第三章电化学腐蚀动力学

合集下载

电化学腐蚀机理

电化学腐蚀机理

电化学腐蚀机理
电化学腐蚀是一种通过电化学反应导致金属材料的损坏的过程。

在电化学腐蚀中,金属表面与周围环境之间存在电位差,从而产生电流。

这些电流导致了金属表面的氧化、还原和离子迁移反应,最终导致了金属的腐蚀和损坏。

电化学腐蚀的机理与金属材料的化学和结构特性密切相关。

例如,某些金属具有自我保护能力,因为它们的表面会形成一层稳定的氧化物膜来保护其内部。

然而,当这种膜被破坏或被腐蚀时,金属就会暴露于周围环境中,导致更严重的腐蚀。

电化学腐蚀还受到周围环境因素的影响,例如温度、溶液中的氧化还原剂浓度、pH值等。

这些因素可以影响金属表面的化学反应动
力学,从而影响电化学腐蚀的速率和程度。

理解电化学腐蚀机理对于预防和控制腐蚀非常重要。

通过选择合适的金属材料、设计符合要求的环境条件和采取适当的防腐措施,可以有效地减缓或避免电化学腐蚀的发生。

- 1 -。

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题第一章绪论1.何谓腐蚀?为何提出几种不同的腐蚀定义?2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系?3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其ϖ深(mm/a)多大?4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度ϖ失和ϖ深。

问铁在此介质中是否耐蚀?第二章电化学腐蚀热力学1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。

3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。

4.金属化学腐蚀与电化学腐蚀的基本区别是什么?5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。

b) 将你的答案换成相对于SCE的电势值。

6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀?7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止?第三章电化学腐蚀反应动力学1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。

2.在活化极化控制下决定腐蚀速度的主要因素是什么?3.浓差极化控制下决定腐蚀速度的主要因素是什么?4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论?5.何谓腐蚀极化图?举例说明其应用。

6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。

7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。

8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少?9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。

腐蚀动力学模型

腐蚀动力学模型

腐蚀动力学模型
腐蚀动力学模型是指基于大量实验数据和理论分析建立的一套数学模型,用于解释,
预测和优化腐蚀过程中金属材料的失效行为。

腐蚀动力学模型包括电化学腐蚀模型,应力
腐蚀开裂模型,高温氧化腐蚀模型等多种形式,但它们的基本原理都是相似的。

电化学腐蚀模型是最常见的一种腐蚀动力学模型,它是基于诸如极化曲线,极化电阻,电化学阻抗谱等电化学测试数据建立的。

在电化学腐蚀模型中,腐蚀速率是由电流密度,
金属表面的电位和溶液组成的。

通过对模型参数的优化来拟合实验数据,可以准确地预测
腐蚀速率的变化和确定最优腐蚀防护措施。

应力腐蚀开裂模型是另一种常见的腐蚀动力学模型,它是基于金属材料的裂纹成长原
理建立的。

在应力腐蚀开裂模型中,金属材料在经历应力作用时,可能出现裂纹,然后裂
纹逐渐扩展到材料内部而导致失效。

应力抑制因子,应力浓度因子和应力强度因子是应力
腐蚀开裂模型中的重要参数,它们可以用来评估材料的抗应力腐蚀开裂性能,并且指导相
关腐蚀防护技术的研发。

高温氧化腐蚀模型是一种专门用于研究高温下金属材料的氧化失效行为的腐蚀动力学
模型。

该模型基于氧化层生长的规律和反应动力学原理,考虑到高温,压力,气氛成分,
表面能等因素,可以预测金属材料在高温环境下的氧化速率,氧化层厚度和质量损失等信息,为热工装备的长期运行提供保障。

总之,腐蚀动力学模型是充满挑战又具有广阔应用前景的一个研究领域。

随着新材料
和新工艺的不断涌现,腐蚀动力学模型也将不断更新和完善,为各种工业领域的腐蚀防护
和材料设计提供更加可靠和有效的支持。

电化学腐蚀反应动力学详解共52页

电化学腐蚀反应动力学详解共52页
电化学腐蚀反应动力学 详解
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

腐蚀动力学.

腐蚀动力学.

