2016年浙江省衢州市中考数学试卷参考答案与试题解析
2023年浙江省衢州市中考数学真题(含答案解析)

试卷第 1页,共 7页
A. BEA
B. DEB
C. ECA
D. ADO
7.如图,在 ABC 中,以点 A 为圆心,适当长为半径画弧,分别交 AB , AC 于点 D,
E.分别以点 D,E 为圆心,大于 1 DE 长为半径画弧,交于 BAC 内一点 F.连结 AF 并 2
延长,交 BC 于点 G.连结 DG , EG .添加下列条件,不能使 BG CG 成立的是( )
选择其中任一航班,则他们选择同一航班的概率等于
.
13.在如图所示的方格纸上建立适当的平面直角坐标系,若点 A 的坐标为 0,1 ,点 B
的坐标为 2, 2 ,则点 C 的坐标为
.
14.如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽 ABCD 是矩形.当餐盘正
立且紧靠支架于点 A,D 时,恰好与 BC 边相切,则此餐盘的半径等于
cm.
15.如图,点 A、B 在 x 轴上,分别以 OA ,AB 为边,在 x 轴上方作正方形 OACD ,ABEF .反
比例函数 y k k 0 的图象分别交边 CD ,BE 于点 P,Q.作 PM x 轴于点 M,QN y
x
轴于点 N.若 OA 2AB ,Q 为 BE 的中点,且阴影部分面积等于 6,则 k 的值为
答案第 1页,共 20页
【点睛】本题考查了中位数,众数,方差,平均数,熟知以上概念是解题的关键. 5.A 【分析】代入 x, y 的值,逐一判断即可解答.
【详解】解:当
x y
1 2
时,方程左边
2
1
3
2
8
,方程左边
方程右边,故
A
符合题意;
x 2
当
初中数学浙江省衢州市中考模拟数学考试卷及答案解析.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:比0小1的数是()A.0 B.﹣1 C.1 D.±1试题2:下列几何体中,俯视图是圆的几何体是()A. B.C. D.试题3:计算(a2)3,正确结果是()A.a5 B.a6 C.a8 D.a9试题4:如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. B. C. D.试题5:要使二次根式有意义,则x的值可以为()A.0 B.1 C.2D.4试题6:不等式组的解集在数轴上表示正确的是()A.B.C.D.试题7:某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461 B.180(1+x)2=461C.368(1﹣x)2=442 D.368(1+x)2=442试题8:过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.试题9:二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位试题10:如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. B. C. D.试题11:一元一次方程2x+1=3的解是x=.试题12:定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.试题13:某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,则这组数据的中位数是.试题14:小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为dm.试题15:如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.试题16:图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA =60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.试题17:计算:|﹣2|+()0﹣+2sin30°.试题18:先化简,再求值:÷,其中a=3.试题19:如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).试题20:某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.3 25B 4.8≤x≤5.0 115C 4.4≤x≤4.7 mD 4.0≤x≤4.3 52(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?试题21:如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.试题22:2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?试题23:如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=﹣x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.试题24:如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.试题1答案:B【分析】根据题意列式计算即可得出结果.解:0﹣1=﹣1,即比0小1的数是﹣1.故选:B.试题2答案:A【分析】分别找出从图形的上面看所得到的图形即可.解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.故选:A.试题3答案:B【分析】根据幂的乘方法则进行计算即可.解:由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选:B.试题4答案:A【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:=.故选:A.试题5答案:D【分析】根据二次根式有意义的条件可得x﹣3≥0,再解即可.解:由题意得:x﹣3≥0,解得:x≥3,故选:D.试题6答案:C【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.解:,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.试题7答案:B【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.试题8答案:D【分析】根据平行线的判定方法一一判断即可.解:A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.试题9答案:C【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.故选:C.试题10答案:A【分析】先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADG中,根据勾股定理得,DE=AD=,故选:A.试题11答案:1【分析】将方程移项,然后再将系数化为1即可求得一元一次方程的解.【解答】解;将方程移项得,2x=2,系数化为1得,x=1.故答案为:1.试题12答案:x2﹣1【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.解:根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.试题13答案:5【分析】先根据平均数的定义计算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.试题14答案:(4+)【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,∴图2中h的值为(4+)dm.故答案为:(4+).试题15答案:40【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k 的意义,确定点F的坐标,进而确定k的值即可.解:过点M作MN⊥AD,垂足为N,则MN=AD=3,在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8﹣3=5,设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),∴8x=(x+3)×5,解得,x=5,∴F(5,8),∴k=5×8=40.故答案为:40.试题16答案:160【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∵=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.试题17答案:解:原式=2+1﹣3+2×=2+1﹣3+1=1.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.试题18答案:解:原式=•(a﹣1)=,当a=3时,原式==.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.试题19答案:解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取).(2)如图,直线l即为所求、【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.试题20答案:解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×=18°,即组别A的圆心角度数是18°;(3)25000×=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.试题21答案:【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.试题22答案:解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣4﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,∴21.6h或22.4h时游轮与货轮何时相距12km.【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.(3)分两种情形分别构建方程求解即可.试题23答案:解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣x+4,∴x=0时,y=4,∴A(0,4),又∵B(﹣2,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(﹣m,﹣2m+4),∴ER=2m,FR=﹣2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣+4=0,得x=,∴0≤m≤.∴当m=1时,l的最小值为8,∴EF的最小值为2.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,FR=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=,m2=2(不合题意,舍去),∴m=.综合以上可得,当△BEF为直角三角形时,m=0或m=.【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.试题24答案:(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=2x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.【分析】(1)如图1中,△AFG是等腰三角形.利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F 在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.。
