太原市(全市)制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数3年数据洞察报告2019版

太原市(全市)制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数3年数据洞察报告2019版
太原市(全市)制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数3年数据洞察报告2019版

太原市(全市)制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数3年数据洞

察报告2019版

序言

太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数数据洞察报告旨在运用严谨的数据分析,对太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数进行剖析和阐述。

太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数数据洞察报告同时围绕关键指标即制造业年末城镇单位就业人数,电力、热力、燃气及水生产和供应业年末城镇单位就业人数等,对太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数进行了全面深入的分析和

总结。本报告知识产权为发布方即我公司天津旷维所有,其他方引用我方报告均需注明出处。

本报告可以帮助投资决策者效益最大化,是了解太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数的重要参考渠道。本报告数据来源于中国国家统计局等权威部门,数据客观、精准。

目录

第一节太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数现状 (1)

第二节太原市制造业年末城镇单位就业人数指标分析(均指全市) (3)

一、太原市制造业年末城镇单位就业人数现状统计 (3)

二、全国制造业年末城镇单位就业人数现状统计 (3)

三、太原市制造业年末城镇单位就业人数占全国制造业年末城镇单位就业人数比重统计.3

四、太原市制造业年末城镇单位就业人数(2016-2018)统计分析 (4)

五、太原市制造业年末城镇单位就业人数(2017-2018)变动分析 (4)

六、全国制造业年末城镇单位就业人数(2016-2018)统计分析 (5)

七、全国制造业年末城镇单位就业人数(2017-2018)变动分析 (5)

八、太原市制造业年末城镇单位就业人数同全国制造业年末城镇单位就业人数

(2017-2018)变动对比分析 (6)

第三节太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数指标分析(均指全市) (7)

一、太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数现状统计 (7)

二、全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数现状统计分析 (7)

三、太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数占全国电力、热力、

燃气及水生产和供应业年末城镇单位就业人数比重统计分析 (7)

四、太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2016-2018)统计分析 (8)

五、太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动分析 (8)

六、全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2016-2018)统计分析 (9)

七、全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动分析 (9)

八、太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数同全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动对比分析 (10)

图表目录

表1:太原市制造业、电力热力燃气及水生产和供应业年末城镇单位就业人数现状统计表..1 表2:太原市制造业年末城镇单位就业人数现状统计表 (3)

表3:全国制造业年末城镇单位就业人数现状统计表 (3)

表4:太原市制造业年末城镇单位就业人数占全国制造业年末城镇单位就业人数比重统计表3 表5:太原市制造业年末城镇单位就业人数(2016-2018)统计表 (4)

表6:太原市制造业年末城镇单位就业人数(2017-2018)变动统计表(比上年增长%) (4)

表7:全国制造业年末城镇单位就业人数(2016-2018)统计表 (5)

表8:全国制造业年末城镇单位就业人数(2017-2018)变动统计表(比上年增长%) (5)

表9:太原市制造业年末城镇单位就业人数同全国制造业年末城镇单位就业人数(2017-2018)变动对比统计表 (6)

表10:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数现状统计表 (7)

表11:全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数现状统计表 (7)

表12:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数占全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数比重统计表 (7)

表13:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2016-2018)统计表 (8)

表14:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动

统计表(比上年增长%)8表14:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动统计表(比上年增长%) (8)

表15:全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2016-2018)统计表 (9)

表16:全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动统计表(比上年增长%) (9)

表17:太原市电力、热力、燃气及水生产和供应业年末城镇单位就业人数同全国电力、热力、燃气及水生产和供应业年末城镇单位就业人数(2017-2018)变动对比统计表(比上年增长%) (10)

