传热膜系数测定实验
实验四传热系数测定实验

实验四 传热系数测定实验1.实验目的(1)观察水蒸汽在水平管外壁上的冷凝现象;(2)测定空气-水蒸汽在套管换热器中的总传热系数;(3)测定空气在圆形直管内强制对流时的传热膜系数及其与雷诺数Re 的关系。
2.基本原理在套管换热器中,环隙通以水蒸汽,内管管内通以空气,水蒸汽冷凝放热以加热空气,在传热过程达到稳定后,有如下热量衡算关系式(忽略热损失):()()mW i i m i i p t t S t S K t t C V Q -=∆=-=αρ12由此可得总传热系数mi P i t S t t C V K ∆-=)(12ρ空气在管内的对流传热系数(传热膜系数) m w i P i t t S t t C V )()(12--=ρα上式中 Q :传热速率,w ;V :空气体积流量(以进口状态计),m 3/s ; ρ: 空气密度(以进口状态计),kg/m 3; C P :空气平均比热,J/(kg ·℃);K i :以内管内表面积计的总传热系数,W/(m 2·℃); αi : 空气对内管内壁的对流传热系数,W/(m 2·℃); t 1、t 2 :空气进、出口温度,℃; S i :内管内壁传热面积,m 2;Δt m :水蒸气与空气间的对数平均温度差,℃;2121ln)()(t T t T t T t T t m -----=∆ T :蒸汽温度(取进、出口温度相同),℃。
(t w -t )m :空气与内管内壁间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- t w1、t w2 :内管内壁上进、出口温度,℃。
当内管材料导热性能很好,且管壁很薄时,可认为内管内外壁温度相同,即测得的外壁温度视为内壁温度。
流体在圆形直管内作强制湍流(流体流动的雷诺数Re >10000)时,对流传热系数αi与雷诺数Re 的关系可近似写成 ni A Re =α式中A 和n 为常数。
化工原理传热膜系数测定实验报告

化工原理传热膜系数测定实验报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 32 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
气体强制对流传热膜系数的测定

大时,管壁温度将发生什么变化?为什么?
3.管内空气流动速度对传热膜系数有何影响?
当空气流量增大时,空气离开热交换器时的 温度将升高还是降低?为什么?
4.如果采用不同压强的蒸汽进行实验,对
式的关联有没有影响?
⒌ 测取数据前,为什么要排不凝性气体?如
果输水器操作不良,会导致什么后果?
特别是小流量时尤是如此。
t进——进口温度(℃)
——传热量
⑷ 计算不同流速下的总传热系数K值。
⒌ 测取数据前,为什么要排不凝性气体?如果输水器操作不良,会导致什么后果?
四、 操作要点
㈠. 在实验开始前,必须熟悉整个实验流程,掌握热 电偶测温原理及使用方法。 ㈡. 实验开始时,先通空气。再通加热蒸汽。并打 开放气咀12,待空气排净后再关小,但在整个实验 过程中,它始终微开(以冒少量蒸汽为宜),以便 不凝性气体能连续排除。
温度计作为监测热电偶用,以便及时发现热电偶断 ⑶ 将实验得到的半经验准数关联式和公认式进行比较。
式中: ——传热膜系数
C’——空气流量系数(C’=0.
