解题研究
分类讨论思想在高中数学解题中的应用研究

分类讨论思想在高中数学解题中的应用研究
思想在高中数学解题中的应用研究涉及到分类讨论的方法,这是解决复杂问题时常用
的一种策略。
分类讨论的方法在高中数学解题中有着广泛的应用,可以使问题的求解更加
简洁明了,提高解题效率。
分类讨论是将问题所涉及的对象按一定的特征进行分类,然后对每一类进行具体的分
析和处理。
在数学解题中,分类讨论可以根据题目中所给的条件和要求,将待求解的问题
进行合理的分类,然后对每一类情况进行分别讨论。
一种常见的分类讨论方法是针对数的正负性进行分类讨论。
例如在解一元二次方程时,可以根据判别式的正负值将问题分为三种情况:当判别式大于零时,方程有两个不相等的
实数根;当判别式等于零时,方程有两个相等的实数根;当判别式小于零时,方程没有实
数根。
通过这种分类讨论的方法,可以很快得到方程的解。
另一种常见的分类讨论方法是针对不同情况下的特殊性进行分类。
例如在几何图形的
证明中,可以将图形分为三角形、四边形等不同类型,然后对每一种情况分别进行证明。
通过分类讨论的方法,可以将复杂的证明问题简化为若干个相对简单的情况,更容易找到
解决问题的方法和路径。
在数学解题中,分类讨论的方法可以使问题的求解更加系统和有条理。
通过将问题进
行分类,我们可以更好地理清思路,找到问题的关键之处,从而加快解题速度。
分类讨论
的方法还可以培养学生的逻辑思维能力和分析问题的能力,提高他们解决问题的能力和自
主学习能力。
几何解题研究的方法与思考——以一道中考试题为例

几何解题研究的方法与思考——以一道中考试题为例胡坚波收稿日期:2020-09-23作者简介:胡坚波(1981—),男,中学一级教师,主要从事初中数学课堂教学研究.摘要:解题教学是必不可少的一种课堂教学形式,教师解题研究的能力直接影响到学生对问题理解的深度.教师只有掌握了解题研究的一般方法,才能在课堂中引导学生抓住问题的本质,从而优化解法,并进一步带领学生发现问题、提出问题、解决问题,进而得到一般性的结论,最终提高学生的解题能力、培养学生的数学学科核心素养.文章以2020年中考浙江杭州卷第14题的研究为例,谈谈几何解题研究的一般方法.关键词:中考试题;解题研究;一般方法中考试题的命制往往有其意义,一道看似不起眼的试题,其中很可能蕴含着丰富的内容.如果继续探究下去,或许就能发现试题背后隐藏的深意,从而体现解题的育人价值.本文以2020年中考浙江杭州卷第14题为例,谈谈应该怎样进行几何解题的研究.题目(2020年浙江·杭州卷)如图1,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC.若sin ∠BAC =13,则tan ∠BOC 的值为.COAB图1作为填空题的第4道题,试题本身不难,主要考查了三角函数的相关知识.不妨设BC =1,则AC =3.解得AB =22,OB =2.则tan ∠BOC作为填空题,此题的求解到这里就结束了,但是作为解题研究,现在才刚刚开始.一、获得研究对象研究图形要抓住图形的本质,为了更容易抓住本质,几何研究要做减法,即去掉非关键因素.此题中,可以隐去圆,那么题目条件等价于“如图2,∠ABM =90°,点C 在射线BM 上,O 是AB 的中点”.观察图形的结构,不难发现,若点C 的位置确定了,则整个图形的形状就随之确定,即∠BOC ,∠BAC ,∠ACO ,∠BCO 的度数也随之确定.原试题就是在确定的条件下进行的定量研究,而研究图形变化过程中的规律性也是几何研究的常见问题.在图2中,当点C 的位置变化时,∠BOC ,∠BAC ,∠ACO ,∠BCO 的大小也随之改变.当点C 从点B 向射线BM 的方向移动时,容易发现∠BOC 和∠BAC 的度数变大,∠OCB 的度数变小,但无法很快确定∠ACO 的变化情况.接下来,我们进一步探究∠ACO 的变化情况.CO ABM 图2··56二、借助技术获得初步猜想几何问题的研究一般要经历画图、测量、计算、猜想、证明的过程.几何画板软件为我们画图、测量、计算提供了很好的辅助.利用几何画板软件对复杂的问题进行初步研究、获得猜想,是常见的研究起点.利用几何画板软件,发现当点C 从点B 向射线BM 的方向移动时,∠ACO 的度数先变大后变小,且∠ACO 取到的最大值约为19.47°(如图3).进一步计算,发现此时sin ∠ACO ≈0.33.∠OCA =19.47°∠CAO =35.58°sin∠OCA =0.33M ABCO图3猜想:如图3,当∠ABM =90°,点O 是AB 的中点时,射线BM 上存在点C ,使得∠ACO 取到最大值,此时sin ∠ACO =13.三、从“数”的角度验证猜想通过利用几何画板软件进行探究,发现点C 的位置决定了∠ACO 的大小,而点C 的位置可以用BC 的长度来刻画,所以继续探究的思路是用BC 的长度表示sin ∠ACO.