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

9E燃气轮机联合循环问题总结

9E燃气轮机联合循环发电厂必须知道 1.有差无差系统 (1) 2.除氧装置 (1) 3.燃机转速代号和对应转速比例 (2) 4.省煤器的再循环管的主要作用有二点: (2) 5.电缆先放电验电再装设接地线 (3) 6.主变接线方式 (3) 7. 电机缺相运行的现象与原因 (3) 8. 9E燃机开停机过程中FSR的变化 (4) 9. 操作过电压 (5) 10. 发电机中性点0PT的作用,出现异常有何现象 (5) 11. 发电机运行过程中机端电压升高和降低有哪些危害 (6) 12. 发电机转子接地 (7) 13. 进相运行: (8) 14. 励磁控制系统的限制器的分类 (9) 15. 无功 (11) 16. 主励磁机为什么是100赫兹 (13) 1.有差无差系统 简单而言就是看是否能求稳态误差,如果能求则是有差系统,否则是无差系统。 2.除氧装置 本锅炉配置的除氧装置由除氧器、给水箱和汽水分离器三大部件组成。其中除氧器和水箱对给水起到了除氧和蓄水的作用,汽水分离器主要是负责对除氧蒸发器来的汽水混合物进行分离供除氧器除氧使用。 除氧器立式布置在除氧水箱之上,除氧器顶部设有配水管和14只喷嘴,凝结水经喷头雾化成水雾后与蒸汽充分接触后加热变成饱和水。此时水中绝大部分氧气及其他不凝气体由于再也无法溶解于饱和水中而被逸出,最后由除氧器顶部排气管排出,以此达到一次除氧效果。经一次除氧的水由布水盘均匀地淋洒到乱堆的鲍尔环填料表面,使其表面积再一次增大,与除氧器下部进来蒸汽充分接触以达到深度除氧的效果。

3.燃机转速代号和对应转速比例 4.省煤器的再循环管的主要作用有二点: 第一点,启动时省煤器内的水是不流动的,而热烟气不断流过省煤器,将热量传给省煤器内的水,这样就有可能使省煤器内水局部汽化。 第二点,某些运行条件下,当省煤器内水温太低,容易引起管外壁结露,特别是烟气中含有氧化硫或氧气都会腐蚀管子。提供温度高的循环水,可以提高省煤器内水温,防止腐蚀。

燃气轮机及其联合循环课后题答案(姚秀平主编版)上海电力学院

第一章 3和4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量;汽轮机是工作于低温区的一种热机,易于利用低品位的热量;而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO基本功率是指在国际标准化委员会所规定的ISO环境条件下燃汽轮机连续运行所能达到的功率。ISO环境条件:温度15℃,压力0.01013MPa,相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组;燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热;后置循环是工作于低温区以前置循环的余热为主要热源的循环。两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 10、余热型:优点是技术成熟。系统简单、造价低、启停速度快。缺点是余热锅炉效率低、汽轮机的功率和效率也低,所以不仅机组功率不大,而且效率也不高。 补燃型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量大幅度提高,从而使机组的容量增大、效率提高;同时机组的变工况性能也可得到改善。缺点是它并不是纯粹能量梯级利用意义上的联合循环,其中或多或少有一部分热量参与了汽轮机循环。所以,他只是在因蒸汽参数受限而无法采用高参数大功率汽轮机的条件下才可能优越于纯粹能量梯级利用意义上的余热锅炉型联合循环。 增压型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量不受限制,从而可达到较大的机组容量和较高的机组效率;同时由于燃烧是在较高的压力下进行的,且烟气的质量流速较高,所以锅炉的传热效率高,所需的传热面积小,锅炉尺寸紧凑。缺点是系统复杂、制造技术要求高、燃气轮机不能单独运行,同时兼有和补燃型类似的缺点。 综上可知,余热锅炉型联合循环将是今后的发展方向。 11、增压流化床联合循环PFBCC和整体煤气化联合循环IGCC是最有发展前途的两种燃煤型联合循环。 12、最基本的优点:高效率、低污染、低水耗。 13、 14、配置旁通烟道的好处: A、启停时,不必对燃气轮机、余热锅炉和汽轮机的工作状态进行严格协调; B、增加运行调节的灵活性,并方便临时性的检修及事故处理; C、必要时,可使燃气轮机维持单循环运行; D、可对整个工程分段建设、分期投运,从而可合理注入资金,更快地获得回报。 但配置旁通烟道需要增加投资,并且即使在正常运行的情况下,旁通挡板处也往往存在烟气泄漏损失,所以不再配置。

