惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式

一.重点及难点:

(一).截面静矩和形心

1.静矩的定义式

如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即

ydA

dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A

y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1

设平面图形形心C 的坐标为C C z y , 则 0

A S y x = , A

S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心

设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i

i xi x n i i

i n i yi y y A S S x A S 11

11

S (I-3)

截面图形的形心坐标为

∑∑===n i i n i i i

A

x A x 11

, ∑∑===n i i

n i i i A y A y 11 (I-4) 4.静矩的特征

(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

(二).惯性矩 惯性积 惯性半径

1. 惯性矩

定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为

?=A

p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为

?=A y dA x I 2 , dA y I A

x ?=2 (I-6) 惯性矩的特征

(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

标轴定义的。

(2) 极惯性矩和轴惯性矩的单位为4m 。

(3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。

(4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原

点的任意一对坐标轴的轴惯性矩之和,即

??+=+==A

x y A p I I dA y x dA I )(222ρ (I-7)

(5) 组合图形(图I-2)对某一点的极惯性矩或某一轴的轴惯性矩,

分别等于各族纷纷图形对同一点的极惯性矩或同一轴惯性矩之

和,即

∑==n i i I I 1ρρ ,∑==n i yi y I I 1 , ∑==n

i xi I Ix 1 (I-8)

图I-2 图I-3

2. 惯性积

定义 设任意形状的截面图形的面积为A (图I-3),则图形对y 轴和

x 轴的惯性积定义为

?=A

xy xydA I (I-9) 惯性积的特征

(1) 界面图形的惯性积是对相互垂直的某一对坐标轴定义的。

(2) 惯性积的单位为4m 。

(3) 惯性积的数值可正可负,也可能等于零。若一对坐标周中有

一轴为图形的对称轴,则图形对这一对称轴的惯性积必等于

零。但图形对某一对坐标轴的惯性积为零,这一对坐标轴重

且不一定有图形的对称轴。

(4) 组合图形对某一对坐标轴的惯性积,等于各组分图形对同一

坐标轴的惯性积之和,即

∑==n

i x y i xy I I 1 (I-10)

3. 惯性半径

定义: 任意形状的截面图形的面积为A (图I-3),则图形对y 轴

和x 轴的惯性半径分别定义为

A I i y

y = , A

I i x x = (I-11) 惯性半径的特征

(1) 惯性半径是对某一坐标轴定义的。

(2) 惯性半径的单位为m 。

(3) 惯性半径的数值恒取证之。

(三).惯性矩和惯性积的平行移轴公式

平行移轴公式

A b I I A

a I I yC y xC x 22+=+= (I-12)

a b A

I I x C y C xy += (I-13) 平行移轴公式的特征

(1)意形状界面光图形的面积为A (图(I-4);C C y x , 轴为图形的形心轴;x ,y 轴为分别与C C y x ,形心轴相距为a 和b 的平行轴。

(2)两对平行轴之间的距离a 和b 的正负,可任意选取坐标轴x ,y 或形心C C y x ,为参考轴加以确定。

(3)在所有相互平行的坐标轴中,图形对形心轴的惯性矩为最小,但图形对形心轴的惯性积不一定是最小。

图I-4

(四)、惯性矩和惯性积的转轴公式.主惯性轴主惯性矩

转轴公式

αα2sin 2cos 22

1xy y x y x x I I I I I I --++= αα2sin 2cos 221xy y

x y

x y I I I I I I +--+=

αα2cos 2sin 211xy y x y x I I I I +-=

转轴公式的特征 (1) 角度α的正负号,从原坐标轴x,y 转至新坐标轴11,y x ,以逆时

针转向者为正(图5)。

(2) 原点O 为截面图形平面内的任意点,转轴公式与图形的形心无

关。

(3) 图形对通过同一坐标原点任意一对相互垂直坐标轴的两个轴惯

性矩之和为常量,等于图形对原点的极惯性矩,即

P y x y x I I I I I =+=+11

主惯性轴、主惯性矩 任意形状截面图形对以某一点O 为坐标原点的坐标轴0x 、0y 的惯性积为零(00

0=y x I ),则坐标轴0x 、0y 称为图形通过点O 的主惯性轴(图6)。截面图形对主惯性轴的惯性矩0

0,y x I I ,称为

主惯性矩。

主惯性轴、主惯性矩的确定

(1) 对于某一点O ,若能找到通过点O 的图形的对称轴,则以点O

为坐标原点,并包含对称轴的一队坐标轴,即为图形通过点O 的一对主惯性轴。对于具有对称轴的图形(或组合图形),往往已知其通过自身形心轴的惯性矩。于是,图形对通过点o 的主惯性轴的主惯性矩,一般即可由平行移轴公式直接计算。