Ea K=A exp (- ) RT
当电极处于平衡状态时,
E E i i i nFAb exp( ) CO nFAf exp( ) CR RT RT
0
0 a
0 a
i 为交换电流密度
由电化学理论可知:电极电位的变化是通过 改变反应的活化能来影响反应速率,当电极 电位比平衡电位高,即 E >0,氧化反应的活 化能减小 nF E 。还原反应的活化能则增 加 nF E。
0

Ea E nF E
0 a
Ea E nF E
0 a
E nF E nF E 0 i nFAbCO exp( ) i exp( ) RT RT
0 a
E nF E nF E 0 i nFAf CR exp( ) i exp( ) RT RT
M吸附+mH2O M n mH2O ne
(3)水化金属离子从双电层溶液侧向溶液深处迁移
2. 阴极过程
阴极过程是指溶液中的氧化剂与金属阳极溶解后 所释放出来转移到阴极区的电子发生还原反应。
电化学腐蚀的基本条件是腐蚀电池和去极化剂 同时存在
去极化剂:能消除或抑制原电池阳极或阴极极化 的物质 电化学腐蚀的阴极去极化剂有:H+、O2、NO3-、 Cr2O72-、高价金属离子及一些易被还原的有机化合 物 (1)溶解氧的还原反应
极化是电极反应的阻力,其本质是电极过 程存在某些较慢步骤,限制了电极反应速度。
2、极化的原因及类型 根据极化产生的原因极化可分为活化极化(电 化学极化)、浓差极化和电阻极化。
(1)电化学极化
由于电子的运动速度远远大于电极反应得失电子速 度而引起的。在阴极上有过多的负电荷积累,在阳极上 有过多的正电荷积累,因而出现了电极的电化学极化。 (2)浓差极化 阳极溶解得到的金属离子,将会在阳极表面的液层 和溶液本体间建立浓度梯度,金属离子向溶液本体扩散, 如果扩散速率小于金属的溶解速率,阳极附近金属离子 浓度会升高,产生浓差极化。

金属电化学腐蚀的电极动力学简述

金属电化学腐蚀的电极动力学简述

② 增重法:当腐蚀产物全部覆盖在金属上且不 易除去时用这个方法较为恰当。 v+=m2-m0/St 式中 v+——金属增重腐蚀速度,g/(m2· h); m2——腐蚀后带有腐蚀产物的试样质量, g;
(2)深度法:以腐蚀后金属厚度的减少来表示 腐蚀的程度。 当全面腐蚀时,腐蚀深度可通过腐蚀的质量变 化,经过换算得到: vL=8.79 v- /ρ 式中 vL——腐蚀深度,mm/a; v-——金属失重腐蚀速度,g/(m2· h); ρ ——金属的密度,g/cm3.
极化类型
根据控制步骤的不同,通常把极化大致分为两类:电 化学极化和浓差极化。
由于电极表面附近反应物或反应产物的扩散 速度小于电化学反应速度而产生的极化,称 为浓差极化。由于电极上电化学反应速度小 于外电路中电子运动速度而产生的极化,称 为电化学极化或活化极化。 电化学极化——电化学步骤 浓差极化——液相传质步骤
此外,如果产物在电极表面形成固体覆盖层 使整个体系电阻增大,导致电压降低,也可 产生极化——电阻极化 典型——阳极钝化
(1)电化学极化规律
电流密度(电化学反应速 度)对电极电位的微小变 化都很敏感。 • 两线交点处过电位为0, 氧化速度等于还原速度, 电极处于平衡状态,电流 密度为i0,电位为平衡电 极电位Ee。 比平衡电位更正,氧化 比平衡电位更负,还原
Ee,Zn i
极化曲线示意
阳极极化曲线,阴极极化曲线
(4)平衡电极极化与过电位
ic 当电极过程达到平衡时,金属和溶液界面建立 一个稳定的双电层,即不随时间变化的电极 电位,称为金属的平衡电极电位Ee;宏观上 平衡电极电位是一个没有净反应的电极,反 应速度为零,微观ia=IicI 当金属与含有其离子的溶液构成的电极 体系处于平衡状态时,金属不会腐蚀,即平 衡的金属电极是不发生腐蚀的电极。 M