为了研究方便,不妨设AB =2,BC =x ,根据勾股定理,得OC 2=1+x 2,AC 2=4+x 2.因为S △ACO =12AC ·OC ·sin ∠ACO =12AO ·BC ,所以sin ∠ACO =x x 4+5x 2+4=14因为x 2+4x 2≥4,所以当x 2=4x 2,即x =2时,x 2+4x 2的最小值为4.所以得到sin ∠ACO ≤13,即当BC =2时,sin ∠ACO 取最大值13,猜想得证.四、从“形”的角度验证猜想前面我们从“数”的角度验证了猜想,接下来我们从“形”的角度来思考.抓住变化过程中不变的关系是研究几何问题的常用方法.进一步观察图形,我们发现当点C 的位置发生改变时,∠ACO 所对的边AO 的长度始终没有发生变化.即角度在变,角度所对的边不变.这让我们联想到了圆中同弦所对的角.构造过A ,C ,O 三点的⊙D.如图4,若⊙D 与射线BM 相交,设另一个交点为点E.在线段CE 上任意取一点F (除点C ,E 外),连接AF ,OF ,根据圆内角大于同弧所对的圆周角,可得∠AFO >∠ACO.故可知此时∠ACO 的度数并没有取得最大值.图4图5如图5,若⊙D 与射线BM 相切于点C ,在射线BM 上任意取一点G (除点C 外),连接AG ,OG ,根据圆外角小于同弧所对的圆周角,可得∠AGO <∠ACO.故此时∠ACO 取到最大值,于是得到第一个有价值的结论.结论1:∠ACO 取到最大值的充要条件是过A ,C ,O 三点的⊙D 与射线BM 相切.接下来,求此时∠ACO 的正弦值及BC 的长.可以沿用前面的解题思路,分别求出线段AO ,OC ,AC ,BC 的长度,再利用△ACO 的面积求解.解法1:如图6,连接DC ,AD ,作DH ⊥AO.H O ABCDM图6不妨设AO =BO =1,则AH =OH =12,BH =32.因为⊙D 与射线BM 相切于点C ,所以DC ⊥BC.因为∠B =90°.··57所以四边形BCDH为矩形.所以AD=DC=BH=32.在Rt△ADH中,由勾股定理,得DH=2.所以BC=DH=2.由勾股定理,得OC=3,AC=6.由S△ACO=12AC·OC·sin∠ACO=12AO·BC,代入解得sin∠ACO=13.显然,求解过程还是有些复杂,不妨进一步思考,此图形还有什么特殊性可以应用?从圆的视角看,⊙D与射线BM相切,∠ACO为圆周角,解法豁然开朗.解法2:利用圆周角定理,可以转化到圆心角进行求解,可得∠ADH=∠ACO.所以sin∠ACO=sin∠ADH=AHAD=13.利用圆幂定理,可得BC2=BO·BA.解得BC=2.解法2抓住了问题的本质,解法也更优化、更简洁.“数”和“形”两种思考方法都能验证猜想,可见这也是我们解决几何问题的一般思路.对比两种思路,从“数”的角度思考,往往需要设未知变量,再利用勾股定理、相似、面积关系、三角函数等,列出未知变量与所求量之间的关系,然后用代数的方法求解;从“形”的角度思考,往往需要根据图形的结构,抓住图形中不变的关系,构建出几何模型,再根据图形性质求解.用“数”的方法容易想到,但计算较复杂;用“形”的方法比较直观,计算也相对简单,但是要弄清楚几何模型结构有一定的难度,需要的知识综合度高,也需要一定的逻辑推理.数形结合的思想方法在教学中有其育人价值,在解题教学中我们应让学生经历基本的活动经验,这样才能培养学生必需的基本数学思想.五、追本溯源其实,本问题在数学史中已经存在,称为“米勒问题”.德国数学家米勒于1471年提出“塑像问题”:有一个高a米的塑像立在一个高b米的底座上,一个人朝它走去(人的高度忽略不计),问此人应站在离塑像底座多远的地方,才能使塑像看上去最大(即视角最大)?根据题意画出图形,如图7,AO为雕像,BO为底座,点C表示人,求∠ACO最大时,BC的长.ABO图7这与我们研究的问题非常相似,只是点O的位置不再是中点,这为我们进一步研究问题提供了思路,即可以改变图形的条件,使之更具一般性,进而获得一般性的结论,这是我们进一步研究几何问题的方向.六、改变条件进一步探究1.改变点O的位置受“米勒问题”的启发,我们可以改变点O的位置,使之一般化,为了研究的连贯性,不妨设AB=2,AO=n(0<n<2),这样点O在线段AB上就具有一般性了,本质上与“米勒问题”是等价的.因为结论1与点O在线段AB上的位置无关,所以结论1仍成立.如图8,当⊙D与射线BM相切于点C时,∠ACO取得最大值.此时,易得AH=n2,DC=BH=2-n2.所以AD=DC= 2-n2,sin∠ACO=sin∠ADH=AH AD=n4-n.根据圆幂定理,得BC=BO·BA=4-2n.显然当n=1,即点O是AB的中点时,sin∠ACO的最大值为13,此时BC=2.