2023年浙江省衢州市中考数学真题合集试卷附解析

2023年浙江省衢州市中考数学真题合集试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.在平面直角坐标系内有一点 P (tan45°,sin60°),则点P 关于x 轴的对称点 P 1 的坐 标为( )A .(-1,32) B . (32,-1) C .(1,32-)D .(32-,1) 3.如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为E ,若 AB = 10,AE =8,则CD 的长为( )A .8B .6C .4D .54. 在同一直角坐标平面内,如果直线y =k 1x 与双曲线y =k 2x没有交点,那么k 1和k 2的关系一定是( )A .k 1<0,k 2>0B .k 1>0,k 2<0C .k 1、k 2同号D .k 1、k 2异号5. 已知反比例函数y =k x(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非正数D .不能确定6.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A .4种B .3种C .2种D .1种7.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数的图象,图中 s 和t 分别表示运动的路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A . 2.5mB .2mC .1.5 mD . 1mA .B .C .D .8.如图,AB ∥CD ,则∠α,∠β,∠γ之间的关系为( )A .∠α+∠β+∠γ=360°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α+∠β+∠γ=180°9.已知关于x 的不式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .2 B . 2.1 C .3 D .110.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.纸笔测试 实践能力 成长记录 甲 90 83 95 乙88 90 95 丙90 88 90 ) A .甲 B .乙和丙C .甲和乙D .甲和丙 11.若2x <,则2|2|x x --的值为( ) A .-1 B .0 C .1 D . 212.有一个商店把某种商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减 价20%,以96元出售,很快就卖掉了,则这次生意的盈亏情况为 ( )A .赚6元B .不亏不赚C .亏4元D .亏24元13.223(3)-+-的值是( ) A .-12 B . 0 C .-18D .18 二、填空题14.如图,在⊙O 中,已知20=∠OAC °,OA ∥CD ,则 =∠AOD .15.如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 . 16.如图所示,是某单位职工的年龄(取正整数)的频数分布直方图,根据图中提供的信息,回答下列问题(每组可含最低值,不含最高值).(1)该单位共有职工 人; (2)不小于36岁但小于42岁的职工占总人数的百分比是 ;(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有 人.解答题17.如图,在△ABC 中,AB=AC ,AD 、CE 分别平分∠BAC 与∠ACB ,AD 与 CE 相交于点 F .若∠B =62° , 则∠AFC = .18.计算:①a ·a 3 = ;②(a 5 )2 ·a 3 = .19.驴子和骡子驮着货物并排在路上走着,驴子不停地理怨主人给它驮的货物太重,压得实在受不了. 骡子说:“你发什么牢骚啊 ! 我比你驮得多 ! 如果你给我一袋,我驮的袋数就是你的两倍.”驴子反驳说:“没那么回事,只要你给我一袋,我们就一样多了 !”你能算出驴子和骡子各驮几袋货物吗?设驴子驮x 袋货物,骡子驮y 袋货物,则可列出方程组 .20.如图①是棱长为a 的小正方体,图②、图③由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,……,第n 层.第n 层的小正方体的个数为 .(用含行的代数式表示).当层数为l0时,第10层小正方体的个数为 .三、解答题21.如图,它是实物与其三种视图,在三视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.22.如图所示,AB 是⊙O的直径,CD 切⊙O于点 C,若 QA= 1,∠BCD= 60°,求∠BAC 的度数和 AC 的长.23.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB为半径作圆弧⌒BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a,求该圆锥的底面半径.24.抛物线212y x =与函数4y x=-的图象是否有交点?若有,请求出交点,若没有,请说明理由.25.如图,在梯形ABCD 中,AB ∥DC ,DA ⊥AB ,∠B=45°,延长CD 到点E ,使DE=DA ,连接AE .(1)求证:AE ∥BC ;(2)若AB=3,CD=1,求四边形ABCE 的面积.26.写出下列命题的逆命题,并判断逆命题的真假,如果是假命题请反举例说明.(1)对顶角相等;(2)等腰三角形的两底角的平分线相等;(3)在三角形中,钝角所对的边最大.27.如图,已知从△ABC 到△DEF 是一个相似变换,OD 与OA 的长度之长为1:3.(1)DE 与AB 的长度之比是多少?(2)已知△ABC 的周长是24cm ,面积是36cm 2,分别求△DEF 的周长和面积.28.分解因式:(1)-4x 3+16x 2-16x ; (2)21a 2(x-2a)2-41a(2a-x)3; (3)21ax 2y 2+2axy+2a ; (4)(x 2-6x)2+18(x 2-6x)+81;29.在如图所示的七巧板中,(第l0题)(1)你能观察到哪些几何图形? (2)图中小正方形⑤的面积是大正方形面积的几分之几?(3)你还能用七巧板拼出一些图案吗?30.如图,有一个转盘,转盘分成五个相等的扇形,并在每个扇形上分别标上数字“1,2,3,4,5”五个数字,小明转动了 100 次,并记录下指针指向数字 1 的次数.(1)请将上表补充完整. (2)根据上表,估计转动转盘,指针指向“1”的概率是多少?转动次数指向“ 1”的次数 指向数字“ 1”的频率 20 240 760 1280 1810021【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.D5.D6.B7.C8.C9.A10.C11.A12.C13.B二、填空题14.40°15. 142n - 16.(1)50;(2)54%;(3)1517.121°18.134,a a 19.2(1)111x y x y -=+⎧⎨+=-⎩20. 1(1)2n n +;55三、解答题21.22.连结 OC ,∵CD 是⊙O 的切线,∠BCD= 60°,∴∠BCO=30°.∵AB 是⊙O 的直径,∴∠OCA=60°,∵ AO=CO ,∴△AOC 是正三角形,∴∠BAC=60°,∵OA=1,∴AC=123.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 24.2142x x =-,即38x =-,∴x =—2,∴21(2)22y =⨯-= ∴抛物线212y x =与函数4y x=-的图象有一个交点,是(—2,2) 25. (1)证明:45AB DC DA AB B ⊥∠=∵∥,,°,135C DA DE ∠=⊥∴°,.又DE DA =∵,45E ∠=∴°.180C E ∠+∠=∴°,AE BC ∴∥.(2)解:AE BC CE AB ∵∥,∥,∴四边形ABCE 是平行四边形.3CE AB ==∴.2DA DE CE CD ==-=∴.∴四边形ABCE 的面积为CE ×AD=3×2=6.26.(1)逆命题:相等的角是对顶角,是假命题,举例略;(2)逆命题:若一个三角形有两个角的平分线相等,则这个三角形是等腰三角形,是真命题;(3)逆命题:在三角形中,最大边所对的角是钝角,是假命题.如直角三角形27.(1)1:3;(2)8cm ,4cm 228.(1)2)2(4--x x ;(2)2)2(41a x ax -;(3)2)2(21+xy a ;(4)4)3(-x . 29.(1)三角形、平行四边形、正方形等 (2)18(3)略 30.(1)如表:(2)P1=0.217。
2016年中考数学试卷含答案(精选4套真题)

扬州市2016年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .12- 2.函数1y x =-中自变量x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数25221则这12名队员年龄的众数、中位数分别是 ( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁 7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
最新浙江省衢州市中考数学试卷原卷附解析