线或短路等可能出现的故障。 式中: ——传热膜系数
◆试验中改变空气的流量以改变准数 的值。 ◆温度由铜—康铜热电偶测量,通过与之相接的XMZ数字温度显示仪,显示测量的温度值。
则 Nu ARm ePrn
2、本试验中,可用图解法和最小二乘法计算准数
关联式中的指数m、n和系数A 。
◆用图解法对多变量方程进行关联时,可取n=0.4,
这样就简化成单变量方程。两边取对数,得到直线
方程:
lgPNr0u.4 lgAmlgRe
◆在双对数座标系中作图,找出直线斜率,即为方
化工原理 传热膜系数测定实验报告材料

北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 2013011132 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。
其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=0.4)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。
最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。
关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。
三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。
当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
传热膜系数测定实验报告北京化工大学化工原理实验

传热膜系数测定摘要:选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。
确定了在相应条件下冷流体对流传热膜系数的关联式。
此实验方法可以测出蒸汽冷凝膜系数和管对流传热系数。
本实验采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。
实验还通过在管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。
一、 实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
二、基本原理对流传热的核心问题是求算传热膜系数 ,当流体无相变时对流传热准数关联式的一般形式为:p n m Gr A Nu ⋅⋅⋅=Pr Re (1)对于强制湍流而言,Gr 准数可以忽略,故n m A Nu Pr Re ⋅⋅= (2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。
用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。
本实验可简化上式,即取n =0.4(流体被加热)。
这样,上式即变为单变量方程,在两边取对数,即得到直线方程: Re lg lg Pr lg 4.0m A Nu += (3)在双对数坐标中作图,找出直线斜率,即为方程的指数m 。
在直线上任取一点的函数值代入方程中,则可得到系数A ,即: m Nu A Re Pr 4.0⋅=(4)用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结果。
实验四强制对流下空气传热膜系数测定

实验四 强制对流下空气传热膜系数的测定实验一、实验目的1. 了解间壁式传热装置的研究和给热系数测定的实验组织方法;2. 掌握借助于热电偶测量壁温的方法;3. 学会给热系数测定的试验数据处理方法;4. 了解影响给热系数的因素和强化传热的途径。
二、实验内容1、测定5—6组不同流速下,套管换热器的总传热系数K 和空气的对流传热系数αc 。
2、对αc 的实验数据进行多元线形回归,求准数关联式Nu=ARe m Pr n中常数A ,m 。
三、基本原理(简述)1、传热系数K 的理论研究在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热。
这种传热过程系冷、热流体通过固体壁面进行热量交换。
它是由热流体对固体壁面的对流给热,固体壁面的热传导和固体对冷流体的对流给热三个传热过程所组成。
如图1所示。
Q=()t T KA - (1)而对流给热所传递的热量,对于冷、热流体均可表示为Q 1=()1w h h t T A -α (2) 或 Q 2=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为:图1传热过程示意图 图2传热解析图Q 3()21w w mt t A -⋅=δλ (4) 由热量平衡及忽略热损失后(即Q=Q 1=Q 2=Q 3),可将(2)(3)(4)式写成如下等式:Q=KAtT A t t A t t A t T c c w m w w h h w 1112211-=-=-=-αλδα (5) 所以 cc m h h A A A K αλδα111++=(6)()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7)从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。
根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略K ≈()21,ααf (8)要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。
传热系数测定实验
实验四传热系数测定实验
1.实验目的
(1)观察水蒸汽在水平管外壁上的冷凝现象;
(2)测定空气-水蒸汽在套管换热器中的总传热系数;