化学实验中的电化学腐蚀

化学实验中的电化学腐蚀化学实验中的电化学腐蚀是指金属在电解液中发生氧化还原反应而导致金属表面损坏的过程。

电化学腐蚀是一个复杂的过程,涉及到物质的传输与转化、电极反应以及化学平衡等多个方面。

本文将从电化学腐蚀的定义、机理以及预防等方面加以阐述。

1. 电化学腐蚀的定义与机理电化学腐蚀是指金属在特定环境中与电解液发生化学反应,导致金属表面损坏的过程。

主要包括阳极和阴极两个区域,其中阳极区是金属发生氧化反应的地方,阴极区则是金属重新得到电子的地方。

腐蚀反应可以分为两个半反应:氧化半反应和还原半反应。

在阳极区,金属发生氧化反应,失去电子成为离子;在阴极区,离子获得电子还原为金属。

这两个半反应必须同时进行,维持电荷平衡。

导致电化学腐蚀的主要原因是金属与电解液中的离子产生反应,形成氧化物或氢氧化物等产物,使金属表面发生溶解,产生腐蚀现象。

此外,温度、电位、流体速度等因素也会对电化学腐蚀的过程产生影响。

2. 电化学腐蚀的实验方法与技术为了研究电化学腐蚀的过程,科学家们开发了一系列的实验方法和技术。

2.1 极化曲线法极化曲线法是一种通过改变电位观察腐蚀过程的方法。

该方法利用电位扫描仪测量不同电位下的电流变化,从而得到电极电流与电极电位的关系曲线,进而分析腐蚀过程中的各种参数。

2.2 交流阻抗法交流阻抗法是一种通过施加交流电进行测试的方法。

利用交流阻抗仪测量电极的阻抗值,从而得到电化学腐蚀的相关信息,如腐蚀速率、电极界面性质等。

2.3 循环伏安法循环伏安法是一种通过改变电极电位来研究腐蚀反应的方法。

通过改变电位的范围和速率,观察电极电流的变化情况,可以得到电极表面的反应动力学参数。

以上是一些常见的电化学腐蚀实验方法和技术,科学家们利用这些方法和技术可以深入研究电化学腐蚀的机理和特性。

3. 电化学腐蚀的预防措施针对电化学腐蚀的特点和机理,制定相应的预防措施是必要的。

以下介绍几个常用的预防措施。

3.1 阳极保护阳极保护是一种通过在金属表面施加电流,使其成为电化学反应中的阴极而达到保护的方法。

3电化学腐蚀原理动力学0512


Fe3+ + e → Fe 2+
NO3 + 2 H + + 2e → NO2 + H 2O
RO + 4 H + + 4e → RH 2 + H 2O
材料的腐蚀与防护
极化
第 二 章 电 化 学 腐 蚀 原 理 当电极上有净电流通过时,电极电位显著地偏离了未 通净电流的起始电位值,这种现象叫极化。 举例
材料的腐蚀与防护
第 二 章 电 化 学 腐 蚀 原 理
根据控制步骤的不同,极化分为两类: 电化学极化 ( 活化极化 ) 浓度极化 ( 浓差极化 ) (* 电阻极化)
如果电极反应的活化能很高,电化学极化步骤变得最慢,成为控制步 骤,由此导致的极化称为电化学极化或活化极化 如果反应物由液相向电极表面或产物自电极表面向液相深处运动的液 相传质步骤最慢,由此导致的极化称为浓度极化或浓差极化。
析氢腐蚀特征: 第 二 章 电 化 学 腐 蚀 原 理
(1)浓差极化可以忽略。 (2)与溶液的pH值关系很大
pH值减少,氢离子浓度增加, 析氢电位变正,腐蚀速度增加, pH值增大, 情况相反
(3)与金属材料的本身及表面状态有关
表面粗糙度和含杂质不同,析氢过电位不同
(4)与阴极面积有关
阴极面积增加,氢过电位减小
材料的腐蚀与防护
(2)浓差极化过电位 第 二 章 电 化 学 腐 蚀 原 理
液相传质过程的三种方式:
1 对流 物质的粒子随着流动的液体而移动。引起流动的原因可能是浓度 差、温度差(自然对流)和机械搅拌作用(强制对流)。在接近 电极表面的静止层(扩散层)中,对流传质的作用不大。 2 扩散 溶液中某组分存在浓度梯度,即使在静止溶液中也会发生该组分 的自浓度高向浓度低转移的现象。 3 电迁移 对于带电荷的粒子,如果溶液中存在电场,在电场作用下将沿着 一定方向移动。