浙江省衢州市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( ) A .相交或相切B .相交或内含C .相交或相离D .相切或相离2.如图,已知AD 为等腰三角形ABC 底边上的高,且tan ∠B=34,AC 上有一点E ,满足AE ∶EC=2∶3.那么,tan ∠ADE 是( ) A .53 B .32 C .21 D .31 3.如图,A 、B 、C 是⊙O 上的三点,若∠BOC=2∠BOA ,则∠CAB 是∠ACB 的( ) A .2 倍B .4 倍C .12D . 1倍4.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A .43>m B .43≥m C .43>m 且2≠m D .43≥m 且2≠m5.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( ) A .75°B .45°C .30°D .15°6.设221P y y =++,21Q y =+,如果P Q >,那么必有( ) A .0y >B .0y <C .0y ≥D .0y ≤7.如图为小刚一天中的作息时间分配比例扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需减少( ) A . 15分B . 48分C .60分 105分8.下列方程中,是一元一次方程的为( ) A .x+y=1B .2210x x -+=C .21x= D .x=0二、填空题9.太阳光线可以看成是 ,像这样的光线所形成的投影称为 .10.一元二次方程(x+6)2=5可转化为两个一次方程,其中一个一次方程是x+6= 5 ,则另一个一次方程是 . 11.说明是菱形的条件: (1)一组 相等的 ; (2)四边相等的 .; (3)对角线 的平行四边形.12.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______°.13.已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成 组.14.函数y =2-x 中的自变量x 的取值范围是 .15.一次函数2(1)3y m x m =-++的图象与y 轴的交点的纵坐标足4,则m 的值是 . 16.P(2,a ),Q(b ,-3)关于x 轴对称,则a = ,b = . 17.和小于 15 的最大的三个连续正整数是 . 18.若a 、b 、c 为△ABC 的三边,则a b ca b c---+ 0(填“>”、“=”或“<”) .19.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 . 20.某校对七年级500名学生数学考试成绩作了一次统计,各个分数段的情况如图所示,则: 分数段的人数最多; 分数段的人数最少; 分数段的人数接近整体的13;在96~108分之间的有 人.21.合并同类项22224-25x xy x y x -+= .22.已知多项式539ax bx cx +++,当1x =-时,多项式的值为17,则该多项式当x=1时的值是 .三、解答题23.如图,小明与小华爬山时遇到一条笔直的石阶路,路的一侧设有与坡面AB 平行的护栏MN (MN=AB ).小明量得每一级石阶的宽为32cm ,高为24cm ,爬到山顶后,小华数得石阶一共200级,如果每一级石阶的宽和高都一样,且构成直角,请你帮他们求出坡角∠BAC 的大小(精确到度)和护栏MN 的长度.以下数据供选用:tan3652120.7500,tan53748 1.3333,sin3652120.6000,sin537480.8000''''''''''''︒=︒=︒=︒=24.如图,AB 为圆0 的直径,P 为AB 的延长线上一点,PT 切⊙O 于 T ,若 PT= 6,PB=3,求⊙O 的直径.25.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心0 按逆时针方向旋转的角度约为多少呢(假设绳索与滑轮之间没有滑动,π 取 3. 14,结果精确到1°)?26.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.27.如图是由大小一样的小正方形组成的网格,△ABC的三个顶点落在小正方形的顶点上. 画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的所有三角形.28.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线应该是多少条?简要地写出你的思考过程.29.画图.(1)已知线段a、b(a>b),画图:①a-b;②a+b.(2)已知∠α、∠β,画图:①∠α+∠β;②∠β-∠α30.计算:;(3)2008123()(1)2--+-;(4)23--结果保留 3个有效数字).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.C5.D6.A7.C8.D二、填空题9.平行光线,平行投影10.x+6=- 511.(1)邻边,平行四边形;(2)四边形;(3)互相垂直12.6013.614.x ≥215.-116.3,217.3,4,518.<19.略20.72~96;108~120;96~108;15021.2224x xy +22.1三、解答题 23.AC =0.32×200=64(米),BC =0.24×200=48(米),48tan 0.75,3764BAC BAC ∠==∠≈︒所以 ,80MN AB ==(米)答:坡脚约37︒,护栏长80米.24.连结 TO.∵ PT 与⊙O 相切,∴∠.OTP=90°.在 Rt △OTP 中,2226(3)r r +=+,得92r =,∴⊙O 的直径长为 9. 25.旋转的角度约为:018010573.1410⨯≈⨯26.(1) 60 (2)12x =,24x =-27.28.凸八边形的对角线有20条. 思考一:通过列表归纳分析得到下表: 由上表可知凸八边形有对角线2+3+4+5+6=20(条). 思考二:从凸八边形的每一个顶点出发可以作出 8(8-3)=40(条)对角线,但每一条对角线对应两个顶点,∴40÷2=20(条)对角线29.略30.(1)4;(2)32-(3) -14;(4) -3.50 边数45 6 7 8 对角线条数 22+32+3+42+3+4+52+3+4+5+6。
专题26 动态几何之面动形成的函数关系问题(压轴题)-决胜2021中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2016贵州省黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.考点:动点问题的函数图象;动点型;分类讨论.2.(2016甘肃省天水市)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A.B.C.D.【答案】B.【分析】分为0<x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解析】如图1所示:当0<x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,∴△DBC′为等边三角形,∴DE=32BC′=32x,∴y=12BC′•DE=23x.当x=1时,y=3,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×32=34,∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=12B′C•DE=23(2)x ,函数图象为抛物线的一部分,且抛物线开口向上.故选B.考点:动点问题的函数图象;分类讨论;分段函数.3.(2015年辽宁铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB 向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是()A. B. C. D.【答案】D.【考点】面动问题的函数图象,相似三角形的判定和性质,数形结合思想和分类思想的应用.【分析】设GE=a,EF=b,AE=m,AB=c,Rt△EFG向右匀速运动的速度为1,当E点在点A左侧时,S=0.4.(2015年山东省潍坊市)如图,在矩形ABCD中,AB=4cm,AD=23cm,E为CD边上的中点,点P从点A 沿折线AE﹣EC运动到点C时停止,点Q从点A沿折线AB﹣BC运动到点C时停止,它们运动的速度都是1cm/s.如果点P,Q同时开始运动,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数关系的图象可能是()A. B. C. D.【答案】B.考点:1.动点问题的函数图象;2.动点型;3.分段函数;4.分类讨论.5.(2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B. C. D.【答案】B.【考点】1.面动平移问题的函数图象问题;2.由实际问题列函数关系式;3.二次函数的性质和图象;4.分类思想和排它法的应用.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式应用排它法判断函数的图象的形状: ①当t ≤1时,两个三角形重叠面积为小三角形的面积, ∴133y 1224=⋅⋅=.故可排除选项D . ②当1<x ≤2时,重叠三角形的边长为2﹣x ,高为()322x -,∴()()()232x 13y 2x x 2224-=⋅-⋅=-,它的图象是开口向上,顶点为()2,0 的抛物线在1<x ≤2的部分. 故可排除选项A ,C . 故选B .6.(2014年辽宁抚顺3分)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB =2,AN =x ,BM =y ,则能反映y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A .【考点】1.动点问题的函数图象;2. 等腰直角三角形的判定和性质;3.相似三角形的判定和性质;4. 反比例函数图象..【分析】如答图,作PH ⊥AB 于H ,∵△PAB 为等腰直角三角形,∴∠A =∠B =45°,AH =BH =AB =1, ∴△PAH 和△PBH 都是等腰直角三角形. ∴PA =PB =2AH =2,∠HPB =45°.∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,而∠CPD =45°,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM.而∠A=∠B,∴△ANP∽△BPM,∴AP ANBM BP=,即2xy2=,∴2yx=.∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选A.二、填空题三、解答题7.