燃气轮机与联合循环-姚秀平-课后题答案-第一单元

1. 从高温热源吸收热量:a-2-3-4-5-b-a; 对外做功:1-2-3-4-5-6-1; 向低温热源放出热量:a-2-3-4-5-b-a; 效率:对外做功:1-2-3-4-5-6-1与从高温热源吸收热量:a-2-3-4-5-b-a的间接比。 2. 可用能 不可用能 1 2 3 4 a b T S 从高温热源吸收热量:a-2-3-b-a; 对外做功:1-2-3-4-1; 向低温热源放出热量:a-1-4-b-a; 效率:对外做功:1-2-3-4-1与从高温热源吸收热量:a-2-3-b-a间接比。 3 和 4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量; 汽轮机是工作于低温区的一种热机,易于利用低品位的热量; 而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机

循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO 基本功率是指在国际标准化委员会所规定的ISO 环境条件下燃汽轮机连续运行所能达到的功率。ISO 环境条件:温度15℃,压力0.01013MPa 相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组; 燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热; 后置循环是工作于低温区以前置循环的余热为主要热源的循环。 两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 余热锅炉型: 2 1C GT B 燃料 3 G 4 G 5 6 HRSG 7811 P CC 10 ST 9 燃气轮机可用能2T s 4 3 1 611 7 5 8 9 10b d c a 汽轮机可用能 燃气轮机子循环:从高温热源吸收热量:a-2-3-c-a ; 对外做功:1-2-3-4-1; 通过余热锅炉传向谁的热量:b-5-4-c-b ; 向外界放出了热量:a-1-5-b-a ; 汽轮机子循环:从余热锅炉吸收的热量:b-6-7-8-9-d-b ,与面积b-5-4-c-b 相等; 对外做功:6-7-8-9-10-11-6;通过凝汽器向外界放出的热量:b-11-10-d-b ; 补燃余热锅炉型: P C G 12 B 燃料 84 HRSG GT 3 6 7 911 ST 5 CC 10G 燃料a 1 2b 11 65 7 T c d s 10 8 4 9 3 12 汽轮机可用能 燃气轮机可用能 增压锅炉型: P C G 12燃料 84 PCB GT 367 9 11ST 5 CC 10G 12 ECO 汽轮机可用能 1 a 211 b 65 7T 燃 机可用能 3 10 c d s 8 412 9 13

燃气轮机与联合循环-姚秀平-课后题答案-第三单元

1.压气机在燃气轮机中的作用是什么? 连续不断地从周围环境吸取空气并将其压缩后供给燃气轮机的燃烧室。 2.燃气轮机所使用的压气机有哪两种类型?它们各有什么特点? 轴流式:流量大、效率高但级的增压能力低,多应用于大功率燃机。 离心式:级的增压能力高但流量小、效率低,多应用于中小功率燃机。 3.轴流式压气机由那两个组成部分? 由转子、静子组成。 转子:动(工作)叶片、叶轮(转鼓)、主轴。静子:静(导)叶、气缸 4.何谓扭速?何谓理论功?理论功是否可全部转换为气体的压力能? 扭速:气流经过叶栅内的流动发生了转折,气流转折所引起的相对速度圆周分量的变化 成为扭速。 理论功:基元级的动叶栅加给单位质量气体的机械功成为理论功或加功量。 不能。理论功的一部分用于气流的动能升高,也有一部分用于气流压力升高,还有一部分在气流流动过程中因摩擦等因素而转换成了热量。 5.压气机级的理论功为什么会受到限制? u 的增加要受到材料许用应力的限制,u 过大时,叶片根部截面处的离心拉应力会超过叶片材料的许用应力。 的增大要受到叶栅气动性能的限制 , 过大时,在叶栅中气流的转折角过大,叶栅 表面上的气流边界层容易分离并形成漩涡,导致流动损失大幅度增加。所以压气机级的理论 功会受到限制。 6.压气机的压比特性曲线有哪些主要特点? (1)每一转速下,压比有一最大值 (2)转速不变,流量降至一定值时→不稳定→喘振 (3)转速不变,流量增至一定值后→压比急剧下降→阻塞 (4)转速越高,特性线越陡 (5)效率的流量特性与压比类同 7. 8.试绘图说明压气机级在转速一定、体积流量增大和减小时,速度三 角形的变化情况 转速一定时,级的扭速与体积流量之间有什么关系? 随着体积流量的增大,扭速必然减小,理论功也相应减小 u w ?w u w C u =?u w ?u w ?w u w C u = ?