(3)测定空气在圆形直管内强制对流时的传热膜系数及其与雷诺数Re的关系。
2.基本原理
在套管换热器中,环隙通以水蒸汽,内管管内通以空气,水蒸汽冷凝放热以加热空气,在传热过程达到稳定后,有如下热量衡算关系式(忽略热损失):
由此可得总传热系数
空气在管内的对流传热系数(传热膜系数)
上式中 Q:传热速率,w;
V:空气体积流量(以进口状态计),m3/s;
ρ:空气密度(以进口状态计),kg/m3;。
传热膜系数的测定报告1
传热膜系数的测定报告1长江大学化工原理实验报告实验名称:班级:姓名:同组人员:指导老师:实验日期:传热膜系数的测定应化11002班李明杰李强、李双华、李俊尧吴洪特20XX年5月12日1目录一、实验目的及任务 ................................................ ................. 3 二、基本原理 ................................................ .............................. 3 1.套管式传热膜系数的测定 .................................................3 2.管内强化传热系数的测定 .................................................4 三、实验装置与流程 ................................................ .................5 实验装置 ................................................ ...... 5 流程说明 ................................................ ...................... 5 四、实验步骤 ................................................ .............................. 5 五、实验数据记录与处理 ................................................ ......... 6 普通传热 ................................................ ................................ 7 普通传热:以第三组为例 ................................................ .... 8 强化传热:以第四组为例 ................................................ .... 9 六、注意事项 ................................................ .............................. 9 七、实验结果分析与讨论 ................................................ ......... 9 八、思考题 .................................................................................. 9 九、附录 ................................................ (10)2传热膜系数的测定一、实验目的及任务Ⅰ.通过掌握传热膜系数的测定方法,并分析影响的因素。
传热膜系数测定实验报告要点
传热膜系数测定实验报告要点北京化工大学化工原理实验报告实验名称:对流给热系数测定实验班级:姓名:学号:序号:同组人:设备型号:对流给热系数测定实验设备-第X套实验日期:对流给热系数测定实验——XXX 一、摘要选用牛顿冷却定律作为对流传热实验的测试原理,通过建立水蒸汽—空气传热系统,分别对普通管换热器和强化管换热器进行了对流传热实验研究。
确定了在相应条件下冷流体对流传热膜系数的关联式。
此实验方法可测出蒸汽冷凝膜系数和管内对流传热系数。
本实验采用风机、孔板流量计、蒸汽发生器等装置,空气走内管、蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A和指数m,得到了半经验关联式。
实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A和m。
二、实验目的1、掌握传热膜系数α及传热系数K的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A和指数m、n的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三、实验原理热量的传递方式有传导、对流、辐射三种。
流体流经固体表面的传热包含壁面薄层的热传导和主体的热对流,总称为对流给热。
计算对流给热过程的热量Q和热流密度q等,通常需先确定给热系数α。
本实验以间壁式换热器中最简单的套管换热器为研究对象,令壳程走热水蒸汽,管程强制逆流走冷空气,跟据牛顿冷却定律可以测得圆管内空气一侧的给热系数α1。
进一步可以将无因次准数Nu,Re,Pr等按经验形式联系起来,并回归其中的参数A,a。
根据已知A,a的通用关联式确定给热系数,也可达到一定的精度要求,是当前工程上确定α的重要方法。
牛顿冷却定律:Q???A??tm =?1?A1?(tw,1?t1)?(tw,2?t2)tw,1?t1lntw,2?t2式中:α——内表面给热系数,[W/(m2·℃)];Q——传热量,[W];A——总传热面积[m22];Δtm——管壁温度与管内流体温度的对数平均温差,[℃];t1——进口温度,[℃];对流给热系数测定实验——XXX t2——出口温度,[℃];tw,1——壁温,[℃];tw,2——壁温,[℃]。