但是这只是其中的一种特殊情况,于是得到第二个有价值的结论.HOA BCDM图8··58结论2:如图8,设∠ABM =90°,AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则在射线BM 上存在点C ,使得∠ACO 取到最大值,且此时sin∠ACO =n 4-n,BC =4-2n.2.改变∠ABM 的大小此题条件里动点C 所在的射线BM 与AB 垂直,显然条件中的位置比较特殊.若从这个角度改变条件,当射线BM 与AB 不垂直,即∠ABM ≠90°时,相当于“米勒问题”中的雕像及底座与地面不垂直时,那么结论2是否仍成立?因为∠ABM ≠90°,所以四边形DCBH 不再是矩形,即DC ≠BH.求半径的解法相应会有所改变,猜想sin ∠ACO 的值与∠ABM 的度数有关.因为结论1与∠ABM 的大小无关,所以结论1仍然成立.∠ACO 取到最大值时,过A ,C ,O 三点的⊙D 与射线BM 相切,故圆幂定理仍然适用,所以BC =BO ·BA =4-2n.所以可得第三个有意义的结论.结论3:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin ∠ACO 的值与∠ABM 的度数无关.接下来,求sin ∠ACO.因为∠ABM 有锐角和钝角两种情况,所以要分两种情形分类进行研究.情形1:如图9,当0°<α<90°时,⊙D 与射线BM相切于点C.根据前面的猜想sin ∠ACO 会与α有关,为了将α用上,所以考虑作垂线构造直角三角形.作DH ⊥AO 于点H ,BE ⊥AB 交DC 的延长线于点E ,作DF ⊥BE 于点F.M O AB CD EF GH图9易证∠CBE =∠EDF =90°-α,DF =BH =2-n 2.所以DE =DF cos ()90°-α=4-n 2sin α,CE =BC ·tan ()90°-α=4-2n ·tan ()90°-α,AD =DC =DE -CE =4-n 2sin α-4-2n ·tan ()90°-αsin∠ACO =sin∠ADH =AH AD =n sin α4-n -24-2n cos α.情形2:如图10,当90°<α<180°时,⊙D 与射线BM 相切于点C.同样作DH ⊥AO 于点H ,作BE ⊥AB 交DC 于点E ,作DF ⊥BE 交BE 的延长线于点F.H A B CDOEF M图10易证∠CBE =∠EDF =α-90°,DF =BH =2-n 2.所以DE =DF cos ()α-90°=4-n 2sin α,CE =BC ·tan ()α-90°=4-2n ·tan ()α-90°,AD =DC =DE +CE =4-n 2sin α+4-2n ·tan()α-90°sin∠ACO =sin∠ADH =AH AD 发现两种情形最后结果的表达式是一致的,而把α=90°代入,得sin∠ACO =n 4-n.与之前的计算结果一致,可见角度在变,结果的表达式不变,得到了变化过程中不变关系的本质,于是得到了问题的一般性结论.结论4:设∠ABM =α(0°<α<180°),AB =2,点O 是线段AB 上一点,AO =n (0<n <2),则射线BM 上存在点C ,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =3.当射线BM 改为直线BM 时,相当于“米勒问题”中人可以站到雕像的背面进行观察.如图11,当点C 在直线BM 上移动时,由前面的研究可知,当点C 在射线BM 1和BM 2上时,分别有一个点C 1和点C 2,使得∠AC 1O 和∠AC 2O 在各自的射线上取到最大值,那么∠AC 1O 和∠AC 2O 哪个更大一些呢?显然,当BM ⊥AB 时,BC 1=··59BC 2,由对称性可知∠AC 1O =∠AC 2O.当BM 与AB 不垂直时,不妨设∠ABC 1=α(0°<α<90°),则∠ABC 2=180°-α.根据结论4,可以得到sin ∠AC 1O =sin ∠AC 2O =因为0<cos α<1,所以sin ∠AC 1O >sin ∠AC 2O.所以∠AC 1O >∠AC 2O.得到结论5.M 2OAB MC 1C 2M 1图11结论5:如图11,当点C 在直线BM 上时,设AB =2,点O 是线段AB 上一点,AO =n (0<n <2),如果直线BM 与线段AB 所成的较小的夹角为∠ABM 1(0°<∠ABM 1≤90°),则点C 一定在射线BM 1上,使得∠ACO 取到最大值,且此时BC =4-2n ,sin∠ACO =七、解后思考回顾整个研究过程,通过图形的变化将一个确定的图形变为不确定的图形,从而获得研究对象.而对于变化中规律的研究,入手比较难,这时信息技术为化解难点提供了帮助.借助几何画板软件,不仅能方便地展示图形变化的过程,而且可以通过教师有意识地控制帮助学生观察影响变化的要素及其关系,从而获得初步的猜想.