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1·引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数[1,2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(ε-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32/R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性和应用时需要注意的问题[7,8]。Ram在对LMTD法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2·平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均温差在一定条件下可由积分平均温差表示[10],即:

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用 传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数 [1, 2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换 热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32∕R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所 计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。 王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数 平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均 温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计 算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性 和应用时需要注意的问题[7, 8]。 Ram在对LMTD 法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均ia?i Δ∕-Δ< AZ- =T-Sr In Δ/ 算术平均??: % =l(?∕ι+?∕?ι) 对数平均温差在一定条件下可由积分平均温差表示[10],即:

燃气轮机热力循环分类及其性能改善措施

同济大学热能与动力工程专业 燃气轮机及内燃机技术 期末论述报告 姓名:****************** 学号:****************** 院系:机械与能源工程学院 专业:热能与动力工程

燃气轮机热力循环分类及其性能改善措施 摘要:本论文对燃气轮机概念进行了简述,以热力学热力循环角度来涉及燃气轮机的热力循环过程及工作原理问题、燃气轮机热力循环分类、各类热力循环的基本原理及其优越性和缺陷、从简单到复杂进行了比较。最后,简述了外界因素对燃气轮机工作效率的影响和改善燃气轮机性能的各种措施。 关键词: 燃气轮机热力循环 GE 公司 MS6001 型燃气轮机 引言: 燃气轮机是靠内部燃料燃烧释放出的热量直接加热空气,并通过行成的燃气将热能转换成机械功的一种热力机械,同样是内燃机。主要由叶轮式空气压缩机、燃气发生器(燃烧室)和燃气涡轮三个基本部分组成,还有燃料、润滑、冷却、启动、调节和安全等辅助系统。热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循环;将机械功转换为热的循环,称为逆向循环。通过工质的热力状态变化过程,可以将热能转化成机械能而做功,而要做出功一般必须通过工质的膨胀过程,但是任何一个热力膨胀过程都不可能一直进行下去,并连续不断地做出功。这是因为工质的状态将会变化到不适宜继续膨胀做功的情况,而且任何热力设备,其尺寸也都是有限的。 一、燃气轮机循环的四个热力过程与工作原理 通常,在可逆的理想情况下,燃气轮机是由四个热力过程组成的正向循环来实现把热能转化为机械功的动力机械,它们是: (1)理想绝热压缩过程 对于燃气轮机循环,压缩过程是在压气机中完成,过程中工质状态参数将按绝热过程的规律(pvk=常数)进行变化:压力不断上升,比容逐渐减小,温度伴随增高。由于工质流量相对大、对外界的散热很小,通常认为与外界没有热量交换,因而是绝热过程,即工质与外界没有热交换,工质状态变化是靠部分透平膨胀功驱动压气机来实现的。另外,在理想的可逆情况下,压缩过程中工质的熵值为常数不变,因此理想绝热压缩过程又称为等熵压缩过程;而实际的绝热压缩过程,由于存在的摩擦涡流等因素的影响,将使工质内能增加(温度升高更多一些),等价于从外部加入同样数量的热量,过程是不可逆的,熵总是增加的。 (2)等压燃烧过程 燃气轮机循环的加热过程是在燃烧室中完成的,从压气机出来的高压气体吸收喷入燃烧室的燃料燃烧释放的热量,燃烧过程的结果是使工质吸收了外界加入的热量Q1,而没有与外界发生机械功的交换。对于加热过程,工质状态参数将按定压过程的规律(v/T=常数)进行变化:压力恒定不变(p=常数),比容(比体积)不断增加,温度逐渐上升,熵值也相应增加。 (3)理想绝热膨胀过程 燃气轮机循环的膨胀做功过程是在透平中完成,过程中工质状态参数也将按绝热过程的规律(pvk=常数)进行变化,只不过变化的趋势与压缩过程正相反:压力不断下降,比容逐渐增大,温度伴随降低。通常也认为与外界没有热量交换,因而也是绝热过程,即工质与外界没有热交换,借助工质状态变化来实现膨胀做功。同样,在理想的可逆情况下,膨胀过程中工质的熵值为常数不变,因此理想绝热膨胀过程又称为等熵膨胀过程;而实际的绝热膨胀过程,由于存在的摩擦涡流等因素的影响,过程是不可逆的,熵总是增加的。 (4)等压放热过程 燃气轮机循环的是向大气环境排气放热来完成的,由于环境相对与循环系统体系来说,