蒸汽空气对流传热传热系数的测定(可编辑)
蒸汽空气对流传热传热系数的测定实验三蒸汽—空气对流传热传热系数的测定实验目的 1.测定套管式换热器的总传热系数 K; 2.测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流时的实验数据整理成包括传热膜系数α的准数方程式; 3.了解并掌握热电偶和电位差计的使用及其温度测量。
实验原理由量纲分析法可知,空气在园形直管中强制对流被加热时的传热膜系数符合下列关联式:式中 A 与 n 为待定系数与指数.本实验通过调节空气的流量,测得对应的传热膜系数,然后,将实验数据整理为 Re 与 Nu 等特征数,再将所得的一系列Nu~Re 数据,通过双对数坐标作图或回归分析法求Pr0.4.得待定系数 A 和指数n,进而得到传热膜系数α与 Re 的经验公式。
测定传热膜系数实验装置实验步骤 1.实验前的准备,检查工作。
1 向电加热釜加水至液位计上端红线处。
2 检查空气流量旁路调节阀是否全开。
3 检查蒸气管支路各控制阀是否已打开,保证蒸汽和空气管线的畅通。
4 电源是否完好。
2.实验开始―人工实验操作。
1 合上电源总开关。
2 打开加热电源开关,设定加热电压不得大于200V ,直至有水蒸气冒出,在整个实验过程中始终保持换热器出口处有水蒸气。
3 启动风机并用放空阀来调节流量。
在一定的流量下稳定 5~10 分钟后分别测量空气的流量、空气进出口的温度。
温度由显示仪显示,切换开关:1-光滑管空气入口温度;2-光滑管空气出口温度;3-粗糙管空气入口温度;4-粗糙管空气出口温度;5-加热器内温度。
换热器内管壁面的温度由双路显示仪(上面光滑管壁面热电势;下面粗糙管壁面热电势)测得。
然后改变流量,稳定后分别测量空气的流量、进出口的温度及壁面温度,再继续实验。
4 实验结束后,依次关闭加热电源、风机和总电源。
注意事项 1 实验前将加热器内的水加到指定的位置,防止电热器干烧损坏电器。
2 计算机数据采集和过程控制实验时,应严格按照计算机使用规程操作计算机,采集数据和控制实验时要注意观察实验现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北 京 化 工 大 学 化 工 原 理 实 验 报 告
实验名称: 传热膜系数测定实验 班 级: 化 工 姓 名: 学 号: 同 组 人: 实验日期: 2014年12月17日 实验报告 实验名称:传热膜系数测定实验 实验日期:2014年12月17日 班 级: 学生姓名: 同 组 人: 学 号:
一、实验摘要 选用牛顿冷却定律作为对流传热实验的测试原理,通过建立水蒸汽—空气传热系统,分别对普通管换热器和强化管换热器进行了对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可测出蒸汽冷凝膜系数和管内对流传热系数。本实验采用由风机、孔板流量计、蒸汽发生器等装置,空气走内管、蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A和指数m(n取0.4),得到了半经验关联式。 关键词:强制对流、传热膜系数、关联式 二、实验目的 ①掌握传热膜系数α及传热系数K的测定方法; ②通过实验掌握确定传热膜系数准数关系式中的系数A和指数m、n的方法; ③通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。 三、实验原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关系式的一般形式为 pnmrreuGPARN ①
对于强制湍流而言,Gr数可忽略,即 nmreuPARN ②
本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m、n和系数A。 用图解法对多变量方程进行关联时,要对不同的变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,式②即变为单变量方程,在两边取对数,得到直线方程为 emlglgrulg4.0RAPN ③
在双对数坐标中作图,求出直线斜率,即为方程的指数m。在直线上任取一点函数值代入方程中,则可得到系数A,即 m4.0eruRP
NA ④
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳结果。应用计算机辅助手段,对对变量方程进行一次回归,就能同时得到A、m、n。 对于方程的关联,首先要有Nu、Re、Pr的数据组。其特征数定义式分别为
duCprdu
eNPR,,
实验中改变空气的流量,以改变Re值。根据定性温度(空气进、出口温度的算术平均值)计算对应的Pr值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu值。 牛顿冷却定律为
mtAQ ⑤
式中 α-----传热膜系数,℃mW2; Q-----传热量,W; A-----总传热面积,2m;
mt---管壁温度与管内流体温度的对数平均温差,℃。
传热量可由下式求得 3600t-tc3600t-tc12ps12pVWQ ⑥
式中 W-----质量流量,hkg; pc----流体的必定压热容,℃kgJ;
21tt,----流体进、出口温度,℃;
-----定性温度下的流体密度,3mkg;
sV-----流体体积流量,hm3。
空气的体积流量由孔板流量计测得,其流量sV与孔板流量计压降p的关系为 54.0sp2.26V ⑦
式中 p-----孔板流量计压降,kPa; sV------空气流量,hm3。