(2) 若通过某一点o 没有图形的对称轴,则可以点o 为坐标原点,

任作一坐标轴x ,y 为参考轴,并求出图形对参考轴x ,y 的惯性矩y x I I ,和惯性积xy I 。于是,图形通过点o 的一对主惯性轴方

位及主惯性矩分别为

y x xy I I I --

=22tan 0α (I-16) 220022xy y x y x y x I I I I I I I +???? ?

?-±+= (I-17) 主惯性轴、主惯性矩的特征

(1)图形通过某一点O 至少具有一对主惯性轴,而主惯性局势图形对通过同一点O 所有轴的惯性矩中最大和最小。

(2)主惯性轴的方位角0α,从参考轴x ,y 量起,以逆时针转

向为正。

(3)若图形对一点o 为坐标原点的两主惯性矩相等,则通过点o 的所有轴均为主惯性轴,且所有主惯性矩都相同。

(4)以截面图形形心为坐标原点的主惯性轴,称为形心主惯性轴。图形对一对形心主惯性轴的惯性矩,称为形心主惯性矩。

1y 图I-5 图I-6

二.典型例题分析

例I-a 试计算图示三角形截面对于与其底边重合的x 轴的静矩。

解:计算此截面对于x 轴的静矩x S 时,可以去平行于x 轴的狭长条(见图)作为面积元素(因其上各点的y 坐标相等),即dy y b dA )(=。由相似三角形关系,可知: )()(y h h b y b -=,因此有dy y h h

b dA )(-=。将其代入公式(I-1)的第二式,即得 ????=-=-==A

h h h

x bh dy y h b ydy b dy y h h b ydA S 002206)(

x

例题I-a 图

解题指导:此题为积分法求图形对坐标轴的静矩。

例I-2 试确定图示Ⅰ-b 截面形心C 的位置

解:将截面分为?、П两个矩形。为计算方便,取x 轴和y 轴分别与界面的底边和左边缘重合(见图)。先计算每一个矩形的面积i A 和形心坐标(i i y x ,)如下:

矩形? 2120012010mm A =?=I

mm x 5210==I ,mm y 602

120==I 矩形П 27007010mm A =?=∏

mm x 4527010=+

=∏ ,mm y 52

10==∏ 将其代入公式(I-4),即得截面形心C 的坐标为 mm A A y A y A y mm A A x A x A x 40190075500201900

37500≈=++=≈=++=

∏I ∏∏I I ∏I ∏∏I I

解题指导: 此题是将不规则图形划分为两个规则图形利用已有的规则图形的面积和形心,

图Ⅰ-b

例I-3 试求图I-c 所示截面对于对称轴x 轴的惯性矩x I

解:此截面可以看作有一个矩形和两个半圆形组成。设矩形对于x 轴的惯性矩为I x I ,每一个半圆形对于x 轴的惯性矩为II x I ,则由公式(I-11)的第一式可知,所给截面的惯性矩:

II I +=x x x I I I 2 (1)

矩形对于x 轴的惯性矩为:

443

310533012

2008012)2(mm a d I x ?=?==I (2) 半圆形对于x 轴的惯性矩可以利用平行移轴公式求得。为此,先求出每个半圆形对于与x 轴平行的形心轴C x (图b )的惯性矩xC I 。已知半圆形对于其底边的惯性矩为圆形对其直径轴x '(图b )的惯性据之半,即1284

d I x π='。而半圆形的面积为82

d A π=,其形心到底边的距离为π

32d (图b )。故由平行移轴公式(I-10a ),可以求出每个半圆形对其自身形心轴C x 的惯性矩为:

8

)32(128)32(2242d d d A d I I x xC ππππ-=-=' (3) 由图a 可知,半圆形形心到x 轴距离为π32d a +

,故在由平行移轴公式,求得每个半圆形对于x 轴的惯性矩为:

8

)32(8)32(128)32(222242d d a d d d A d a I I xC x ππππππ++-=++=II )32232(422

2ππa ad a d d ++= 将d=80mm 、 a=100mm (图a )代入式(4),即得

422

2103460)380100221003280(4)80(?=??++=II π

πx I mm 4

将求得的I x I 和II x I 代入式(1),便得

44410122501034602105330?=??+?=x I mm 4

解题指导: 此题是将不规则图形划分为若干个规则图形,利用已有的规则图形的面积、

形心及对自身形心轴的惯性矩,结合平行移轴公式计算组合截面图形对组合

截面形心的惯性矩。

常用截面惯性矩计算公式

图I-c

x '

图I-c

惯性矩的计算方法及常用截面惯性矩计算公式

在此输入你的公司名称 LOGO 惯性矩的计算方法及常用截 面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 11 11 S (I-3) 截面图形的形心坐标为 ∑∑===n i i n i i i A x A x 11 , ∑∑===n i i n i i i A y A y 11 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐 标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为4m 。

惯性矩的计算方法

I等.I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合 而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形( 图4 — 3) ,其面积为A .选取直角坐标系yoz ,在坐标为(y 、z) 处取一微小面积dA ,定义此微面积dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩I.微面积dA 乘以到坐标轴y 的距离的平方,沿整个截面积分为截面图形对y 轴的惯性矩I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

极惯性矩(4-6) 对y 轴惯性矩(4 -7a ) 同理,对z 轴惯性矩(4-7b) 由图4-3 看到所以有 即(4-8) 式(4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。 在任一截面图形中( 图 4 — 3) ,取微面积dA 与它的坐标z 、y 值的乘积,沿整个截面积分,定义此积分为截面图形对y 、z 轴的惯性积,简称惯积.表达式为 (4-9) 惯性矩、极惯性矩与惯性积的量纲均为长度的四次方.I,I,I恒为正值.而惯性积I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零. 当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴( 或称主形心惯轴) .截面对形心主惯性轴的惯性矩称为形心主惯性矩( 或称主形心惯矩) .例如,图4-4 中若这对yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D §16-1 静矩和形心 平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。 静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ,(Ⅰ-1) 量纲为长度的三次方。 由此可得薄板重心的坐标为 同理有 所以形心坐标 ,(Ⅰ-2) 或 ,

由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即, ;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。 如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为 ,(Ⅰ-3) ,(Ⅰ-4) 【例I-1】求图Ⅰ-2所示半圆形的及形心位置。 【解】由对称性,,。现取平行于轴的狭长条作为微面积 所以 读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。 【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为 矩形Ⅰ:mm2 mm,mm 矩形Ⅱ:mm2 mm,mm 整个图形形心的坐标为 §16-2 惯性矩和惯性半径 惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。 ,(Ⅰ-5) 量纲为长度的四次方,恒为正。相应定义 ,(Ⅰ-6) 为图形对轴和对轴的惯性半径。

截面惯性矩计算

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得 截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。 解:知半圆形截 面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。

解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示, 试求截面对其水平形心轴和竖直形心轴的惯性矩和。 解:先求形心主轴的位置 即

15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴 的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是, ;横截面积为;槽钢背到其形心轴的距离 是。 根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是 ; 若 即 等式两边同除以2,然后代入数据,得 于是 所以,两槽钢相距

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3) (2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。 (1)圆截面对其圆心的极惯性矩,如式(2—7) (2—2.7) (2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8) (2—2.8) 式中,d/D为空心圆截面内、外径的比值。

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y ==整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1)2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 1 1 11S (I-3) 截面图形的形心坐标为 ∑∑=== n i i n i i i A x A x 1 1 , ∑∑=== n i i n i i i A y A y 1 1 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

惯性矩的计算方法

I等. I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式 (4-4) (4-5) 式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

附录A 极惯性矩与惯性矩

= 附录 A 极惯性矩与惯性矩 题号 页码 A-1 (1) A-3 ........................................................................................................................................................2 A-4 ........................................................................................................................................................3 A-6 ........................................................................................................................................................4 A-7 ........................................................................................................................................................4 A-8 .. (5) (也可通过左侧的题号书签直接查找题目与解) A-1 试确定图示截面形心 C 的坐标 y C 。 题 A-1 图 (a)解:坐标及微面积示如图 A ? 1 (a)。 由此得 d A =ρ d ?d ρ R α ∫ y d A ∫ ∫ ρ cos ? ?ρ d ?d ρ 2R sin α y C = A A ?α R α ∫ ∫ = ρ d ?d ρ 3α ?α (b)解:坐标及微面积示如图 A ? 1 (b)。