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施 专业:热能与动力 姓名:张露 学号:1151903

燃气轮机热力循环的分类与改善燃气轮机性能的热 力循环措施 摘要:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。本文主要介绍了燃气轮机的工作原理,基本结构,热力循环的分类及热力循环措施。 关键词:燃气轮机分类性能改善 引言:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品。作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。 正文: 燃气轮机(Gas Turbine)是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械。在空气和燃气的主要流程中,只有压气机(Compressor)、燃烧室(Combustor) 和燃气透平(Turbine)这三大部件组成的燃气轮机循环, 通称为简单循环,如图1。大多数燃气轮机均采用简单循 环方案。因为它的结构最简单,而且最能体现出燃气轮 机所特有的体积小、重量轻、起动快、少用或不用冷却 水等一系列优点。 一、工作原理 压气机从外界大气环境吸入空气,并经过轴流式压 气机逐级压缩使之增压,同时空气温度也相应提高;压 缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温 高压的燃气;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子一起高速旋转,实现了气体或液体燃料的化学能部分转化为机械功,并输出电功。从透平中排出的废气排至大气自然放热。这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。在简单循环中,透平发出的机械功有1/2到2/3左右用来带动压气机,其余的1/3左右的机械功用来驱动发电机。在燃气轮机起动的时候,首先需要外界动力,一般是起动机带动压气机,直到燃气透平发出的机械功大于压气机消耗的机械功时,外界起动机脱扣,燃气轮机才能自身独立工作。 二、热力循环分类 按不同热力循环区分燃机类型,是由于任何热机都必须借助一定的媒介物质(工质),经历一系类热力过程,才能实现热转功的循环而对外。按照循环工质流动与组织方式的不同,燃气轮机会在性能、总体布局及结构上有很大差异。为了提高燃机性能(热效率和比功),除了一般简单循环外,探索和采用很多种热力循环方式。详细的热力循环类型如图2。

QD20燃气轮机原理

QD20燃气轮机机组 第 1章概述 1.1 燃气轮机简介 燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。 走马灯是燃气轮机的雏形我国在11世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多·达芬奇设计的烟气转动装置,其原理与走马灯相同。 现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。 燃气轮机动力装置是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装置的正常运行,除了主机三大部件外,还应根据不同情况配置控制调节系统、启动系统、润滑油系统、燃料系统等。 燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。 燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;二是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简

联合循环燃气轮机发电厂简介

安全管理编号:LX-FS-A12128 联合循环燃气轮机发电厂简介 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

联合循环燃气轮机发电厂简介 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的 MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介

第一讲-燃气轮机基本基础学习知识原理及9E燃机性能型号参数

第一讲:燃气轮机基本原理及9E燃机性能型号参数授课内容: 第一章:绪论 1):燃气轮机发电装置的组成 2):燃气轮机发展史 3):我国燃气轮机工业慨况 4):GE公司燃气轮机产品系列及其编号 第二章:燃气轮机热力学基础知识 1):工质的状态参数 2):理想气体状态方程 3):功和热量 第三章:燃气轮机热力循环 1):燃气轮机热力循环的主要技术指标 2):燃气轮机理想简单循环 3):燃气—蒸汽联合循环 第四章:9E燃机性能型号参数 1):PG9171E型燃机型号简介 2):PG9171E型燃机性能参数简介