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A 出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)4;(2)163;(3)2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得==,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当163<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.【解析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=42,所以x=422=4.故答案为:4.(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,∵AP=2x,∴EF=PE=x,∴y=S△PEF=12•PE•EF=212x.②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=822x,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ﹣S△MEG=22 11(822)(163) 22x x---=2732642x x-+-.③当163<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ=212PQ=21(822)2x-=21664x x-+.综上所述2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.考点:三角形综合题;分类讨论;分段函数;动点型;压轴题.8.(2016吉林省长春市)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD时,t的值为.【答案】(1)EF3;(2)t=83;(3)22823 (0)353824332 3 (4)23t tSt t⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)t=4;t=3.【分析】(1)由题意知:A E =2t ,由锐角三角函数即可得出EF =3t ;(2)当H 与D 重合时,FH =GH =8﹣t ,由菱形的性质和EG ∥AD 可知,AE =EG ,解得t =83; (3)矩形EFHG 与菱形ABCD 重叠部分图形需要分以下两种情况讨论:①当H 在线段AD 上,此时重合的部分为矩形EFHG ;②当H 在线段AD 的延长线上时,重合的部分为五边形;(4)当OO ′∥AD 时,此时点E 与B 重合;当OO ′⊥AD 时,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,然后分别求出O ′M 、O ′F 、FM ,利用勾股定理列出方程即可求得t 的值.【解析】(1)由题意知:A E =2t ,0≤t ≤4,∵∠BAD =60°,∠AFE =90°,∴sin ∠BAD =EFAB,∴EF 3; (2)∵AE =2t ,∠AEF =30°,∴AF =t ,当H 与D 重合时,此时FH =8﹣t ,∴GE =8﹣t ,∵EG ∥AD ,∴∠EGA =30°,∵四边形ABCD 是菱形,∴∠BAC =30°,∴∠BAC =∠EGA =30°,∴AE =EG ,∴2t =8﹣t ,∴t =83; (3)当0≤t ≤83时,此时矩形EFHG 与菱形ABCD 重叠部分图形为矩形EFHG ,∴由(2)可知:A E =EG =2t ,∴S =EF •EG 3•2t =223t ; 当83<t ≤4时,如图1,设CD 与HG 交于点I ,此时矩形EFHG 与菱形ABCD 重叠部分图形为五边形FEGID ,∵AE =2t ,∴AF =t ,EF 3,∴DF =8﹣t ,∵AE =EG =FH =2t ,∴DH =2t ﹣(8﹣t )=3t ﹣8,∵∠HDI =∠BAD =60°,∴tan ∠HDI =HI DH ,∴HI 3,∴S =EF •EG ﹣12DH •HI =223238)t t -=253243323t +- 综上所述:22823 (0)353824332 3 (4)23t t S t t ⎧≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(4)当OO ′∥AD 时,如图2,此时点E 与B 重合,∴t =4;当OO ′⊥AD 时,如图3,过点O 作OM ⊥AD 于点M ,EF 与OA 相交于点N ,由(2)可知:A F =t ,AE =EG =2t ,∴FN =33t ,FM =t ,∵O ′O ⊥AD ,O ′是FG 的中点,∴O ′O 是△FNG 的中位线,∴O ′O =12FN =36t ,∵AB =8,∴由勾股定理可求得:OA =43OM =23O ′M =323,∵FE 3,EG =2t ,∴由勾股定理可求得:227FG t =,∴由矩形的性质可知:221'4O F FG =,∵由勾股定理可知:222''O F O M FM =+,∴22273(23)46t t t =-+,∴t =3或t =﹣6(舍去). 故答案为:t =4;t =3.考点:四边形综合题;动点型;分类讨论;分段函数;压轴题.9.(2016四川省乐山市)在直角坐标系xOy 中,A (0,2)、B (﹣1,0),将△ABO 经过旋转、平移变化后得到如图1所示的△BCD .(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将△ABC 的面积分成1:3两部分,求此时点P 的坐标;(3)现将△ABO 、△BCD 分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO 与△BCD 重叠部分面积的最大值.【答案】(1)231222y x x =-++;(2)P (25-,3925)或P (67-,2349);(3)2552. 【分析】(1)由旋转,平移得到C (1,1),用待定系数法求出抛物线解析式; (2)先判断出△BEF ∽△BAO ,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0).C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +),再分两种情况进行计算即可.(2)如图1所示,设直线PC 与AB 交于点E .∵直线PC 将△ABC 的面积分成1:3两部分,∴13AE BE =或3AEBE=,过E 作EF ⊥OB 于点F ,则EF ∥OA ,∴△BEF ∽△BAO ,∴EF BE BF AO BA BO ==,∴当13AE BE =时,3241EF BF==,∴EF =32,BF =34,∴E (14-,32),∴直线PC 解析式为2755y x =-+,∴2312722255x x x -++=-+,∴125x =-,21x =(舍去),∴P (25-,3925);当3AE BE =时,同理可得,P (67-,2349).(3)设△ABO 平移的距离为t ,△A 1B 1O 1与△B 2C 1D 1重叠部分的面积为S .由平移得,A 1B 1的解析式为y =2x +2﹣t ,A 1B 1与x 轴交点坐标为(22t -,0). C 1B 2的解析式为1122y x t =++,C 1B 2与y 轴交点坐标为(0,12t +).①如图2所示,当305t <<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为四边形.设A 1B 1与x 轴交于点M ,C 1B 2与y 轴交于点N ,A 1B 1与C 1B 2交于点Q ,连结OQ .由由221122y x t y x t =+-⎧⎪⎨=++⎪⎩,得43353t x t y -⎧=⎪⎪⎨⎪=⎪⎩,∴Q (433t -,53t ),∴1251134()223223QMO QNO t t t S S S t ∆∆--=+=⨯⨯+⨯+⨯=2131124t t -++,∴S 的最大值为2552.②如图3所示,当3455t ≤<时,△A 1B 1O 1与△B 2C 1D 1重叠部分为直角三角形. 设A 1B 1与x 轴交于点H ,A 1B 1与C 1D 1交于点G ,∴G (1﹣2t ,4﹣5t ),∴D 1H =2451222t tt --+-=,D 1G =4﹣5t ,∴S =12D 1H ×D 1G =21451(45)(54)224t t t --=-,∴当3455t ≤<时,S 的最大值为14.综上所述,在此运动过程中△ABO 与△BCD 重叠部分面积的最大值为2552. 考点:二次函数综合题;几何变换综合题;动点型;最值问题;二次函数的最值;分类讨论;压轴题. 10.(2016浙江省衢州市)如图1,在直角坐标系xoy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴、y 轴的垂线,垂足为A 、C ,点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 或轴对称的△BC ′D . (1)当∠CBD =15°时,求点C ′的坐标.(2)当图1中的直线l 经过点A ,且33k =-时(如图2),求点D 由C 到O 的运动过程中,线段BC ′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C ′时(如图3),以DE 为对称轴,作于△DOE 或轴对称的△DO ′E ,连结O ′C ,O ′O ,问是否存在点D ,使得△DO ′E 与△CO ′O 相似?若存在,求出k 、b 的值;若不存在,请说明理由.【答案】(1)C ′(23-,1);(2)233π-;(3)存在,k =34-,b =1. 【分析】(1)利用翻折变换的性质得出∠CBD =∠C ′BD =15°,C ′B =CB =2,进而得出CH 的长,进而得出答案;(2)首先求出直线AF 的解析式,进而得出当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,求出即可;(3)根据题意得出△DO ′E 与△COO ′相似,则△COO ′必是Rt △,进而得出Rt △BAE ≌Rt △BC ′E (HL ),再利用勾股定理求出EO 的长进而得出答案.【解析】(1)∵△CBD ≌△C ′BD ,∴∠CBD =∠C ′BD =15°,C ′B =CB =2,∴∠CBC ′=30°,如图1,作C ′H ⊥BC 于H ,则C ′H =1,HB 3CH =23,∴点C ′的坐标为:(23,1);(2)如图2,∵A (2,0),3k =,∴代入直线AF 的解析式为:3y x b =+,∴b 23AF 的解析式为:32333y x =-+,∴∠OAF =30°,∠BAF =60°,∵在点D 由C 到O 的运动过程中,BC ′扫过的图形是扇形,∴当D 与O 重合时,点C ′与A 重合,且BC ′扫过的图形与△OAF 重合部分是弓形,当C ′在直线32333y x =-+上时,BC ′=BC =AB ,∴△ABC ′是等边三角形,这时∠ABC ′=60°,∴重叠部分的面积是:22602323604π⨯-⨯=233π-;考点:相似形综合题;动点型;存在型;压轴题.