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩 公式 The Standardization Office was revised on the afternoon of December 13, 2020

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3)

(2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

惯性矩的定义和计算公式

惯性矩的定义 ●区域惯性矩-典型截面I ●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩 ●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和 应力的形状特性。 ●面积惯性矩-英制单位 ●inches4 ●面积惯性矩-公制单位 ●mm4 ●cm4 ●m4 ●单位转换 ● 1 cm4 = 10-8 m4 = 104 mm4 ● 1 in4 = 4.16x105 mm4 = 41.6 cm4 ●示例-惯性单位面积矩之间的转换 ●9240 cm4 can be converted to mm4 by multiplying with 104 ●(9240 cm4) 104 = 9.24 107 mm4 ●区域惯性矩(一个区域或第二个区域的惯性矩) ● ●绕x轴弯曲可表示为 ●I x = ∫ y2 dA (1) ●其中

●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2) ●绕y轴弯曲的惯性矩可以表示为 ●I y = ∫ x2 dA (2) ●其中 ●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩 ●典型截面II的面积惯性矩 ●实心方形截面 ● ●实心方形截面的面积惯性矩可计算为 ●I x = a4 / 12 (2) ●其中 ● a = 边长(mm, m, in..) ●I y = a4 / 12 (2b) ●实心矩形截面

材料力学--计算机计算惯性矩和抗弯截面系数方法(精)

材料力学—计算机计算惯性矩和抗弯截面系数方法 1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。 图1 2 创建面域 面域创建的方式主要有两种: (1)reg命令。输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。会建立两个面域(外围边框和内部边框); (2)bo命令。在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。也会建立两个面域(外围边框和内部边框)。 图2 3 面域差集计算 将建立的两个面域进行差集计算。在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。 4 查询计算 (1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”; (2)选择刚创建的面域并回车,弹出如图3所示的文本对话框; 图

3 (3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。截面惯性矩、惯性积、主力矩。 5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算 (1)从主力矩与质心的X-Y方向可以得出: Ix=188.5mm4, Iy=188.5mm4 (2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs坐标原点移动到截面形心,如图4; 图4 (3)命令行输入massprop并回车,弹出如图5所示的文本对话框; 图5 (4)可得:截面对形心轴的惯性矩Ix=188.5mm4、Iy=188.5mm4,惯性积Ixy=0(由图5可知,形心轴y轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。 由图5可知,截面图形边界框值为x:-4—4、y:-4—4, 抗弯截面系数计算如下: Wx1=Ix/ymax=188.5/4=47.13mm3 Wx2= Ix/ymin=188.5/4=47.13mm3 Wy1= Iy/xmax=188.5/4=47.13mm3 Wy2= Iy/ymin=188.5/4=47.13mm3 6 相同的计算方法就可以计算各种复杂截面的零件的惯性矩和抗弯截面系数,只是在计算中要注意截面面域的选择要正确,截面差集要准确。

材料力学常用基本公式

材料力学常用基本公式 Prepared on 24 November 2020

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积 A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至 外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径 d,拉伸后试样直径d1) 6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆 21.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 (b)空心圆 24.薄壁圆管(壁厚δ≤ R /10 ,R 为圆管的平均半径)扭转切应力计算公式 25.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 26.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 27.等直圆轴强度条件 28.塑性材料;脆性材料

29.扭转圆轴的刚度条件或 30.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 31.平面应力状态下斜截面应力的一般公式 , 32.平面应力状态的三个主应力, , 33.主平面方位的计算公式 34.面内最大切应力 35.受扭圆轴表面某点的三个主应力,, 36.三向应力状态最大与最小正应力 , 37.三向应力状态最大切应力

惯性矩总结(含常用惯性矩公式)