第一章绪论 第一节燃气轮机发电装置的组成 燃气轮机是近几十年迅速发展起来的热能动力机械。现广泛应用的是按开式循环工作的燃气轮机。它不断地由外界吸入空气,经过压气机压缩,在燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入透平膨胀作功,并把废气排入大气。输出的机械功可作为驱动动力之用。因此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了燃气轮机装置。如果用以驱动发电机供应电力,就成了燃气轮机发电装置。 (幻灯)

第二节燃气轮机发展史

燃气轮机是继汽轮机和内燃机问世以后,吸取了二者之长而设计出来的,它是内燃的,避免了汽轮机需要庞大锅炉的缺点;又是回转式的,免去了内燃机中将往复式运动转换成旋转运动而带来的结构复杂,磨损件多,运转不平稳等缺点。但由于燃气轮机对空气动力学和高温材料的要求超过其他动力机械,因此,发展燃气轮机并使之实用化,人们为之奋斗了很长时间。如果从1791年英国人约翰·巴贝尔(John Baber)申请登记第一个燃气轮机设计专利算起,经过了半个世纪的奋斗,到1939年,一台用于电站发电的燃气轮机(400OkW)才由瑞士BBC 公司制成,正式投运。同时Heinkel工厂的第一台涡轮喷气式发动机试飞成功,这标志着燃气轮机发展成熟而进入了实用阶段·在此以后,燃气轮机的发展是很迅速的。由于燃气轮机本身固有的优点和其技术经济性能的不断提高,它的应用很快地扩展到了国民经济的很多部门· 首先在石油工业中,由于油田的开发和建设,用电量急剧增加·建造大功率烧煤电站不具备条件(没有煤炭,交通不便,水源紧张,施工困难等),周期也不能满足要求·而燃气轮机电厂功率不受限制,建造速度抉,对现场条件要求不高,油田有充足的可供燃用的气体和液体燃料·不少油田还利用开发过程中一时难以利用的伴生气作燃气轮机燃料,价格便宜,发电成本低,增加了燃气轮机的竞争力,所以在油田地区,燃气轮机装置被广泛应用,除用于发电外,还在多种生产作业申用燃气轮机带动压缩机(例如天然气管道输送,天然气回注,气田采油等)和泵(例如原油管道输送和注水等)。 其他工业部门,如炼油厂、石油化工厂、化工厂、造纸厂等等;它们不仅需要机械动力,而且需要大量热(例如蒸汽)。这时用燃气轮机来功热联供,在满足这两方面需要的同时,还能有效地节能,故应用发展较快。

燃气轮机热力循环性能的分析计算

燃气轮机热力循环性能的分析计算 【摘要】本文基于热力学第二定律,从能量利用的角度出发,引入无量纲熵参数,对燃气轮机装置热力性能参数进行热力性能完善程度评价与分析,为燃气轮机装置的热力性能优化设计提供技术途径。 【关键词】燃气轮机;热力循环;性能;分析;计算 【abstract 】this paper based on the second law of thermodynamics, from the Angle of energy use, introducing the dimensionless parameter entropy, the gas turbine thermal performance parameters device thermal performance perfect degree evaluation and analysis, the device for gas turbine thermal performance optimization design provides technical way. 【key words 】gas turbine; Heat engine cycle; Performance; Analysis; calculation 1 引言 二十世纪80年代以来,燃气轮机热力循环方面的研究取得了长足的进步,其中热点之一是注蒸汽燃气轮机循环的研究。它不仅具有高效率、高比功的特点,而且它在变工况性能、污染控制等方面的优越性也倍受国内外研究者的青睐。目前世界上正研制和开发的、比较先进的燃煤发电技术是整体煤气化联合循环和增压流化联合循环。本文将整体煤气化联合循环中的先进燃煤技术与注蒸汽循环结合起来,对循环进行了热力学分析计算,就各参数对循环性能的影响进行了探讨。 2循环过程简介 煤在气化炉中形成粗煤气,经过热交换器,降温放热以加热给水产生回注用蒸汽,再经过脱硫、除尘变为洁净煤气,作为循环所用的燃料进入燃烧室。在燃烧室中煤气与空气燃烧后与注入的蒸汽混合,达到燃气轮机人口温度,再在涡轮中膨胀做功。余热锅炉一般不需要补燃,利用燃气轮机排气来加热处理过的水,使之变为过热蒸汽,注入燃烧室。 3 循环分析 煤炭的气化是在气化炉中进行的。目前,就气化炉的床型而论可分为喷流床气化炉、流化床气化炉和固定床气化炉。虽然,各种气化炉产生的煤气成份有所

