,从而在电场中运动。
2. 什么是波粒二象性?请举一例进行说明。
解析:波粒二象性是指微观粒子既表现出波动性,又表现出粒子性的性质。
2024高考物理量子物理学专题练习题及答案
2024高考物理量子物理学专题练习题及答案一、选择题1. 下列说法正确的是:A. 电子云中的电子运动呈连续轨道。
B. 电子在原子核周围的轨道上运动速度是恒定的。
C. 电子在原子核周围的轨道上运动具有不确定性。
D. 电子在原子核周围的轨道上运动具有确定的轨迹。
答案:C2. 根据波粒二象性原理,下列说法正确的是:A. 波动性只存在于光学现象中。
B. 微观粒子既具有波动性又具有粒子性。
C. 微观粒子只具有波动性,不具有粒子性。
D. 微观粒子只具有粒子性,不具有波动性。
答案:B3. 某氢原子的能级为-13.6电子伏特,当电子从第3能级跃迁到第2能级时,所辐射的光子的能量为:A. 10.2电子伏特B. 12.1电子伏特C. 1.89电子伏特D. 2.04电子伏特答案:D二、填空题1. 根据不确定性原理,测量一个粒子的位置和动量越准确,就会越大地影响到它的 _______。
答案:状态2. 量子力学中,电子在原子内的运动状态由 _______ 表示。
答案:波函数3. 量子力学中,电子的能级用 _______ 表示。
答案:量子数三、简答题1. 什么是量子力学?请简述其基本原理。
答:量子力学是描述微观粒子行为的物理理论。
其基本原理包括波粒二象性原理和不确定性原理。
波粒二象性原理指出微观粒子既具有波动性又具有粒子性,可以用波函数来描述其运动状态。
不确定性原理指出无法同时准确地确定粒子的位置和动量,测量一个物理量会对另一个物理量产生不可忽略的影响。
2. 请简述量子力学中的量子力学态和测量问题。
答:量子力学态是用波函数表示的一种描述微观粒子运动状态的数学表示。
波函数包含了粒子的位置信息和概率分布。
在量子力学中,测量问题指的是测量粒子的某个物理量时,由于波粒二象性原理和不确定性原理的存在,测量结果只能是一系列可能的取值,并且每个取值的概率由波函数给出。
四、综合题某物理学家正在研究一个单电子系统,该系统可以用简化的一维势场模型来描述。
量子物理学试题
量子物理学期末考试模拟试卷姓名:_________ 学号:_________ 成绩:_________一.选择题(共11题, 共有30分 )1.碱金属原子形成精细结构光谱的选择定则为 ∆l =±1; ∆j =±01, , 对于氢原子形成精细结构光谱的选择定则与上述选择定则A. 不同;B. 相同;C. ∆l 相同, ∆j 不同;D. ∆l 不同, ∆j 相同。
2.对Cu (Z=29)原子,失去一个K 壳层电子的原子能量比失去一个价电子的原子能量差不多大多少倍?A. 100,000;B. 100;C. 1000;D. 10,000。
3.用电压V 加速的高速电子与金属靶碰撞而产生X 射线,若电子的电量为 - e ,光速为c ,普朗克常量为h ,则所产生的X 射线的短波限为:A. hc2/eV ;B. eV/2hc ;C. hc/eV ;D. 2hc/eV 。
4.由状态2p3p 3P 到2s2p 3P 的辐射跃迁:A. 可产生9条谱线;B. 可产生7条谱线;C. 可产生6条谱线;D. 不能发生。
5.下列粒子中不服从泡利不相容原理的是:A. 质子;B. 光子;C. 中子;D. 电子。
6.在外磁场中的原子,若外磁场B 可视为弱磁场,则:A. μL 和μS 先耦合成μ再与B 耦合;B. 由于B 弱使μL 与μS 不能耦合成μ;C. 由于B 弱,所以磁场对原子的作用总可忽略;D. μL 与μS 分别同B 耦合,而后形成总附加能。
7.判断处在弱磁场中的下列原子态分裂的子能级数哪个是正确的?A. 4D3/2分裂为2个;B. 1P1分裂为3个;C. 2F5/2分裂为7个;D. 1D2分裂为4个。
9.碱金属原子的能级与氢原子的相比较:A. 相同n,碱金属的能级略高,随着n和l值的增加,两者差别减少;B. 相同n,碱金属的能级略低,随着n和l值的增加,两者差别增加;C. 相同n,碱金属的能级略低,随着n和l值的增加,两者差别减少;D. 在不考虑精细结构时,两者能级基本上重叠。
量子力学试题含答案
量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。
这种相互转化的现象称为________。
答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。
答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。
答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。
答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。
这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。
实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。
当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。
同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。
b) 请解释量子力学中的不确定性原理及其意义。
答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。
不确定性原理的意义在于限制了我们对微观世界的认知。
它告诉我们,粒子的位置和动量无法同时被精确地确定。
这是由于测量过程中的不可避免的干扰和相互关联性导致的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子物理基础选择题
1. 用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1 >E K 2,那么
(A) ν1一定大于ν2. (B) ν1一定小于ν2.