接着,从“数”和“形”两个角度验证了该猜想,进一步体会到几何问题在“数”和“形”上的统一,体会到数形结合思想在解题中的重要作用.在引出“米勒问题”后,通过进一步改变条件——点的位置变化、角度的大小变化、射线变为直线等,发现了在条件变化过程中不变的结论.通过这样的解题教学研究可以让学生进一步体会到研究几何问题的一般方法——从简单到复杂,从特殊到一般.整个研究过程,具备学习素材的真实性,问题的开放性,学习过程的探索性,学习手段的操作性,探索过程的动态化、可视化,学习体验的形象化、可表达,学习结果的创造性.这些都有利于在今后的学习中,提高学生发现问题和解决问题的能力,进而实现几何解题教学的育人价值.参考文献:[1]王红权.“高考真题分析”习题课的教学实践与思考[J ].中小学数学(高中版),2015(4):20-23.[2]章建跃.研究三角形的数学思维方式[J ].数学通报,2019,58(4):1-10.··60。
初中生数学解题能力的现状调查及培养研究

初中生数学解题能力的现状调查及培养研究初中生数学解题能力的现状调查及培养研究引言:数学作为一门学科,不仅在学习过程中具有独特的地位,而且在学科发展中占有重要的地位。
数学解题能力的强弱直接关系着学生的学习成绩和未来发展。
然而,近年来,初中生的数学解题能力明显下降的现象引起了广泛的关注。
本研究将通过对初中生数学解题能力现状的调查,分析其原因,并针对性地提出培养初中生数学解题能力的策略和方法。
一、现状调查:1. 调查目的:本次调查旨在深入了解当前初中生数学解题能力的现状,为后续的培养研究提供依据。
2. 调查方法:采用问卷调查和实际观察相结合的方法进行,以全市范围内的10所不同类型初中的200名学生为调查对象。
3. 调查内容:(1)学生在解题过程中遇到的困难;(2)学生在数学考试中的表现;(3)学生对数学学习的态度。
二、现状分析:1. 学生遇到的困难:大多数学生在解题中存在以下方面的困难:(1)对数学题目的理解能力较差;(2)计算能力不足;(3)缺乏问题分析和解决问题的能力;(4)不善于应用数学知识解决实际问题。
2. 在数学考试中的表现:调查结果显示,近一半的学生在数学考试中无法得到满意的分数。
很多学生对公式的掌握不够熟练,无法正确运用。
同时,一些学生在解题过程中容易出现粗心、抄错题目和计算错误等问题。
3. 学生对数学学习的态度:多数学生对数学学习持消极态度,抱有"数学难学"的观念。
他们往往认为数学是一门枯燥无味的学科,缺乏兴趣和动力去学习。
三、培养策略和方法:1. 强化基础知识的学习:数学解题是建立在扎实的基础知识上的,因此,要培养学生的数学解题能力,首先要加强基础知识的学习和巩固。
教师应根据学生的实际情况,有针对性地进行基础知识的复习和教学。
2. 提高解题能力的训练:除了掌握基础知识外,学生还需要进行解题能力的训练。
教师可以通过引导学生运用已学知识解决实际问题、提供不同题目难度的训练等方式,培养学生的问题解决能力和逻辑思维能力。
中学数学解题研究论文 完

对部分中高考题分析及做题感悟——《中学数学解题研究论文》姓名:***专业:数学与应用数学(师范)学号:**************中高考题分析【中考篇】我们都知道,中考可谓是人生的第一个转折点,中考更是初中数学的指挥棒,研究分析中考试题对数学有着重要的指导意义。
研究最近几年的中考数学试题,把握中考命题的方向和脉搏对落实新课程标准,有效的组织数学课的教学和初三的备考复习,同样也有着重要的指导意义。
我对中考题的命题特点进行简单的分析,不难发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
理论联系实际,关注人与自然、社会协调发展的现代意识,关注社会生活,大胆创新,密切联系最新的科技成果和社会热点。
结合大连、沈阳的五套中考题,有以下几个突出的特点:1、典型题。
即选题典型,难易程度,做到初步递进;2、针对性。
即选题精炼,能帮助学生走出题海,减轻学习负担,提高复习效率;3、新动性。
从多方面培养学生的能力与数学素养。
通过对比观察知道,在每年的第一类解答题中,必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、概率统计等;在每年的第二类解答题中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点;在每年的第三类解答题中,则是中考稳中求变的突破口,将基础性、应用性、实践性、开放性、探究性融入其中。
但总体来说,还是有规律可以捕捉的,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近几年来保留的压轴题。