(1)求二次函数2y x bx c =-++的表达式; (2)连接 B C ,当t =56时,求△BCP 的面积; (3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 O →A 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 D Q 、 PQ ,将△DPQ 沿直线 PC 折叠到 △DPE .在运动过程中,设 △DPE 和 △OAB 重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.【答案】(1)2543y x x =-++;(2)4;(3)22241215 (0)2551714414436155 ()2755511172t t t S t t t ⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.【分析】(1)直接将A 、B 两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP 的面积,必须求对应的底和高,即PC 和BD ;先求OD ,再求BD ,PC 是利用点P 和点C 的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE 完全在△OAB 中时,即当15017t ≤≤时,如图2所示,重合部分的面积为S 就是△DPE 的面积;②△DPE 有一部分在△OAB 中时,当155172t ≤≤时,如图4所示,△PDN 就是重合部分的面积S .【解析】(1)把A (3,0),B (0,4)代入2y x bx c =-++中得:4930c b c =⎧⎨-++=⎩,解得:534b c ⎧=⎪⎨⎪=⎩,∴解析式为:2543y x x =-++; (2)如图1,当56t =时,AP =2t ,∵PC ∥x 轴,∴OB AB OD AP =,∴452OD t =,∴OD =85t =8556⨯=43,当y =43时,43=2543x x -++,23580x x --=,解得:11x =-,283x =,∴C (﹣1,43),由BD PD OB OA =,得44343PD -=,则PD =2,∴S △BCP =12×PC ×BD =18323⨯⨯=4;(3)分两种情况讨论:①如图3,当点E 在AB 上时,由(2)得OD =QM =ME =85t ,∴EQ =165t ,由折叠得:EQ ⊥PD ,则EQ ∥y 轴,∴EQ AQ OB OA =,∴163543tt-=,∴t =1517,同理得:PD =635t -,∴当15017t ≤≤时,S=S△PDQ=12×PD×MQ=168(3)255t t-⋅,22412255S t t=-+;②当155172t≤≤时,如图4,P′D′=635t-,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,165t),∵AB的解析式为:443y x=-+,D′E的解析式为:8855y x t=+,则交点N(15611t-,82411t+),∴S=S△P′D′N=12×P′D′×FN=168248(3)()25115tt t+-⋅-,∴2144144362755511S t t=-+.综上所述:22241215(0)2551714414436155()2755511172t t tSt t t⎧-+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩.考点:二次函数综合题;动点型;分段函数;分类讨论;压轴题.12.(2016辽宁省大连市)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x 的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同).(1)填空:B C的长是;(2)求S关于x的函数关系式,并写出x的取值范围.【答案】(1)3;(2)222544(01) 39336133 (1)136613(3) (3)56x x xS x xx x⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S四边形ECAG即可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC﹣S△BDF ﹣S四边形ECAG即可解决.③如图3中,根据S=12CD•CM,求出CM即可解决问题.②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵222AN CN AC=+,∴2222(3)x x=+-,∴x=136,∴当1316x<≤时,S=S△ABC﹣S△BDF=26313x-;③如图3中,当1336x<≤时,∵DM∥AN,∴CD CMCN CA=,∴313236x CM-=-,∴CM=12(3)5x-,∴S=12CD•CM=26(3)5x-.综上所述:222544 (01)39336133 (1)136613(3) (3)56x x x S x x x x ⎧-++≤≤⎪⎪⎪=-<≤⎨⎪⎪-<≤⎪⎩.考点:四边形综合题;分段函数;分类讨论;动点型;压轴题. 13.(2016辽宁省抚顺市)如图,抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),作CD ∥x 轴交抛物线于点D ,作DE ⊥x 轴,垂足为E ,动点M 从点E 出发在线段EA 上以每秒2个单位长度的速度向点A 运动,同时动点N 从点A 出发在线段AC 上以每秒1个单位长度的速度向点C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t 秒. (1)求抛物线的解析式;(2)设△DMN 的面积为S ,求S 与t 的函数关系式; (3)①当MN ∥DE 时,直接写出t 的值;②在点M 和点N 运动过程中,是否存在某一时刻,使MN ⊥AD ?若存在,直接写出此时t 的值;若不存在,请说明理由.【答案】(1)222493y x x =-++;(2)S =20.8 5.212t t -+(0<t ≤3);(3)①t =3013;②t =9047. 【分析】(1)根据抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),可以求得b 、c 的值,从而可以求得抛物线的解析式;(2)要求△DMN 的面积,根据题目中的信息可以得到梯形AEDC 的面积、△ANM 的面积、△MDE 的面积、△CND 的面积,从而可以解答本题;(3)①根据MN ∥DE ,可以得到△AMN 和△AOC 相似,从而可以求得t 的值;②根据题目中的条件可以求得点N 、点M 、点A 、点D 的坐标,由AD ⊥MN 可以求得相应的t 的值.【解析】(1)∵抛物线229y x bx c =-++经过点A (﹣3,0),点C (0,4),∴22(3)(3)094b c c ⎧-⨯-+⨯-+=⎪⎨⎪=⎩,解得:234b c ⎧=⎪⎨⎪=⎩,即抛物线的解析式为:222493y x x =-++; =12(3+6)×4-12×(6-2t )×0.8t -12×2t ×4-12×3×(4-0.8t ) =20.8 5.212t t -+,即S 与t 的函数关系式是S =20.8 5.212t t -+(0<t ≤3); (3)①当MN ∥DE 时,t 的值是3013,理由:如右图2所示 ∵MN ∥DE ,AE =6,AC =5,AO =3,∴AM =6﹣2t ,AN =t ,△AMN ∽△AOC ,∴AM AN AO AC =,即6235t t-=,解得,t =3013; ②存在某一时刻,使MN ⊥AD ,此时t 的值是9047,理由:如右图3所示,设过点A (﹣3,0),C (0,4)的直线的解析式为y=kx+b,则:304k bb-+=⎧⎨=⎩,得:434kb⎧=⎪⎨⎪=⎩,即直线AC的解析式为443y x=+,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入443y x=+,得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t ﹣3,0.8t),AD⊥MN,∴400.8013(3)(0.63)(32)tt t--⋅=------,解得:t=9047.考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.14.(2016辽宁省沈阳市)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线23320y x x m=-+与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【答案】(1)①10,0,8,10;②F (4,8);③233520y x x =-+;(2)不变.S 1S 2=189. 【分析】(1)①根据四边形OCKB 是矩形以及对称轴公式即可解决问题. ②在RT △BKF 中利用勾股定理即可解决问题.③设OA =AF =x ,在RT △ACF 中,AC =8﹣x ,AF =x ,CF =4,利用勾股定理即可解决问题. (2)不变.S 1S 2=189.由△GHN ∽△MHG ,得GH HN MH GH=,得到2GH =HN •HM ,求出2GH ,根据S 1S 2=12•OG •HN •12•OG •HM 即可解决问题. 【解析】(1)如图1中,①∵抛物线23320y x x m =-+的对称轴x =2ba-=10,∴点B 坐标(10,0),∵四边形OBKC 是矩形,∴CK =OB =10,KB =OC =8,故答案分别为10,0,8,10.②在RT △FBK 中,∵∠FKB =90°,BF =OB =10,BK =OC =8,∴FK 22BF BK -,∴CF =CK ﹣FK =4,∴点F 坐标(4,8).③设OA =AF =x ,在RT △ACF 中,∵222AC CF AF +=,∴222(8)4x x -+=,∴x =5,∴点A 坐标(0,5),代入抛物线23320y x x m =-+得m =5,∴抛物线为233520y x x =-+. (2)不变.S 1S 2=189.理由:如图2中,在RT △EDG 中,∵GE =EO =17,ED =8,∴DG 22GE DE -22178-,∴CG =CD ﹣DG =2,∴OG 22OC CG +2282+217,∵CP ⊥OM ,MH ⊥OG ,∴∠NPN =∠NHG =90°,∵∠HNG +∠HGN =90°,∠PNM +∠PMN =90°,∠HNG =∠PNM ,∴∠HGN =∠NMP ,∵∠NMP =∠HMG ,∠GHN =∠GHM ,∴△GHN ∽△MHG ,∴GH HN MH GH=,∴2GH =HN •HM ,∵GH =OH 17,∴HN •HM =17,∵S 1S 2=12•OG •HN •12•OG •HM =21(217)172⨯⨯=289.