惯性矩就是一个物理量,通常被用作描述一个物体抵抗扭动,扭转得能力。惯性矩得国际单位为(m^4)。 工程构件典型截面几何性质得计算 2、1面积矩 1.面积矩得定义 图2-2、1任意截面得几何图形 如图2-31所示为一任意截面得几何图形(以下简称图形)。定义:积分与分别定义为该图形对z轴与y轴得面积矩或静矩,用符号S z与S y,来表示,如式(2—2、1) (2—2、1)面积矩得数值可正、可负,也可为零。面积矩得量纲就是长度得三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形得形心坐标公式如式(2—2、2) (2—2、2) 或改写成,如式(2—2、3) (2—2、3) 面积矩得几何意义:图形得形心相对于指定得坐标轴之间距离得远近程度。图形形心相对于某一坐标距离愈远,对该轴得面积矩绝对值愈大。 图形对通过其形心得轴得面积矩等于零;反之,图形对某一轴得面积矩等于零,该 轴一定通过图形形心。 3.组合截面面积矩与形心得计算 组合截面对某一轴得面积矩等于其各简单图形对该轴面积矩得代数与。如式(2—2、4) (2—2、4) 式中,A与y i、z i分别代表各简单图形得面积与形心坐标。组合平面图形得形心位置由式(2—2、5)确定。 (2—2、5) 2、2极惯性矩、惯性矩与惯性积

1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点得极惯性矩,用符号I P,表示,如式(2—2、6) (2—2、6) 极惯性矩就是相对于指定得点而言得,即同一图形对不同得点得极惯性矩一般就是不同得。极惯性矩恒为正,其量纲就是长度得4次方,常用单位为m4或mm4。 (1)圆截面对其圆心得极惯性矩,如式(2—7) (2—2、7) (2)对于外径为D、内径为d得空心圆截面对圆心得极惯性矩,如式(2—2、8) (2—2、8) 式中,d/D为空心圆截面内、外径得比值。 2.惯性矩 在如图6-1所示中,定义积分,如式(2—2、9) (2—2、9) 称为图形对z轴与y轴得惯性矩。惯性矩就是对一定得轴而言得,同一图形对不同得轴得惯性矩一般不同。惯性矩恒为正值,其量纲与单位与极惯性矩相同。 同一图形对一对正交轴得惯性矩与对坐标原点得极惯性矩存在着一定得关系。 如式2—2、10) I P=I z+I y (2—2、10) 上式表明,图形对任一点得极惯性矩,等于图形对通过此点且在其平面内得任一对正交轴惯性矩之与。 表6-1给出了一些常见截面图形得面积、形心与惯性矩计算公式,以便查用。工程中使用得型钢截面,如工字钢、槽钢、角钢等,这些截面得几何性质可从附录得型钢表中查取。 3.惯性积 如图2—32所示,积分定义为图形对y,、z轴得惯性积,用符号I yz表示,如式(2—11) 图2-2、2具有轴对称得图形 (2—11)

截面惯性矩

计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介:1、首先在CAD中画出如下图的图形;2、用region命令将图形转化成内外两个区域;3、用subtract命令求内外区域的差集;4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米;5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 第二种方法:采用桥博计算截面惯距 操作简介:本人使用的是桥博3.03,大家可以新建一个项目组,在新建项目上右键选择截面设计,选择C:\Program Files\TongHao\DoctorBridge30\EXAMPLES\Tool\DbDebug2.sds,当前任务类型选择截面几何特征,在截面描述中清除当前截面(包括附加截面还有主截面里面的钢筋),选择“斜腹板单箱单室”(大家在可根据自己计算的截面选择相应的截面,如果桥博内置的截面没有的话,可以选用从CAD中导入,CAD导入将在后面的教程中介绍)输入截面相应的数据(附图) 输出结果附后 <<桥梁博士>>---截面设计系统输出 文档文件: C:\Program Files\TongHao\DoctorBridge30\EXAMPLES\Tool\DbDebug2.sds 文档描述: 桥梁博士截面设计调试 任务标识: 任务类型: 截面几何特征计算 ------------------------------------------------------------

材料力学公式总结大全

材料力学 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=ε,A P A N == σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ??? === 2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。

惯性矩计算方法

抗弯惯距和抗扭惯距的计算 2009-10-20 09:54 计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介:1、首先在CAD中画出如下图的图形;2、用region命令将图形转化成内外两个区域;3、用subtract命令求内外区域的差集;4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米;5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 第二种方法:采用桥博计算截面惯距 操作简介:本人使用的是桥博3.03,大家可以新建一个项目组,在新建项目上右键选择截面设计,选择C:\Program Files\TongHao\DoctorBridge30\EXAMPLES\Tool\DbDebug2.sds,当前任务类型选择截面几何特征,在截面描述中清除当前截面(包括附加截面还有主截面里面的钢筋),选择“斜腹板单箱单室”(大家在可根据自己计算的截面选择相应的截面,如果桥博内置的截面没有的话,可以选用从CAD中导入,CAD导入将在后面的教程中介绍)输入截面相应的数据(附图) 输出结果附后 <<桥梁博士>>---截面设计系统输出 文档文件: C:\Program