[化学]第三章 电化学局部腐蚀


五、防止缝隙腐蚀的措施:
⑴合理设计:在多数情况下设备上都会有造成缝隙的可能, 因此需用合理的设计来减轻缝隙腐蚀。图4-2是防止搭接 处缝隙腐蚀的几种设计方案比较。在带有垫片的连接件设 计时应注意垫圈尺寸要合适,否则也易出现缝隙,如图43是使用垫圈的实例。
图4-2防止搭接处缝隙腐蚀的几种设计方案比较 (a)垫圈在零件边缘凸出,垫圈 下易形成缝隙腐蚀;(b)垫圈小 时易形成脏物下的缝隙腐蚀;(c) 尺寸大小合适;(d)与加缓蚀剂 的玛蹄脂层相结合的垫圈;(e) 环形密封圈1、3——连接件; 2——垫圈;4——落入缝中的脏 物;5——加缓蚀剂的玛蹄脂层; 6——密封环 图4-3使用垫圈的实例
2、点蚀多发生于有特殊离子的介质中,如不锈钢对含有卤 素离子的介质特别敏感,其作用顺序为Cl-﹥Br-﹥I-, 这些阴离子在合金表面不均匀吸附导致膜的不均匀破坏。 3、点蚀发生在某一临界电位以上,该电位称作点蚀电位 (或击破电位),用Eb表示。如图所示,如把极化曲线回 归,又达到钝态电流所对应的电位Ep,称再钝化电位或叫 保护电位。大于Eb值,点蚀迅速发生、发展。Eb-Ep之间, 已发生的蚀孔继续发展,但不产生新的蚀孔。小于Ep值, 点蚀不发生。所以,Eb值越高,表征材料耐点蚀性能越好, Ep与Eb值越近,说明钝化膜修复能力愈强。
五、防止电偶腐蚀的措施:
⑴组装构件应尽量选择电偶序中位臵靠近的金属相 组合。 ⑵避免小阳极大阴极构件。 ⑶不同金属部件之间应绝缘。 ⑷阴极保护。 ⑸应用涂层方法防止电偶腐蚀。 (6)设计时应将阳极部件做成易更换并且价廉的材料。
第四节 晶间腐蚀

一、晶间腐蚀:常用金属及合金都是由多晶体组成。有大 量晶界和相界。在某种介质条件下,金属腐蚀可沿晶界进 行,造成了晶间腐蚀。这种腐蚀使晶粒之间失去结合力, 金属强度失去,导致构件过早破坏。应用于工程技术上的 许多合金能产生晶间腐蚀,如铁基合金,特别是不锈钢 (Fe-Cr,Fe-Cr-Ni,Fe-Cr-Ni-Mo),镍基合金、铝基合 金等。晶间腐蚀是由于晶界原子排列较为混乱,缺陷多, 已产生晶界吸附(S、P、B、Si等)或析出物(碳化物、 硫化物、σ相等)。这导致晶界与晶粒内化学成分的差异, 在适宜的介质中形成腐蚀原电池,晶界为阳极,晶粒为阴 极,晶界产生选择性溶解。

腐蚀与防护

2020.02.25第一章绪论总结:第一章概论要点:腐蚀速率的评价指标,集中腐蚀速率计算公式需要掌握作业:P12:1-5题1.5金属腐蚀的分类1.按照腐蚀机理分类金属腐蚀按照腐蚀机理可分为化学腐蚀、电化学腐蚀和物理腐蚀。

2.按金属的破坏形态分类根据金属的破坏形态,可将腐蚀分为均匀腐蚀和局部腐蚀两大类.1)均匀腐蚀均匀腐蚀是指发生在金属表面的全部或大部损坏,也称全面腐蚀,腐蚀的结果是材料的质量减少,厚度变薄。