考点:二次函数综合题;翻折变换(折叠问题);相似三角形的判定与性质;定值问题;动点型;压轴题.15.(2015重庆市)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C 重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣12t,∴DN=DH﹣NH=3﹣(2﹣12t)=12t+1.在Rt△DMN中,DM2=DN2+MN2=(12t+1)2+ t 2=54t2+t+1.(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即54t2+t+1=(14t2﹣2t+8)+(t2﹣4t+13),解得:t=207.(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(14t2﹣2t+8)+(54t2+t+1),解得:t1=﹣17,t2=﹣317.∴t=﹣17(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即14t2﹣2t+8=(t2﹣4t+13)+(54t2+t+1),此方程无解.综上所述,当t=207或﹣17B′DM是直角三角形;(3)22214 t0t43 124t t t2833S3510t2t2t8331510t t4223⎧⎛⎫≤≤⎪⎪⎝⎭⎪⎪⎛⎫-+-≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-+-≤⎪⎪⎝⎭⎪⎛⎫⎪-+≤⎪⎪⎝⎭⎩<<<.【考点】相似三角形的判定和性质,勾股定理和逆定理,正方形的性质,直角梯形的性质,平移的性质.③如图⑤,当G在CD上时,B′C:C H=B′G:D H,即B′C:4=2:3,解得:B′C=83,∴EC=4﹣t=B′C﹣2=23.∴t=103.∵B′N=12B′C=12(6﹣t)=3﹣12t,∴GN=GB′﹣B′N=12t﹣1.16.(2015江苏苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s 的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求出y =3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.【考点】正方形的性质,一元二次方程的应用,等腰直角三角形的性质,矩形的性质,解直角三角形,锐角三角函数定义,特殊角的三角函数值.∠∠可解出x的值.【分析】(1)根据题意表示出AG、GD的长度,再由tan CGD=tan PAG(2)利用(1)得出的y与x的关系式表示出S1、S2,然后作差即可.(3)延长PD交AC于点Q,然后判断△DGP是等腰直角三角形,从而结合x的范围得出x的值,在Rt△DGP 中,解直角三角形可得出PD的长度.17.(2015攀枝花)如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.【答案】(1)D(﹣4,3),P(﹣12,8);(2)424 (06)318 (614)t tSt t-+≤≤⎧=⎨-<≤⎩;(3)6.(2)当点P在边AB上时,BP=6﹣t,由三角形的面积公式得出S=12BP•AD;②当点P在边BC上时,BP=t﹣6,同理得出S=12BP•AB;即可得出结果;(3)设点D(45t-,35t);分两种情况:①当点P在边AB上时,P(485t--,85t),由PE CDOE CB=和PE CBOE CD=时;分别求出t的值;②当点P在边BC上时,P(1145t-+,365t+);由PE CDOE CB=和PE CBOE CD=时,分别求出t的值即可.试题解析:(1)延长CD交x轴于M,延长BA交x轴于N,如图1所示:则CM⊥x轴,BN⊥x轴,AD∥x轴,BN∥DM,∵四边形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴BD=2268+=10,当t=5时,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴23AB AD BDBN NO BO===,即6823BN NO==,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);②当点P在边BC上时,P(1145t-+,365t+),若PE CDOE CB=时,366518145tt+=-,解得:t=6;若PE CBOE CD=时,368516145tt+=-,解得:19013t=(不合题意,舍去);综上所述:当t=6时,△PEO与△BCD相似.考点:1.四边形综合题;2.动点型;3.分类讨论;4.分段函数;5.压轴题.18.(2015桂林)如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动. (1)直接写出抛物线的解析式:;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.【答案】(1)21382y x x =-++;(2)2152S t t =-+,当t =5时,S 最大=252;(3)存在,P (343,2009-)或P (8,0)或P (43,1009).(3)由(2)知:当t =5时,S 最大=252,进而可知:当t =5时,OC =5,OD =3,进而可得CD =34,从而确定C ,D 的坐标,即可求出直线CD 的解析式,然后过E 点作EF ∥CD ,交抛物线与点P ,然后求出直线EF 的解析式,与抛物线联立方程组解得即可得到其中的一个点P 的坐标,然后利用面积法求出点E 到CD 的距离,过点D 作DN ⊥CD ,垂足为N ,且使DN 等于点E 到CD 的距离,然后求出N 的坐标,再过点N 作NH ∥CD ,与抛物线交与点P ,然后求出直线NH 的解析式,与抛物线联立方程组求解即可得到其中的另两个点P 的坐标.(3)由(2)知:当t =5时,S 最大=252,∴当t =5时,OC =5,OD =3,∴C (0,5),D (3,0),由勾股定理得:C D =34,设直线CD 的解析式为:y kx b =+,将C (0,5),D (3,0),代入上式得:k =53-,b =5,∴直线CD 的解析式为:553y x =-+,过E 点作EF ∥CD ,交抛物线与点P ,如图1,过点E作EG⊥CD,垂足为G,∵当t=5时,S△ECD=12CD•EG=252,∴EG=253434,过点D作DN⊥CD,垂足为N,且使DN=253434,过点N作NM⊥x轴,垂足为M,如图2,综上所述:当△CED的面积最大时,在抛物线上存在点P(点E除外),使△PCD的面积等于△CED的最大面积,点P的坐标为:P(343,2009)或P(8,0)或P(43,1009).考点:1.二次函数综合题;2.二次函数的最值;3.动点型;4.存在型;5.最值问题;6.分类讨论;7.压轴题.19.(2014年甘肃天水12分)如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE =90°,CD =4,DE =43,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数. (2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.(3)在Rt △CDE 的运动过程中,设AC =h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.【答案】解:(1)如图2,∵在平面直角坐标系中,点A (0,﹣6),点B (6,0),∴OA =OB ,∴∠OAB =45°. ∵∠CDE =90°,CD =4,DE =43,∴DEtan OCE 3CD∠==.∴∠OCE =60°. ∴∠CMA =∠OCE ﹣∠OAB =60°﹣45°=15°.∴∠BME =∠CMA =15°. (2)如图3,∵∠CDE =90°,CD =4,DE =43,∴CD 3tan DEC DE ∠==.∴∠DEC =30°. ∵DE ∥x 轴,∴∠OBC =∠DEC =30°. ∵OB =6,∴BC =43.(3)①当h ≤2时,如答图1,作MN ⊥y 轴交y 轴于点N ,作MF ⊥DE 交DE 于点F , ∵CD =4,DE =43,AC =h ,AN =NM , ∴CN =4﹣FM ,AN =MN =4+h ﹣FM , ∵△CMN ∽△CED ,∴CN MNCD DE =,即4FM 443-=. 解得31FM 4h +=-. ∴S =S △EDC ﹣S △EFM =()2113131443434h4h h 4h 822⎛⎫++⋅⋅-⋅--⋅-=-++ ⎪ ⎪⎝⎭, 此时,S 最大=153-.②当2<h 623≤-时,如答图2,由(2)可知,在Rt △CDE 的运动过程中,当CE 经过点B 时,BC =43,此时OC =23,h 623=-,S =S △ABC ﹣S △ACM =211313366h h h 18h 2224⎛⎫++⋅⋅-⋅⋅+=- ⎪ ⎪⎝⎭, 此时,S 最大不超过153-. ③当623<h 6-≤时,如答图3,S =S △OCF =()()()2113OC OF 6h 36h 6h 222⋅⋅=⋅-⋅-=-,此时,S 最大不超过63.∵153********>0--=-, ∴面积S 的最大值为153-. 综上所述,S 与h 之间的函数关系式为()()()()22231h 4h 8h 2433S 18h 2<h 623436h 623<h 62⎧+-++≤⎪⎪⎪+⎪=-≤-⎨⎪⎪--≤⎪⎪⎩,面积S 的最大值为153-.【考点】1.面动平移问题;2.点的坐标;3. 锐角三角函数定义;4.特殊角的三角函数值;5.相似三角形的判定和性质;6.由实际问题列函数关系式;7.二次函数的性质;8.分类思想、数形结合思想和转换思想的应用.【分析】(1)如图2,由对顶角的定义知,∠BME =∠CMA ,所以欲求∠BME 的度数,需求∠CMA 的度数.根据三角形外角定理进行解答即可.(2)如图3,通过解直角△BOC 来求BC 的长度.(3)需要分类讨论:①h ≤2时,②当2<h 623≤-时,③当623<h 6-≤时.20.(2014年辽宁营口14分)已知:抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0),B (3,0),C (0,﹣3). (1)求抛物线的表达式及顶点D 的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC 与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.