从知识点上看,在命题方向上,近几年没有太多的起伏;从内容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数、相似三角形、三角函数的联系等,二次函数综合题仍是多数省市压轴题的首选内容,圆的内容也有所侧重,并且考试内容与考查方式的结合新颖。
高中数学数列试题的解题方法研究

高中数学数列试题的解题方法研究1. 引言1.1 研究背景数目、格式要求等等。
数列作为数学中重要的概念之一,是高中数学的基础知识之一。
数列在数学中有着广泛的应用,不仅在数学理论证明中发挥着重要作用,也在各种实际问题中有着广泛的应用价值。
掌握数列的概念和性质,以及熟练掌握解题方法是高中数学学习中必不可少的一部分。
本文将从数列的概念和性质入手,分析数列的常见试题类型,介绍数列的解题方法,并通过具体案例分析进一步讨论数列试题解题方法的实际应用和对数学学习的启示。
希望本文能够对高中数学数列试题的解题方法进行深入探讨,为提高学生的数学学习能力提供一定的帮助和指导。
1.2 研究目的研究目的是系统总结和探讨高中数学数列试题的解题方法,旨在帮助学生更好地理解和掌握数列的相关知识,提高他们的数学解题能力。
通过深入分析数列的概念和性质,探讨数列常见试题类型及解题方法,特别是数列的通项公式、递推公式和特殊性质的运用,旨在帮助学生建立正确的解题思维和方法,提高他们的数学分析和推理能力。
结合数列试题解题方法的实际应用,指导学生在实际问题中灵活运用数列知识,培养他们的数学建模和问题求解能力。
通过本研究,希望能够帮助学生在数学学习中更好地理解和应用数列知识,提高他们的数学学习兴趣和自信心,为他们未来的学习和发展打下坚实的数学基础。
2. 正文2.1 数列的概念和性质数太少了,应该继续扩展内容等等。
数列是数学中一个重要的概念,它是按照规律排列的一组数的集合。
数列中的每一个数称为这个数列的项,数列可以用一个通项公式或递推公式来表示。
数列的性质包括有界性、单调性和收敛性等。
数列的有界性是指数列的所有项都满足某一上界或下界。
比如一个数列{1,2,3,4,5,…}就是一个无上界的数列,但它是有下界的。
数列的单调性是指数列中的每一项都满足递增或递减的规律。
比如一个等差数列{1,3,5,7,9,…}就是一个递增的数列。
数列的收敛性是指数列中的项随着项数增加,靠近一个常数。
数学解题研究教案模板范文

一、教学目标1. 知识与技能:(1)使学生掌握数学解题的基本方法与技巧;(2)提高学生分析问题、解决问题的能力;(3)培养学生良好的数学思维习惯。
2. 过程与方法:(1)通过小组合作、讨论、探究等方式,培养学生的团队协作精神;(2)引导学生运用数学知识解决实际问题,提高学生的实践能力。
3. 情感态度与价值观:(1)激发学生对数学学习的兴趣,培养良好的学习态度;(2)培养学生克服困难、勇于挑战的精神。
二、教学重难点1. 教学重点:(1)数学解题的基本方法与技巧;(2)分析问题、解决问题的能力。
2. 教学难点:(1)在复杂问题中提取关键信息,构建解题思路;(2)运用多种方法解决实际问题。
三、教学准备1. 教师准备:(1)教材;(2)多媒体课件;(3)实际问题案例。
2. 学生准备:(1)预习教材相关内容;(2)准备实际问题案例。
四、教学过程1. 导入(1)教师简要介绍数学解题的重要性;(2)引导学生回顾已学过的数学解题方法。
2. 新授课程(1)教师讲解数学解题的基本方法与技巧,如:分析法、综合法、归纳法、演绎法等;(2)通过实例分析,让学生了解这些方法在实际问题中的应用;(3)引导学生进行小组讨论,总结解题过程中的关键步骤。
3. 实践环节(1)教师给出实际问题案例,让学生运用所学方法进行解答;(2)学生分组讨论,分享解题思路和过程;(3)教师点评学生的解题方法,总结解题技巧。
4. 总结与反思(1)教师引导学生总结本节课所学内容;(2)学生反思自己在解题过程中的优点与不足,提出改进措施。
5. 布置作业(1)布置与教学内容相关的课后练习题;(2)要求学生独立完成,并提交作业。
五、教学评价1. 课堂表现:观察学生在课堂上的参与度、合作精神等;2. 作业完成情况:检查学生作业的正确率、解题思路的清晰度等;3. 定期进行测试,了解学生对数学解题方法与技巧的掌握程度。
六、教学反思1. 教师在教学过程中,应关注学生的个体差异,因材施教;2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和表达能力;3. 定期进行教学反思,不断改进教学方法,提高教学质量。
分类讨论思想在高中数学解题中的应用研究
分类讨论思想在高中数学解题中的应用研究分类讨论思想是一种在高中数学解题中十分常见的思维方式,它能够帮助学生更加系统、全面、深入地分析问题,从而得出更加准确、严谨的解答。