均匀腐蚀危害性较小,只要知道材料的腐蚀速率,就可计算出材料的使用寿命。

2)局部腐蚀局部腐蚀是指只发生在金属表面的狭小区域的破坏。

其危害性比均匀腐蚀严重得多,它约占设备机械腐蚀破坏总数的70%,而且可能是突发性和灾难性的,会引起爆炸、火灾等事故。

局部腐蚀主要有5种不同的类型。

A.电偶腐蚀。

电偶腐蚀是两种电极电位不同的金属或合金互相接触,并在一定的介质中发生电化学反应,使电位较负的金属发生加速破坏的现象。

B.小孔腐蚀。

小孔腐蚀又称坑蚀和点蚀,在金属表面上极个别的区域产生小而深的孔蚀现象。

一般情况下蚀孔的深度要比其直径大的多,严重时可将设备穿通。

C.缝隙腐蚀。

缝隙腐蚀是指在电解液中金属与金属或金属与非金属表面之间构成狭窄的逢隙,缝隙内离子的移动受到了阻滞,形成浓差电池,从而使金属局部破坏的现象。

D.晶间腐蚀。

晶间腐蚀是指金属在特定的腐蚀介质中,沿着材料的晶界出现的腐蚀,使晶粒之间丧失结合力的一种局部破坏现象。

E.选择性腐蚀。

选择性腐蚀是指多元合金在腐蚀介质中,较活泼的组分优先涪解,结果造成材料强度大大下降的现象.另外,应力腐蚀也属于局部腐蚀,是力学作用引起材料的局部破坏,即金属在特定的介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力等)条件下,局部所出现的低于强度极限的脆性开裂现象。