【答案】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3),∴9a3b c0a b c0c3++=⎧⎪++=⎨⎪=-⎩,解得a1b4c3=-⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为y=﹣x2+4x﹣3.∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点D的坐标为(2,1).(2)存在.设直线BC的解析式为:y=kx+m,则3k m0m3+=⎧⎨=-⎩,解得k1m3=⎧⎨=-⎩.设P(x,﹣x2+4x﹣3),则F(x,x﹣3),∴PF=(﹣x2+4x﹣3)﹣(x﹣3)=﹣x2+3x=239x24⎛⎫--+⎪⎝⎭.∴当x=32时,PF有最大值为94.∴存在一点P,使线段PE的长最大,最大值为94.(3)∵A(1,0)、B(3,0)、D(2,1)、C(0,﹣3),∴可求得直线AD的解析式为:y=x﹣1;直线BC的解析式为:y=x﹣3.∴AD ∥BC ,且与x 轴正半轴夹角均为45°. ∵AF ∥y 轴,∴F (1,﹣2),∴AF =2.①当0≤t ≤2时,如答图1所示.此时四边形AFF ′A ′为平行四边形. 设A ′F ′与x 轴交于点K ,则AK =2AA ′=2t .∴S =S ▱AFF ′A ′=AF •AK =2×2t =2t . ②当2<t ≤22时,如答图2所示.设O ′C ′与AD 交于点P ,A ′F ′与BD 交于点Q , 则四边形PC ′F ′A ′为平行四边形,△A ′DQ 为等腰直角三角形. ∴S =S ▱PC ′F ′A ′﹣S △A ′DQ =()221121t 2t 2t 122⋅--=-++.③当22<t ≤32时,如答图3所示.设O ′C ′与BD 交于点Q ,则△BC ′Q 为等腰直角三角形. ∵BC =32,CC ′=t ,∴BC ′=32﹣t .∴S =S △BC ′Q =()221132t t 32t 922-=-+. 综上所述,S 与t 的函数关系式为:()()()222t 0t 21S t 2t 12<t 2221t 32t 922<t 322⎧≤≤⎪⎪⎪=-++≤⎨⎪⎪-+≤⎪⎩ .【考点】1.二次函数综合题;2.单动点和面动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二函数的性质;6.由实际问题列函数关系式;7.分类思想和转换思想的应用. 【分析】(1)应用待定系数法即可求得抛物线的解析式,然后化为顶点式即可求得顶点的坐标. (2)先求得直线BC 的解析式,设P (x ,﹣x 2+4x ﹣3),则F (x ,x ﹣3),根据PF 等于P 点的纵坐标﹣F 点的纵坐标即可求得PF 关于x 的函数关系式,从而求得P 的坐标和PF 的最大值. (3)在运动过程中,分三种情形,需要分类讨论,避免漏解.21.(2014年四川资阳12分)如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x =1.。
浙江省衢州市初中中考数学试卷习题包括答案详析.doc
2017 年浙江省衢州市中考数学试卷及解析一、选择题(共10 小题,每小题 3 分,满分 30 分)1.( 3 分)(2017?德州)﹣ 2 的倒数是()A.﹣B. C.﹣ 2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣ 2 的倒数是﹣.故选: A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3 分)(2017?衢州)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B. C. D.【分析】主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是: 2, 1;依此即可求解.【解答】解:主视图是从正面看所得到的图形,由图中小立方体的搭法可得主视图是.故选: D.【点评】此题主要考查了简单组合体的三视图,关键是掌握三种视图所看的位置.3.( 3 分)(2017?衢州)下列计算正确的是(2262 3 A.2a+b=2ab B.(﹣ a) =a C.a ÷a =a)D.a3?a2=a6【分析】根据整式的运算法则即可求出答案.【解答】解:(A)2a 与 b 不是同类项,故不能合并,故 A 不正确;(C)原式 =a4,故 C不正确;(D)原式 =a5,故 D不正确;故选( B)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.( 3 分)(2017?衢州)据调查,某班20 位女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)34 35 36 37 38 人数 2 5 10 2 1A.35 码, 35 码B.35 码, 36 码C.36 码, 35 码D. 36 码, 36 码【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据36 出现了 10 次,次数最多,所以众数为36,一共有 20 个数据,位置处于中间的数是:36,36,所以中位数是( 36+36)÷2=36.故选 D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.( 3 分)(2017?衢州)如图,直线AB∥ CD,∠ A=70°,∠ C=40°,则∠ E 等于()A.30°B.40°C.60°D.70°【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠ E 的度数.【解答】解:如图,∵ AB∥ CD,∠ A=70°,∴∠ 1=∠A=70°,∵∠ 1=∠C+∠E,∠ C=40°,∴∠ E=∠1﹣∠ C=70°﹣ 40°=30°.故选: A.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.6.( 3 分)(2017?衢州)二元一次方程组的解是()A.B. C. D.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把 y=2 代入①得到 x=4,∴,故选 B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.7.(3 分)(2017?衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点 P 作已知直线的垂线的作法正确.故选: C.【点评】此题主要考查了基本作图,正确把握作图方法是解题关键.8.(3 分)(2017?衢州)如图,在直角坐标系中,点A 在函数 y=( x>0)的图象上, AB⊥x 轴于点 B,AB的垂直平分线与y 轴交于点 C,与函数 y=(x>0)的图象交于点 D,连结 AC,CB, BD,DA,则四边形 ACBD的面积等于()A.2 B.2C. 4D.4【分析】设 A( a,),可求出 D(2a,),由于对角线垂直,计算对角线乘积的一半即可.【解答】解:设 A(a,),可求出 D(2a,),∵AB⊥CD,∴S 四边形ACBD=AB?CD=× 2a×=4,故选 C.【点评】本题主要考查了反比例函数系数k 的几何意义以及线段垂直平分线的性质,解题的关键是设出点 A 和点 B 的坐标.9.( 3 分)(2017?衢州)如图,矩形纸片ABCD中, AB=4,BC=6,将△ ABC 沿 AC折叠,使点 B 落在点 E 处, CE交 AD于点 F,则 DF的长等于()A.B. C. D.【分析】根据折叠的性质得到AE=AB,∠ E=∠B=90°,易证 Rt△ AEF≌Rt△CDF,即可得到结论 EF=DF;易得 FC=FA,设 FA=x,则 FC=x,FD=6﹣x,在Rt△ CDF中利用勾股定理得到关于 x 的方程 x2=42+(6﹣x)2,解方程求出 x.【解答】解:∵矩形ABCD沿对角线 AC对折,使△ ABC落在△ ACE的位置,∴AE=AB,∠ E=∠B=90°,又∵四边形 ABCD为矩形,∴AB=CD,∴AE=DC,而∠ AFE=∠ DFC,∵在△ AEF与△ CDF中,,∴△ AEF≌△ CDF(AAS),∴EF=DF;∵四边形 ABCD为矩形,∴AD=BC=6,CD=AB=4,∵R t △AEF≌Rt△CDF,∴FC=FA,设 FA=x,则 FC=x,FD=6﹣x,22222 2在 Rt△CDF中, CF=CD+DF,即 x =4 +(6﹣x),解得 x=,则 FD=6﹣x=.故选: B.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定AB是理.10.(3 分)(2017?衢州)运用图形变化的方法研究下列问题:如图,⊙O的直径, CD、 EF是⊙ O 的弦,且 AB∥CD∥EF,AB=10,CD=6, EF=8.则图中阴影部分的面积是()A.πB.10πC.24+4πD.24+5π【分析】作直径 CG,连接 OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明 DG=EF,则 S 扇形ODG=S 扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S △AEF,则S阴影=S扇形 OCD+S扇形 OEF=S扇形 OCD+S扇形 ODG=S半圆,即可求解.【解答】解:作直径CG,连接 OD、OE、OF、 DG.∵CG是圆的直径,∴∠ CDG=90°,则 DG===8,又∵ EF=8,∴DG=EF,∴=,∴S 扇形ODG=S扇形OEF,∵AB∥CD∥ EF,∴S△OCD=S△ACD,S△OEF=S△AEF,2∴S 阴影 =S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S 半圆 =π× 5 =π.【点评】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.二、填空题(本题共有 6 小题,每小题 4 分,共 24 分)11.(4 分)(2017?衢州)二次根式中字母a的取值范围是a≥2.【分析】由二次根式中的被开方数是非负数,可得出a﹣2≥0,解之即可得出结论.【解答】解:根据题意得:a﹣ 2≥ 0,解得: a≥2.故答案为: a≥2.【点评】本题考查了二次根式有意义的条件,牢记“二次根式中的被开方数是非负数”是解题的关键.12.(4 分)(2017?衢州)化简: = 1.【分析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.【解答】解:原式 ==1.【点评】本题考查了分式的加减运算.最后要注意将结果化为最简分式.13.(4 分)(2017?