极惯性矩常用计算公式

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D §16-1 静矩和形心 平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。 静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ,(Ⅰ-1) 量纲为长度的三次方。 由于均质薄板的重心与平面图形的形心有相同的坐标和。则

由此可得薄板重心的坐标为 同理有 所以形心坐标 , (Ⅰ-2) 或 , 由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。 如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为 , (Ⅰ-3)

, (Ⅰ-4) 【例I-1】求图Ⅰ-2所示半圆形的及形心位置。 【解】由对称性,,。现取平行于轴的狭长条作为微面积 所以 读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。 【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别 为 矩形Ⅰ:mm2 mm,mm 矩形Ⅱ:mm2 mm,mm 整个图形形心的坐标为 §16-2 惯性矩和惯性半径 惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。 ,(Ⅰ-5) 量纲为长度的四次方,恒为正。相应定义

惯性矩计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图 形的几何性质 一.重点及难点: (一).截面静矩和形心 1?静矩的定义式 如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即 dS y =xdA dSx 二 ydA 整个图形对y 、z 轴的静矩分别为 S y = A XdA (I ) Sx ydA 、A 2. 形心与静矩关系 设平面图形形心C 的坐标为y C , z C S x S y y - , x ( I-2) A A 推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。 推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。 3. 组合图形的静矩和形心 设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为 图I-1 则 0

S y = " S yi = ' A i X i i 4 i 4 n n S x = ' S xi = ' A i y i i 4 i 4 截面图形的形心坐标为 、' A i X i 4. 静矩的特征 (1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2)静矩有的单位为m 3 (3)静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 ⑷ 若已知图形的形心坐标。则可由式(1-1)求图形对坐标轴的静矩。 若已 知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。 (二)■惯性矩惯性积惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A '2dA (1-5) 图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6) 惯性矩的特征 (1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴 定义的。 (2)极惯性矩和轴惯性矩的单位为m 4 (1-3) 、A i y i (1-4)

截面形心和惯性矩的计算

工程构件典型截面几何性质的计算 2.1面积矩 如图2-31所示为一任意截面 的几何图形(以下简称图形)。定义:积分上t 和 A 分别定义为该图形对z 轴和y 轴的面积矩或静 矩,用符号S z 和S y ,来表示,如式(2 — 2.1) 面积矩的数值可正、可负,也可为零。面积矩的 量 纲是长度的三次方,其常用单位为 m 3 或mm 2 ?面积矩与形心 平面图形的形心坐标公式如式(2 — 2.2) (2 — 2.2) 或改写成,如式(2 — 2.3) : 二 X 乙 (2 面积矩的几何意义:图形的形心相对于指定的坐 标轴之间距离的远近程度。图形形心相对于某一坐标距 离愈远,对该轴的面积矩绝对值愈大。 —2.3) 1 ?面积矩的定义 图2-2.1任意截 面的几何图形

图形对通过其形心的轴的面积矩等于零;反之, 图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3 ?组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) 鬲=刀殆=£4订(2 — 2.4) 式中,A和y i、乙分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2 —2.5)确定 迟4吗 i-i (2 —2.5) 2.2极惯性矩、惯性矩和惯性积 1 ?极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分1 称为图形对0点的极惯性矩,用符号I P, 表示,如式(2 —2.6) ' (2 —2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm (1)圆截面对其圆心的极惯性矩,如式(2 —7) (2 —2.7) ⑵对于外径为D内径为d的空心圆截面对圆心的极惯性

惯性矩的计算方法及常用截面惯性矩计算公式

一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为 ∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 11 11 S (I-3) 截面图形的形心坐标为

∑∑===n i i n i i i A x A x 11 , ∑∑===n i i n i i i A y A y 11 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐 标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为4m 。 (3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。 (4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原 点的任意一对坐标轴的轴惯性矩之和,即 ??+=+==A x y A p I I dA y x dA I )(222ρ (I-7)

相关文档
最新文档