四、实验装置和流程 本实验空气走内管,蒸汽走环隙(玻璃管)。内管为黄铜管,内径为0.020m,有效长度为1.25m。空气进、出口温度和管壁温度分别由铂电阻(Pt100)和热电偶测得。测量空气进出口温度的铂电阻应置于进出管的中心。测得管壁温度用一支铂电阻和一支热电偶分别固定在管外壁两端。孔板流量计的压差由压差传感器测得。 实验使用的蒸汽发生器由不锈钢材料制成,装有玻璃液位计,加热功率为1.5kw。风机采用XGB型漩涡气泵,最大压力17.50kpa,最大流量100m3/h。 2、采集系统说明 (1)压力传感器 本实验装置采用ASCOM5320型压力传感器,其测量范围为0~20kpa。 (2)显示仪表 在实验中所有温度和压差等参数均可由人工智能仪表直接读取,并实现数据的在线采集与控制,测量点分别为:孔板压降、进出口温度和两个壁温。 3、流程说明 本实验装置流程如下图所示,冷空气由风机输送,经孔板流量计计量后,进入换热器内管(铜管),并与套管环隙中的水蒸气换热,空气被加热后,排入大气。空气的流量由空气流量调节阀调节。蒸汽由蒸汽发生器上升进入套管环隙,与内管中冷空气换热后冷凝,再由回流管返回蒸汽发生器,用于消除端效应。铜管两端用塑料管与管路相连,用于消除热效应。
图-1. 套管式换热实验装置和流程 1、风机; 2、孔板流量计; 3、空气流量调节阀; 4、空气入口测温点; 5、空气出口测温点; 6、水蒸气入口壁温; 7、水蒸气出口壁温; 8、不凝气体放空阀; 9、冷凝水回流管; 10、蒸气发生器; 11、补水漏斗; 12、补水阀; 13、排水阀 五、实验操作要点 1、实验开始前,先弄清配电箱上各按钮与设备的对应关系,以便正确开启按钮。 2、检查蒸汽发生器中的水位,使其保持在水罐高度的1/2~2/3。 3、打开总电源开关(红色按钮熄灭,绿色按钮亮,以下同)。 4、实验开始时,关闭蒸汽发生器补水阀,启动风机,并接通蒸汽发生器的加热电源,打开放气阀。 5、将空气流量控制在某一值。待仪表数值稳定后,记录数据,改变空气流量(8~10次),重复实验,记录数据。 6、实验结束后,先停蒸汽发生器电源,再停风机,清理现场。 注意: a、实验前,务必使蒸汽发生器液位合适,液位过高,则水会溢入蒸汽套管;过低,则可能烧毁加热器。 b、调节空气流量时,要做到心中有数,为保证湍流状态,孔板压差读数不应从0开始,最低不小于0.1kpa。实验中要合理取点,以保证数据点均匀。 c、切记每改变一个流量后,应等到读数稳定后再测取数据。 六、实验数据及处理 本实验内管内径为0.020m,有效长度为1.25m。 原始数据:
序号 空气进口温度 ℃/t1 空气出口温度 ℃/t2 壁温 ℃/1T 壁温 ℃/2T 孔板压降 kPa/p
1 31.00 60.20 99.90 99.70 3.85 2 35.80 64.20 100.10 100.00 3.40 3 37.20 65.50 100.20 100.00 3.00 4 37.20 66.10 100.20 100.10 2.63 5 36.50 66.30 100.20 100.10 2.21 6 35.70 66.40 100.20 100.20 1.81 7 34.80 66.60 100.10 100.30 1.40 8 33.90 67.10 100.10 100.40 1.00 9 32.90 68.00 100.20 100.40 0.61 10 32.70 70.40 100.10 100.60 0.20 查表得物性数据: 序号 定性温度 ℃t 密度 3mkg 粘度μ/ saP 热导率λ/ ℃mW 比定压热容 ℃/cpkgJ
1 45.60 1.163 1.94E-05 0.0279 1003 2 50.00 1.145 1.96E-05 0.0282 1003 3 51.35 1.140 1.96E-05 0.0283 1003 4 51.65 1.140 1.97E-05 0.0284 1003 5 51.40 1.142 1.96E-05 0.0283 1003 6 51.05 1.145 1.96E-05 0.0283 1003 7 50.70 1.149 1.96E-05 0.0283 1003 8 50.50 1.152 1.96E-05 0.0283 1003 9 50.45 1.156 1.96E-05 0.0283 1003 10 51.55 1.156 1.97E-05 0.0284 1003 数据处理得:
序号 对数平均温度 ℃/tm 空气流量 hmV3/s 传热量 WQ/ 传热膜系数 ℃m/2W Nu Pr Re Nu/Pr^0.4 1 52.97 54.26 513.26 123.64 88.64 0.697 57612 102.43 2 48.73 50.73 459.59 120.25 85.18 0.696 52480 98.49 3 47.45 47.42 426.12 114.59 80.87 0.695 48672 93.53 4 47.08 44.16 405.29 109.76 77.40 0.695 45300 89.51 5 47.24 40.20 381.30 102.90 72.61 0.695 41355 83.97 6 47.51 36.10 353.57 94.81 66.96 0.695 37255 77.44 7 47.64 31.42 319.74 85.34 60.34 0.695 32552 69.77 8 47.69 26.20 279.16 74.38 52.62 0.695 27236 60.84 9 47.61 20.06 226.73 60.56 42.84 0.695 20926 49.54 10 46.00 10.99 133.45 36.80 25.95 0.695 11436 30.02 以第一组数据为例,计算如下:
定性温度:℃60.45℃220.6000.312ttt21
对数平均温度:℃97.52℃20.60-90.9900.31-90.99ln00.31-20.60t-tt-tlnt-tt2w1w12m
空气流量:hmhmV3354.054.026.5485.32.26p2.26s