一、分类讨论思想的概念及特点分类讨论指的是将问题分成若干个独立的情况,并对每种情况进行分析,最终得出全面、深入的结论的思维方式。
分类讨论思想的特点是:有目的性、有系统性、有针对性、有全面性、有严谨性。
此外,分类讨论还要注意分类的互斥性和完备性。
1. 函数解析式的确定。
对于一些比较复杂的函数,可以采用分类讨论的思想来确定它的解析式。
例如,已知函数f(x)如下:$$f(x)=\begin{cases}x^2+1,&x\geqslant 0\\2x+1,&x<0\\\end{cases}$$我们可以发现,这个函数在x=0处存在“分界点”,如果使用同一种方法求解,就会产生问题。
因此,我们可以采用分类讨论的思想,将问题分为x≥0和x<0两种情况,对每种情况分别求解。
2. 组合数学问题。
组合数学中很多问题也可以使用分类讨论的思想进行求解。
例如,假设有n个格子要涂黑,但是其中的一些格子不能被涂黑。
我们可以考虑将格子分成两类:可以涂黑和不能涂黑的。
然后,对于可以涂黑的格子,我们可以使用组合数学的知识求解涂黑的方法数;对于不能涂黑的格子,我们可以先对它们进行计数,再将它们从总数中减去,得出最终的结果。
3. 几何问题。
几何问题中也常常需要使用分类讨论的思想。
例如,对于一个梯形,如果我们要计算它的面积,需要先确定底边长和高,这就需要对梯形进行分类讨论。
具体来说,我们可以将梯形分成上底和下底相等和上底和下底不相等两种情况,分别求解它们的面积,最终将两者相加即可得到梯形的面积。
三、分类讨论思想的教学策略针对分类讨论思想的教学,我们可以采用以下几种策略:1. 举例法。
在讲解分类讨论思想时,可以通过举一些对应的数学问题进行解析,让学生通过对具体问题的分析,加深对分类讨论思想的理解。
高中数学解题方法研究策略
高中数学解题方法研究策略高中数学是一门重要的学科,学生在学习过程中常常遇到各种各样的问题和难题。
为了解决这些问题,提高学习效果,研究并掌握一定的解题方法和策略是非常重要的。
以下是高中数学解题的一些常见方法和策略的研究。
1. 确定问题类型:在开始解题前,首先要明确题目的类型和要求,这有助于清楚思路和制定相应的解题策略。
根据问题类型的不同,可以选择合适的解题方法,如代数法、几何法、数列法等。
2. 弄清关键概念:解题过程中经常会涉及一些关键概念,需要事先弄清其含义和性质。
三角函数、导数、积分等概念在解析几何和微积分中应用广泛,正确理解它们的含义和性质对于解题至关重要。
3. 多角度思考:解题过程中,可以从不同角度入手,多样化思维方式。
在解决几何问题时,可以同时考虑尝试不同的角度、用不同的定理和方法,找到最简单和最有效的解题路径。
4. 善于归纳总结:在解题过程中,及时总结归纳已经解决的问题,提炼出规律和方法。
这样可以让解题的过程更加顺利,遇到类似问题时可以迅速找到解题思路。
5. 多练习、多实践:数学学科需要大量的练习和实践,解决大量的问题才能熟练地掌握解题方法和策略。
在解题的过程中,可以借鉴教材、习题册、参考书等各种资源,通过大量的练习来提高解题的能力。
6. 善用辅助工具:在解题过程中,可以使用一些辅助工具来辅助解题,提高效率和准确度。
利用计算机编程软件可以辅助计算,利用图形计算器可以辅助绘制图形等。
7. 增加数学素质:在学习数学的过程中,要加强对数学基础知识的掌握,提高数学素质。
只有具备扎实的基础知识和全面的数学素质,才能更好地解决复杂的数学问题。
8. 独立思考与合作探讨:在解题的过程中,既要保持独立思考,寻找解题的方法和策略,又要善于与他人探讨,互相借鉴和启发。
合作探讨不仅能够拓宽思路,还可以加深对问题的理解。
9. 及时反思与纠正错误:在解题过程中,经常会遇到错误和困惑,要及时反思错误的原因,找到问题所在并及时纠正。
中学数学解题研究
第二,用某种指定的代数运算(这就是所谓的“叠加”)把一 些特殊情形组合起来,从而获得一般情形的解。
波利亚通过对各种典型问题的细致剖析,提炼出四个常用的解题 模式——可供仿照的楷模.
Ⅰ.双轨迹模式 (1)把问题归结为要确定一个“点”. (2)把条件分成两部分,使得对每一部分,未知点都形成一个 “轨迹”.这两个“轨迹”的交集,就是我们要求的“点”.
波利亚解题过程的四个阶段:
1. 弄清问题——认识、并对问题进行表征的过程 ,
是成功解决问题的一个必要前提
2. 拟订计划——是探索解题思路的发现过程,是关
键环节和核心内容。
3. 实现计划——是思路打通之后具体实施信息资源
的逻辑配置,“我们所需要的只是耐心”
4. 回顾——是最容易被忽视的阶段,波利亚对其作。 为解题的必要环节而固定下来,是一个有远见的做法 .
世大学的会议致词中说过:“每个大学 波利亚(1887.12.13-
生、每个学者、特别是每个教师都应该
1985.9.7)
读这本引人入胜的书”(1952年2月2
日).