1.6金属腐蚀速率的表示方法1.金属庸蚀逸率的重量指标金属腐蚀速率的重量指标就是把金属因腐蚀而发生的重量变化换算成相当于单位金属表面积与单位时间内的重量变化的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页眉内容 1 第三章 电化学腐蚀动力学 §3-1 电化学腐蚀过程—— 电极过程动力学基础 一. 电极过程的特征[1] 电化学腐蚀本质上是一种电极过程。 电化学反应是在两类导体界面上发生的有电子参加的氧化反应或还原反应。电极本身既是传递电子的介质,又是电化学反应的反应点。为了使这个反应在一定电位下得以在电极与溶液界面间顺利进行,不可避免地会涉及到某些与之有联系的物理和化学变化。通常将电流通过电极与溶液界面时所发生的一连串变化的总和,称为电极过程。 在两类导体界面上发生的电极过程是一种有电子参加的异相氧化还原反应。电极相当于异相反应的催化剂。因此,电极过程应当服从异相催化反应的一般规律。首先,反应是在两相界面上发生的,反应速度与界面面积的大小和界面的特性有关。其次,反应速度在很大程度上受电极表面附近微薄液层中反应物和产物的传质过程(溶液中朝着一定方向输送某种物质的过程)的影响。如果没有传质过程,则反应物来源断绝或产物疏散不出去,反应自然不能持续地进行。此外,这类反应还与新相(气体、晶体等)生成过程密切相关。但是,电极过程除了具有一般异相催化反应的共性外,还有它自己的特殊性。界面电场对电极过程速度具有重大作用。界面间电位差只要改变0.1V左右,就足以使反应速度成十倍地增加。 根据对电极反应历程的分析研究得知,它是由一系列性质不同的单元步骤组成的。除了接续进行的步骤之外,还可能由平行的步骤存在。其中包括三个必不可少的接续进行的单元步骤。1. 反应物粒子自溶液内部或自液态电极内部向电极表面附近输送的单元步骤,称为液相传质步骤;2. 反应物粒子在电极与溶液界面间得电子或失电子的单元步骤,称为电子转移步骤;3. 产物粒子自电极表面向溶液内部或向液态电极内部疏散的单元步骤,这也是个液相传质步骤;或者是电极反应生成气态或晶态(例如形成金属晶体)的产物,这个步骤称为新相生成步骤。 有时在步骤1与步骤2之间,还可能存在着反应物粒子得失电子之前,于界面附近液层中或电极上进行的某些变化,称为前置的表面转化步骤。在某些电极过程中,步骤2与步骤3之间也可能存在着电子转移步骤产物进一步转化为其它物质的反应,称为后继的表面转化步骤。 电极过程在电极与溶液界面间进行,可以用一般的表示异相反应速度的方法来描述电极过程的速度vr,即以单位表面上所消耗的反应物摩尔数表示,其单位是摩尔/秒·米2。例如反应物O与电子结合形成产物R的总反应可表示为 O + ne = R,其中n为一个反应物粒子O在反应中所需要的电子数。在电极反应的前后还有液相传质过程等步骤存在。因为在稳态下进行的各步骤速度应当相等,故可根据单位时间内这个电极反应式所需要的电量来表示这个电极过程的反应速度。 由法拉第定律可知,电极反应所消耗的反应物的克当量数等于电极上通过电量的法拉第数。因此,可将摩尔数表示的反应速度转化为克当量数,然后再将它转换成以库仑表示的电量。 在上述反应式中每个反应物粒子需要消耗n个电子。物质O的摩尔数乘以n则为克当量页眉内容 数。所以nvr的单位变成克当量/秒·米2,若以电量表示,则为法拉第/秒·米2。如果 1法拉第=F库仑=96500库仑, 则nFvr的单位变成库仑/秒·米2或安培/米2。因此 i = nFvr (3-1) 式中i为以安培/米2表示的电流密度。因为nF为常数,故i 与vr成正比。在电化学中总是习惯于用电流密度来表示反应速度。 电极过程中各个单元步骤进行的阻力并不一样大。在一定大小推动力作用下,某个单元步骤的阻力越大,它进行起来越困难,其速度也就越慢。这里所说的快慢,是指其它单元步骤不存在的条件下,该步骤单独进行时的速度。如果是几个步骤接续进行的话,在稳态下各个单元步骤的速度都应当相同。每个单元步骤单独进行时速度有大有小,说明它们所蕴藏的反应能力大小不同;几个单元步骤在稳态下接续进行时,它们的速度又都一样,这就意味着在这种情况下,某些单元步骤的反应能力得不到充分发挥。 几个接续进行的单元步骤中,如果有一个步骤的速度比其它的步骤小得多,则电极过程中每个步骤的速度,在稳态下,都应当与这个最慢步骤的速度相等,即由它来控制整个电极过程的速度。这个控制着整个电极过程速度的单元步骤,称为电极过程的速度控制步骤。只有采取措施提高速度控制步骤的速度,才能提高整个电极过程的速度。 为了使电极过程得以在所要求的速度下进行,必须增加对电极过程的推动力,即需要一定的过电位。电极过程的过电位可以是由各种不同原因引起的。根据电极过程中速度控制步骤的不同,可将过电位分为四类:(1)由电子转移步骤控制整个电极过程速度而引起的过电位,称为电子转移过电位;(2)由液相传质步骤控制整个电极过程速度而引起的过电位,称为浓度过电位;(3)由表面转化步骤为控制整个电极过程速度而引起的过电位,称为反应过电位;(4)由原子进入电极的晶格或形成新相存在困难而引起的过电位,称为结晶过电位。 当前对过电位成相过电位的分类并非都一致。例如,也有人主张把电极与溶液界面间出现的各种膜电阻(例如氧化膜)所引起的电位变化(欧姆电位降)称为欧姆过电位,将它作为过电位的另一种类型。还有人把电子转移过电位与反应过电位合在一起,称为活化过电位,因为它们均与反应的活化自由焓有关。 应当注意,当电极过程受到几个步骤共同控制时的过电位,并不等于这几个步骤独自作为控制步骤时得出的各个过电位的总和,而仍然相当于其中“最慢”步骤的过电位。 改变速度控制步骤的速度就可以改变整个电极过程的速度,所以在电极过程中找出它的速度控制步骤,显然是一个很重要的任务。为此,首先要通过实验对每个单元步骤的动力学特征分别进行研究,采取措施使电极过程中其它步骤都远比需要研究的步骤容易进行,或者是使其它单元步骤的影响变成已知的,从而可以定量地修正它对我们需要研究的步骤的干扰。这样就可以研究出某一单元步骤的特征和影响这个步骤速度的各个因素。 掌握了各单元步骤的动力学特征后,可以把由实验得到的我们需要研究的电极过程动力学特征加以分析。如果它与某个单元步骤动力学特征相同,即某个单元步骤的动力学公式可以代表整个电极过程的动力学公式,则这个单元步骤就是电极过程的速度控制步骤。影响这个单元步骤速度的因素,也就是影响整个电极过程速度的因素。 页眉内容 3 二. 电化学极化过程 电极过程中至少要有一个步骤是电子转移步骤,其特点是反应发生在电极与溶液界面之间,而且有电子直接参加。电极过程中的电子转移步骤可能不止一个,在电子转移步骤前后也常常还存在着各种形式的表面转化步骤,由这些步骤组成了整个电极反应。无论其中哪一个步骤成为速度控制步骤,在外电流通过电极时,都将引起电极电位偏离平衡电位。我们将电极反应不可逆而产生的这种极化称为电化学极化。在很多情况下,尽管电极反应本身是可逆的,可以在平衡电位下进行;但是在电极表面附近液层中,由于反应消耗的反应物得不到及时补充,或者是聚积在电极表面附近的产物不能及时疏散开,就相当于把电极浸在一个较稀或较浓的溶液中。这种情况下的电极电位,自然与依照溶液总体浓度计算出的平衡电位不一样,即电极电位也偏离了平衡电位,通常将这种极化称为浓度极化。 如果对溶液加强搅拌,加速溶液的流动,使得液相传质步骤没有任何困难,那么整个电极过程的速度就可以是由电子转移步骤或表面转化步骤控制。因为电子转移步骤是电化学中的核心问题,这里要重点讨论一下电子转移步骤为控制步骤时的动力学公式。 在进行电子转移步骤时,意味着电极上发生了两件事:一个是有化学反应发生,另一个是有电流通过。电子转移步骤将化学反应与电流紧密地联系在一起。 有些电子转移反应不是发生在两类导体的界面上,而是在溶液的体相内部发生。这种情况下的电子转移是杂乱无章的,方向是任意的,所以不能形成电流。例如对于溶液中存在Fe2+ - e = Fe3+平衡来说,只要溶液中存在着可以接受Fe2+给出的电子的粒子,例如Cr2O72-可以按照下列反应式接受电子 Cr2O7- + 14H+ + 6e = 2Cr3+ + 7H2O 电子转移反应就可以发生。这种反应显然不是我们这里讨论的对象。 在电极上发生的电子转移反应是具有方向性的,或者是反应物将电子传给电极,发生氧化反应;或者反应物从电极得到电子发生还原反应。二者总是同时存在的。如果在同一电极上的两个方向的反应速度相等,则宏观上看来无电流表现;但当二者反应速度不同时,就会在电极上产生静电流(外电流)。当还原反应速度大于氧化反应速度时,电极上产生阴极电流;反之,则产生阳极电流。 设电极反应为R →O + ne,其中O为氧化产物,R为还原产物。在推导电子转移步骤反应速度与电极电位的关系时,我们假定液相传质步骤速度很快,紧靠电极表面的液层中反应物与产物的浓度与溶液内部的总体浓度相同,并且认为正在参加电极反应的反应物位于外紧密层。为了使问题简化,我们还规定物质O与物质R以及溶液中的局外电解质均不能吸附于电极上。此外还假定电极本身与物质O和物质R之间不存在任何化学的相互作用。 根据过渡状态理论,反应物O转变为产物R时需要越过一定的势垒,即需越过图3-1中的过渡态#,此时单位面积上的阳极反应和阴极反应速率分别为:

氧化反应(阳极):RoaRaoaCKRTWCAv)exp(1 (3-2)

还原反应(阴极):OocOcocCKRTWCAv)exp(2 (3-3) 页眉内容 若用电流密度表示反应速度,则分别为: RoaoaoaCnFKnFvi (3-4)

OocococCnFKnFvi (3-5) 式中,W1为反应过渡态与反应始态(图3-1中状态I)间标准自由焓之差,即氧化反应的标准活化自由焓(活化能);W2为反应过渡态与反应终态(图3-1中状态II)间标准自由焓之差,即还原反应的标准活化自由焓(活化能);caAA,为指前因子;ocoaKK,为=0时的反应速度,CO与CR分别表示物质O与物质R在总体溶液中的活度。 在平衡电位下,电极反应处于一种动态平衡,即ocoavv,净反应速度为零,宏观上无反应物的消耗和生成物的产生,因此oocoaiii,其中oi称为交换电流密度,是平衡电位下单向氧化或单向还原的电流密度,它与反应体系中各组分的浓度有关,是衡量电化学极化难易—极化容量的主要标志。oi值越大,越难极化,oi→∝时,则无论通过多大的净电流也不会引起电化学极化,具有这样性能的电极称为“理想可逆电极”或“理想不极化电极”。例如作为参比电极的饱和甘汞电极,其oi在0.1A/cm-2数量级。oi值越小,越容易极化,当oi→0时,则只要有微小净电流就会引起显著的电化学极化,具有这样性能的电极称为“理想不可逆电极”或“理想极化电极”。例如极谱分析中的滴汞电极,已知氢在汞上的oi在0.1A/cm-12数量级。 oi是电化学极化中很重要的动力学参数。

相关文档
最新文档