(C) ν1一定等于ν2. (D) ν1可能大于也可能小于ν2. [ ]
2. 用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则
(A) ν1 >ν2. (B) ν1 <ν2.
(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ ]
3. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是
(A) 5350 Å. (B) 5000 Å.
(C) 4350 Å. (D) 3550
Å. [ ]
4. 一定频率的单色光照射在某种金属上,测
出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是:
[ ]
5. 关于光电效应有下列说法:
(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;
(2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同;
(3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率、强度相等的光照射时,单位时间释出的光电子数一定相等;
(4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍.
其中正确的是
(A) (1),(2),(3).
(B) (2),(3),(4).
(C) (2),(3).
(D) (2),(4). [ ]
6. 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E 0和飞到阳极的电子的最大动能E K 的变化分别是
(A) E 0增大,E K 增大. (B) E 0不变,E K 变小.
(C) E 0增大,E K 不变. (D) E 0不变,E K 不变. [ ]
7. 用强度为I ,波长为λ 的X 射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X 射线波长分别为λLi 和λFe (λLi ,λFe >λ),它们对应的强度分别
为I Li和I Fe,则
(A) λLi>λFe,I Li< I Fe(B) λLi=λFe,I Li = I Fe
(C) λLi=λFe,I Li.>I Fe(D) λLi<λFe,I Li.>I Fe[]
8. 康普顿效应的主要特点是
(A) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.
(B) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.
(C) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.
(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.[]
9. 用X射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中
(A) 只包含有与入射光波长相同的成分.
(B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.
(C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.
(D) 只包含着波长变长的成分,其波长的变化只与散射物质有关与散射方向无关.[]
10. 要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是
(A) 1.5 eV.(B) 3.4 eV.
(C) 10.2 eV.(D) 13.6 eV.[]
11. 由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:
(A) 一种波长的光.(B) 两种波长的光.
(C) 三种波长的光.(D) 连续光谱.[]
12. 根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为
(A) 1/4.(B) 1/8.
(C) 1/16.(D) 1/32.[]
13. 按照玻尔理论,电子绕核作圆周运动时,电子的动量矩L的可能值为
(A) 任意值.(B) nh,n = 1,2,3,…
(C) 2π nh,n = 1,2,3,…(D) nh/(2π),n = 1,2,3,…
[]
14. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?
(A) 1.51 eV.(B) 1.89 eV.
(C) 2.16 eV.(D) 2.40 eV.[]
15. 已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85
eV 的状态跃迁到上述定态时,所发射的光子的能量为
(A) 2.56 eV . (B) 3.41 eV .
(C) 4.25 eV . (D) 9.95 eV . [ ]
16. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是
(A) )2/(eRB h . (B) )/(eRB h .
(C) )2/(1eRBh . (D) )/(1eRBh . [ ]
17. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4 Å ,则U 约为
(A) 150 V . (B) 330 V .
(C) 630 V . (D) 940 V . [ ]
(普朗克常量h =6.63×10-34 J ·s)
18. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的
(A) 动量相同. (B) 能量相同.
(C) 速度相同. (D) 动能相同. [ ]
19. 不确定关系式 ≥⋅∆∆x p x 表示在x 方向上
(A) 粒子位置不能准确确定.
(B) 粒子动量不能准确确定.
(C) 粒子位置和动量都不能准确确定.
(D) 粒子位置和动量不能同时准确确定. [ ]
20. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子
动量的精确度最高的波函数是哪个图?
[ ]
21. 关于不确定关系 ≥∆∆x p x ()2/(π=h ,有以下几种理解:
(1) 粒子的动量不可能确定.
(2) 粒子的坐标不可能确定.
(3) 粒子的动量和坐标不可能同时准确地确定.
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.
其中正确的是:
(A) (1),(2). (B) (2),(4).
(C) (3),(4). (D) (4),(1). [ ]
22. 直接证实了电子自旋存在的最早的实验之一是
(A) 康普顿实验. (B) 卢瑟福实验.
(C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ ] x (A)
x (B)x (C)x (D)
23. 下列各组量子数中,哪一组可以描述原子中电子的状态?
(A) n = 2,l = 2,m l = 0,2
1=
s m . (B) n = 3,l = 1,m l =-1,2
1-=s m . (C) n = 1,l = 2,m l = 1,2
1=s m . (D) n = 1,l = 0,m l = 1,21-=s m . [ ]
24. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为
(A) (3,0,1,21-
). (B) (1,1,1,2
1-). (C) (2,1,2,21). (D) (3,2,0,21). [ ]
25. 氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为
(A) (2,2,1,2
1-
). (B) (2,0,0,21). (C) (2,1,-1,21-). (D) (2,0,1,21). [ ]
26. 在氢原子的L 壳层中,电子可能具有的量子数(n ,l ,m l ,m s )是
(A) (1,0,0,2
1-
). (B) (2,1,-1,21). (C) (2,0,1,21-). (D) (3,1,-1,21-). [ ]。