数学解题教学
没有一道题可以解决得十全十美,总存在值 得我们探究的地方。 ——[美]G. 波利亚
我国数学解题研究的代表人物和代表作
戴再平
数学解题方法与数学方法数学解题方法与数学教学数学解题方法与数学思维数学解题方法与数学解题策略数学解题方法与数学思路数学解题方法与数学方法原理数学解题方法与数学学科结构数学解题方法与数学概念数学解题方法与数学操作数学解题方法与一般科学方法数学通用解题方法与实现解题技巧数学基本解题方法与数学通用解法第十五讲数学解题基本方法一公理化与数学结构型方法1分析法2综合法3归纳法4演绎法5类比法6对称方法7构造法8面积法体积法例题
小学数学解题研究课程教学论文
小学数学解题研究课程教学论文【摘要】对于小学数学中的竞赛题目的处理一方面要立足于数学思想方法的应用,用近现代数学思想方法来统领问题解决. 另一方面,我们也应该对问题进行仔细观察. 观察分析问题是寻求解题方案的关键所在,理性地观察题目的状态和结构,选准问题的突破口,对于提高解题的有效性和准确性尤为重要. 教师在解题教学中,不仅要传授给学生常用的数学思想和解题方法,更要重视培养学生的观察能力,以达到提高解题能力的目标.【关键词】小学数学;解题研究引言“小学数学解题研究”是专科数学师范类专业的一门必修课程,其教学目的培养学生将来从事小学数学解题和竞赛指导的能力,对提高学生从事小学数学教师职业所必备的综合素质与专业化水平等方面具有其他课程所不能替代的重要作用. 主要是探讨小学数学习题和竞赛题目的类型、结构、解法、编制方法,使学生在数学思想方法上得到启发,在数学解题方法上得到训练,进一步提高学生的数学素养和素质,为将来从事小学数学的教学工作打下坚实的基础.尽管学生对小学数学常用的解题方法和基本题型有所了解,能够解答常见题型,但遇到竞赛性质的题目或较新颖的实际问题,解题起来仍然存在很多困难,从笔者对高师学生上课给出的反馈结果来看,第一种情况是遇到问题盲目试探和无从下手. 而给出解答,他们又觉得方法很简单. 第二种情况是我讲解一类型题目后,学生不能举一反三,甚至还不能举一反一. 这里就有一个值得研究的问题:问题和已知方法、知识如何有效衔接?合理地观察分析问题显然起着至关重要的作用. 有关解题方法的书籍很多都给出了观察分析问题的思路或角度,但是针对具体问题,到底选择哪个角度作观察?如果一一尝试,耗时费力,效率太低,甚至会干扰解题. 因此,笔者在教学中十分注意引导学生理性地观察、分析问题,探索有效的解题方案.1. 观察分析问题的状态和本质,联想相关知识和类似方法理解题意不能只停留在将条件翻译为数学式子、作图等表面工作上,而必须在此基础上进一步观察题目条件对应的数、式,寻找与熟悉知识相关的各种联系和特征. 较好地把握题目的整体状态、结构和本质,从而正确地联系相关知识和方法,找到有效的解题方案.例1 六时整,时钟的分针与时针在一条直线上,问至少经过多少分钟,两针重合?分析将钟面圆等分为12等份,每一份看作一个行程单位,则本例可以与追击问题相类比:“甲、乙两人同时相向而行. 甲在乙前面6个单位的路程,甲每小时行1个单位的路程,乙每小时行12个单位的路程. 如果同时出发,要经过多少时间乙才能追上甲?”可以列式如下:6 ÷(12 - 1)= ■(时).2. 观察分析问题的特殊性,寻求解题方案的突破当题目条件较多或较复杂时,不分主次地一一做仔细分析不仅耗时太长,而且可能会干扰学生寻找正确的解题途径. 如何理性而有效地选准观察目标,快捷地找到解题突破口?从题目中较特殊、较突出的条件着眼观察,效果往往很好. 从有关定理中挖掘出一些隐含信息,因此,从这个能挖掘出隐含信息的条件入手,寻找解题的突破口.例2 500名同学站成一排,从左到右“1、2、3”报数,凡报到1和2的离队,报3的留下,向左看齐后,再重复同样的报数过程,如此进行了若干次后,只剩下两名同学了. 这两名同学在开始的队伍中,位于从左到右的第几个?分析第一次报数,3 × 1,3 × 2,3 × 3,…,3 × 166;第一次报数,9 × 1,9 × 2,9 × 3,…,9 × 166;第一次报数,27 × 1,27 × 2,27 × 3,…,27 × 166;……解:第一次报数:500 ÷ 3 = 166……2,留下166人;第一次报数:166 ÷3 = 55……1,留下55人;第一次报数:55 ÷ 3 = 18……1,留下18人;第一次报数:18 ÷ 3 = 6,留下6人;第一次报数:6 ÷ 3 = 2,留下2人.所以,最后留下的两名同学的编号是3 × 3 × 3 × 3 × 3 × 1 = 243和3 × 3 × 3 × 3 × 3 ×2 = 486.3. 观察分析问题是寻求解题方案的关键所在理性地观察题目的状态和结构,选准问题的突破口,对于提高解题的有效性和准确性尤为重要. 教师在解题教学中,不仅要传授给学生常用的数学思想和解题方法,更要重视培养学生的观察能力,以达到提高解题能力的目标.例3 (一)一个大正方形由9个同样的小正方形拼成. 一条直线穿过它们,最多可以穿过多少正方形?如果是16、25个呢?能否找出规律?(二)一个大正方体由27个同样的小正方形紧密地搭成. 一条直线穿过这几个大正方形体,这条直线最多可以穿过多少个小正方体?如果是64呢,能否找出规律?解(一)(1)我们先从最简单的开始,如果只有一个正方形,一条直线要穿过它,由观察可知,它要穿过两条边,这是显见的.(2)如果是由4个正方形组成的图形(见下图1),我们可以采用将大正方形“打散”成很靠近的四个独立正方形. 