燃气轮机及其联合循环运行简介

燃气轮机及其联合循环运行简介 燃气轮机及其联合循环的特点是启动速度快,具有快速加减负荷的能力。它对电网的调峰起到了非常大的作用。我厂有二台9E的燃气轮机,二台余热锅炉及二台汽轮机。其运行方式是二台燃气轮机配二台余热锅炉带动一台汽机(简称二拖一方式)全厂总负荷300MW。作为一名电厂运行员工在运行调度操作上会遇到各种各样的问题。对于一名运行员工来讲,只有熟练的掌握各种运行调度操作以及正确分析各类故障才能保证机组更好的运行。下面我简单介绍一下燃气轮机及其联合循环的运行方式和一些常见的故障。 一.燃气轮机及其联合循环的运行方式 电网的日负荷一般有两个尖峰,一个出现在上午,称为“早峰”;一个在下午出现,称为“晚峰”。通常,晚峰时达到最高负荷值。电网的低谷负荷则出现在凌晨。峰谷差甚至可以超过总负荷的30%。可以把它分为三个部分。一个是位于低谷负荷以下的部分,通称为“基本负荷”;另一个是早峰和晚峰部分,称为“尖峰负荷”;位于两者之间的则称为“中间负荷”。 燃气轮机及其联合循环的运行方式可以分为应急型、尖峰负荷型、中间负荷型和基本负荷型四大类。他们的年运行时间数、年启动次数、每次的连续运行时间以及启动加载时间彼此有很大差异,由于联合循环启动时间较长,供电效率又很高,因而,在电网中通常用来携带基本符合或中间负荷。应急负荷和尖峰负荷则宜用简单循环的燃气轮机来承担(简单循环的燃气轮机效率低,成本过大,应尽量避免)。 二.启动过程中点火和升速遇到的问题 燃气轮机及其联合循环的启动成功率在很大程度上取决于燃气轮机能否正常地启动点火和升速。 1.点火失败的原因是多方面的,大体上说,有以下几个方面: 1)燃油压力过低而引起的点火失败。对于9E机组来说,造成燃油压力不足 的原因可能是:a.电磁离合器的线圈的绝缘降低或匝数短路而无法传动主燃油泵;b.燃油流量分配器内因残存粘度较高的原油等原因,致使启动时燃油流量分配器的转速增升达不到点火要求的额定值;c.燃油调压阀故障,致使燃油压力过低。d.辅助液压油泵故障,致使液压油压力未建立,导致燃料截止阀未打开。 这些问题都需要通过经常性的维护和检查来加以防范,也应确定正确的运行规范来加以保护;为保证燃油流量分配器内各组轴承的工作寿命,在机组紧急停机时,应及时用柴油把燃料分配器内的净油冲洗干净。 2)雾化空气系统工作异常而引起的点火失败。造成雾化空气系统异常的原 因可能是:a.带动雾化空气压缩机的传动带松动打滑或断裂。b.雾化空气压缩机漏气。c.由于燃油回流到喷油嘴的雾化空气流道中去形成积碳,致使雾化空气流道不畅。d.雾化空气管道的旁路逆止阀未关,致使雾化空气出口压力未建立。 3)点火的电气回路故障引起的点火失败。通常,点火的电气回路是由火花 塞、引导电缆、点火变压器、限流电阻和熔断器等组成的。造成电气回路故障的原因可能是:a.熔断器烧断;b.火花塞的中间电极接地或接线

相关文档
最新文档