这样,一条直线穿过原先的大正方形最多穿过的边有最外面的边——2条,里面的边共有2 + 2 = 4条边. 因此共有6条边被穿过,按照(1)的讨论,即可得出最多可穿过6 ÷ 2 = 3个正方形.(3)如果是9个正方形组成的图形,可采用类似的办法将其“打散”成很靠近的9个独立的正方形. 这样总共有2 + 2 × 2 + 2 × 2 = 10条边被穿过,因此最多有5个正方形被穿过.(4)很明显如果是16个正方形,则有2 + 2 × 3 + 2 × 3 = 14条边被穿过,也即有7个正方形被穿过. 如果是n2个正方形,则有2 + 2(n - 1)+ 2(n - 1)= 4n + 2条边被穿过,最多有2n + 1个正方形被穿过.(二)对于立方体的处理,可类似如平面图形的处理办法. 只是将上述解法中的线改成面. 同样,一条线要穿过一个正方体最少需穿过正方体的两个面,因此对于8个小正方体组成的立方体“打散”后共有2 + 2 + 2 + 2 = 8个面被穿过,也即最多有4个正方体被穿过. 如果是27个正方体则最多有(2 + 2 × 2 + 2 × 2 + 2 × 2)÷ 2 = 7个被穿过,如果是64的话,有10个. 如果是n2个正方体的话最多有[2 + 2(n - 1)+ 2(n - 1)+ 2(n - 1)] = 3n - 2个正方体被穿过.4. 观察分析问题,通过先特殊后一般的方法,来寻求解题方案的突破通过观察题目的结构,采取先简单后复杂、先特殊后一般的办法来寻求问题的解决,对于提高解题的有效性和准确性尤为重要. 教师在解题教学中,不仅要传授给学生思想方法和常用解题方法,更要重视培养学生的分析问题的能力,以达到“授之以渔”的目标.例4 如图,一个居民小区纵横各有6条街道. 某人要从西北方向前往东南方向,走的方向只能向东或向南,一共有多少种走法?分析如果一开始就直接进行解决,可能由于图形的复杂,容易造成计算的混乱,最终导致解题的失败. 而我们如果从最简单开始,逐步推进,问题便可解决. 我们分析顺序可从最简单的“口”字型(1 × 1型)(见图一)开始,到“日”字型(1 × 2型)(见图二)、“目”字型(1 × 3型)(见图三)、“田”字型(2 × 2型)(见图四)等,问题得以解决.解对于“口”字型(1 × 1型),显然有2种走法;对于“日”字型(1 × 2型),有3种走法;对于“目”字型(1 × 3型),也易得有4种走法;同理,对于1 × 4型的有5种走法.图一图二图三图四有了这些做基础,我们可以对复杂图形进行计算. 如“田”字型(2 × 2型)可分解为两个“日”字型,所以有6种走法;2 × 3型(见图五),可以分解为1 × 3型与2 × 2型,因此有10种走法.3 × 3型可分解为两个2 × 3型,所以有20种走法. 以此推算,4 × 4型可以分解为两个3 × 4型. 而每一个3 × 4型可以分解为3 × 3型和2 × 4型,同理2 × 4型可分解为1 × 4型和2 × 3型,所以4 × 4型有2 ×(20 + 10 + 5)= 70种走法. 对于题中5 × 5型,可分解为两个4 × 5型. 以下部分解略.图五通过这道题可以看出,小学竞赛题看似难,实际上如果我们抓住了题目的“牛鼻子”,也就能化难为易.总之,对于小学数学中的竞赛题目的处理一方面要立足于数学思想方法的应用,用近现代数学思想方法来统领问题解决. 另一方面,我们也应该对问题进行仔细观察. 观察分析问题是寻求解题方案的关键所在,理性地观察题目的状态和结构,选准问题的突破口,对于提高解题的有效性和准确性尤为重要. 教师在解题教学中,不仅要传授给学生常用的数学思想和解题方法,更要重视培养学生的观察能力,以达到提高解题能力的目标.【参考文献】[1]G·波利亚.怎样解题数学思维的新方法[M].涂私,冯承,译.上海:上海科技教育出版社.[2]金城梁.小学数学竞赛指导[M].北京:人民教育出版社,2011.[3]罗增儒.数学解题的辩证思维[J].数学教学研究,2012(6):65-68.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题研究(835)
试题:元素周期表是学习和研究化学的重要工具.A、B、C为周期表1﹣18号中的
元素,在周期表中的位置如图所示.已知A的核电荷数为8,三种元素的核电荷数之和为
34.
(1)B的名称为 氟 ;
(2)C的单质化学式为 Cl2 ;
(3)用H2A2制取A2的化学方程式为 2H2O22H2O+O2↑ .
考点: 物质的鉴别、推断;元素周期表的特点及其应用;化学式的书写及意义;书写化学方程式、文字表
达式、电离方程式.
专题: 元素推断题.
分析: 由题意,A、B、C为周期表1﹣18号中的元素,已知A的核电荷数为8,B与A相邻,则B的核
电荷数为9;三种元素的核电荷数之和为34,则C的核电荷数为34﹣9﹣8=17;据此进行分析解答.
解答: 解:(1)A、B、C为周期表1﹣18号中的元素,已知A的核电荷数为8,B与A相邻,则B的核
电荷数为9,B为氟元素.
(2)三种元素的核电荷数之和为34,则C的核电荷数为34﹣9﹣8=17,为氯元素,形成的单质为
氯气,其化学式为:Cl2.
(3)A的核电荷数为8,为氧元素,H2A2为过氧化氢,过氧化氢在二氧化锰的催化作用下生成水
和氧气,反应的化学方程式为:2H2O22H2O+O2↑.
故答案为:(1)氟;(2)Cl2;(3)2H2O22H2O+O2↑.
点评: 本题难度不大,掌握常见元素的核电荷数、化学式与化学方程式的书写方法是正确解答本题的关键.