衢州)在一个箱子里放有 1 个白球和 2 个红球,它们除颜色外其余都相同,从箱子里摸出 1 个球,则摸到红球的概率是.【分析】由一个不透明的箱子里共有 1 个白球, 2 个红球,共 3 个球,它们除颜色外均相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的箱子里有 1 个白球, 2 个红球,共有 3 个球,∴从箱子中随机摸出一个球是红球的概率是;故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4 分)(2017?衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为 3 的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=( a+3)2﹣32,=(a+3+3)(a+3 3),=a( a+6),∵拼成的方形一a,∴另一是 a+6.故答案: a+6.【点】本考了平方差公式的几何背景,表示出剩余部分的面是解的关.15.(4 分)(2017?衢州)如,在直角坐系中,⊙A 的心 A 的坐(1,0),半径 1,点 P 直 y= x+3 上的点,点 P 作⊙ A 的切,切点Q,切 PQ的最小是 2 .【分析】接 AP, PQ,当 AP 最小, PQ最小,当 AP⊥直 y= x+3 ,PQ最小,根据两点的距离公式得到 AP=3,根据勾股定理即可得到.【解答】解:如,作 AP⊥直 y= x+3,垂足 P,作⊙ A 的切 PQ,切点 Q,此切 PQ 最小∵ A 的坐( 1,0),y= x+3 可化 3x+4y 12=0,∴AP==3,∴PQ==2.【点】本主要考切的性,掌握切点的半径与切垂直是解的关,用切的性来行算或,常通作助接心和切点,利用垂直构造直角三角形解决有关.16.(4 分)(2017?衢州)如,正△ ABO的 2,O坐原点, A 在 x上, B 在第二象限,△ ABO沿 x 正方向作无滑的翻,一次翻后得到△ A B O,翻 3 次后点 B 的点的坐是(5,),翻 2017 次后 AB1 1中点 M的路径(+896)π.【分析】如作 B3E⊥x 于 E,易知 OE=5,B3E=,察象可知 3 三次一个循,一个循点 M的运路径 ++=()π,由 2017÷3=672⋯1,可知翻 2017 次后 AB中点 M的路径672?()π +π=( +896)π.【解答】解:如作B3E⊥x 于 E,易知 OE=5, B3 E=,∴B3( 5,),察象可知 3 三次一个循,一个循点M的运路径 ++=()π,∵2017÷3=672⋯1,∴翻 2017 次后 AB中点 M的路径 672?()π +π=( +896)π.故答案( +896)π.【点】本考迹、律、扇形的面公式、等三角形的性等知,解的关是灵活运用所学知解决,循从特殊到一般的探究方法,属于中考常考型.三、解答(本共有 8 小,第 17-19 小每小 6 分,第 20-21 小每小 6 分,第 22-23 小每小 6 分,第 24 小 12 分,共 66 分,必写出解答程)17.(6 分)(2017?衢州)算: +(π 1)0×| 2| tan60 °.【分析】按照数的运算法依次算,注意:tan60 °=,(π 1)0=1.【解答】解:原式 =2+1×2 =2+.【点】本考特殊三角函数,数的运算.任何不等于0 的数的0 次是 1.18.(6 分)(2017?衢州)解下列一元一次不等式:.【分析】分求出每一个不等式的解集,根据口:同大取大、同小取小、大小小大中找、大大小小无解了确定不等式的解集.【解答】解:解不等式x≤2,得: x≤4,解不等式 3x+2>x,得: x> 1,不等式的解集 1<x≤4.【点】本考的是解一元一次不等式,正确求出每一个不等式解集是基,熟知“同大取大;同小取小;大小小大中找;大大小小找不到”的原是解答此的关.19.(6 分)(2017?衢州)如, AB半 O的直径, C BA延上一点,CD切半 O于点 D,接 OD.作 BE⊥CD于点 E,交半 O于点 F.已知 CE=12,BE=9.(1)求证:△ COD∽△ CBE.(2)求半圆 O的半径 r 的长.【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠ CDO,再由∠ C= ∠C,得出△ COD∽△ CBE.(2)由勾股定理求出 BC==15,由相似三角形的性质得出比例式,即可得出答案.【解答】(1)证明:∵ CD切半圆 O于点 D,∴CD⊥OD,∴∠ CDO=90°,∵BE⊥CD,∴∠ E=90°=∠ CDO,又∵∠ C=∠ C,∴△ COD∽△ CBE.(2)解:在 Rt △BEC中, CE=12, BE=9,∴BC==15,∵△ COD∽△ CBE.∴,即,解得: r= .【点评】本题考查了切线的性质、相似三角形的判定及其性质、勾股定理;熟练掌握相似三角形的判定与性质是解决问题的关键.20.(8 分)(2017?衢州)根据衢州市统计局发布的统计数据显示,衢州市近5 年国民生产总值数据如图 1 所示, 2016 年国民生产总值中第一产业,第二产业,第三产业所占比例如图 2 所示.请根据图中信息,解答下列问题:(1)求 2016 年第一产业生产总值(精确到 1 亿元)(2)2016 年比 2015 年的国民生产总值增加了百分之几(精确到1%)(3)若要使 2018 年的国民生产总值达到1573 亿元,求 2016 年至 2018 年我市国民生产总值的平均增长率(精确到1%)【分析】(1)2016 年第一产业生产总值 =2016 年国民生产总值× 2016 年第一产业国民生产总值所占百分率列式计算即可求解;(2)先求出 2016 年比 2015 年的国民生产总值增加了多少,再除以2015年的国民生产总值即可求解;(3)设 2016 年至 2018 年我市国民生产总值的平均增长率为x,那么 2017年我市国民生产总值为1300(1+x)亿元,2018 年我市国民生产总值为1300(1+x)(1+x)亿元,然后根据 2018 年的国民生产总值要达到 1573 亿元即可列出方程,解方程就可以求出年平均增长率.【解答】解:(1)1300×%≈92(亿元).答: 2016 年第一产业生产总值大约是 92 亿元;(2)(1300﹣1204)÷ 1204×100%=96÷1204×100%≈8%.答: 2016 年比 2015 年的国民生产总值大约增加了8%;x,(3)设 2016 年至 2018 年我市国民生产总值的年平均增长率为2依题意得 1300(1+x) =1573,∴1+x=±,∴x=10%或 x=﹣(不符合题意,故舍去).答: 2016 年至 2018 年我市国民生产总值的年平均增长率约为10%.【点评】此题主要考查了一元二次方程的应用中增长率的问题,一般公式为原来的量×( 1±x)2=后来的量,其中增长用 +,减少用﹣.21.(8 分)(2017?衢州)“五 ?一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为 x 小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出 y1,y2关于 x 的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1, y2 关于 x 的函数表达式即可;(2)当 y1=y2时, 15x+80=30x,当 y1>y2时, 15x+80>30x,当 y1<y2时,15x+80> 30x,分求得 x 的取值范围即可得出方案.【解答】解:(1)设 y1=k1x+80,把点( 1,95)代入,可得95=k1+80,解得 k1=15,∴y1=15x+80(x≥0);设y2 =k2x,把( 1, 30)代入,可得30=k2,即 k2=30,∴y2=30x(x≥0);(2)当 y1 =y2时, 15x+80=30x,解得 x=;当y1>y2时, 15x+80>30x,解得 x<;当y1<y2时, 15x+80>30x,解得 x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数 y=kx,只要一对 x,y 的值;而求一次函数y=kx+b,则需要两组 x,y 的值.22.(10 分)(2017?衢州)定义:如图1,抛物线 y=ax2+bx+c( a≠0)与 x 轴交于 A, B 两点,点 P 在该抛物线上( P 点与 A、B 两点不重合),如果△ ABP 222 2的三边满足 AP+BP=AB,则称点 P 为抛物线 y=ax +bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1 的勾股点的坐标.(2)如图 2,已知抛物线 C:y=ax2+bx(a≠0)与 x 轴交于 A,B 两点,点 P( 1,)是抛物线 C 的勾股点,求抛物线C 的函数表达式.(3)在( 2)的条件下,点Q在抛物线 C 上,求满足条件S△ABQ=S△ABP的 Q点(异于点 P)的坐标.【分析】(1)根据抛物线勾股点的定义即可得;(2)作 PG⊥x 轴,由点 P 坐标求得 AG=1、 PG=、PA=2,由 tan ∠ PAB==知∠PAG=60°,从而求得 AB=4,即 B(4,0),待定系数法求解可得;(3)由 S△ABQ=S△ABP且两三角形同底,可知点Q到 x 轴的距离为,据此求解可得.2【解答】解:(1)抛物线 y=﹣x +1 的勾股点的坐标为( 0, 1);2(2)抛物线 y=ax +bx 过原点,即点 A(0,0),如图,作 PG⊥x 轴于点 G,∵点 P 的坐标为( 1,),∴AG=1、PG=,PA===2,∵tan ∠ PAB==,∴∠ PAG=60°,在Rt△PAB中, AB===4,∴点 B 坐标为( 4,0),设 y=ax(x﹣4),将点 P(1,)代入得: a=﹣,∴y=﹣x(x﹣4) =﹣ x2+x;(3)①当点 Q在 x 轴上方时,由 S△ABQ=S△ABP知点 Q的纵坐标为,则有﹣ x2+x=,解得: x1=3,x2=1(不符合题意,舍去),∴点 Q的坐标为( 3,);②当点 Q在 x 轴下方时,由 S△ABQ=S△ABP知点 Q的纵坐标为﹣,则有﹣ x2+x=﹣,解得: x1=2+,x2=2﹣,∴点 Q的坐标为( 2+,﹣)或( 2﹣,﹣);综上,满足条件的点Q有 3 个:(3,)或( 2+,﹣)或( 2﹣,﹣).【点评】本题主要考查抛物线与x 轴的交点及待定系数法求函数解析式,根据新定义求得点 B 的坐标,并熟练掌握待定系数求函数解析式及三角形面积问题是解题的关键.23.(10 分)(2017?衢州)问题背景如图 1,在正方形 ABCD的内部,作∠ DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图 2,在正△ ABC的内部,作∠ BAD=∠CBE=∠ACF,AD,BE, CF 两两相交于 D,E,F 三点( D, E, F 三点不重合)(1)△ ABD,△ BCE,△ CAF是否全等如果是,请选择其中一对进行证明.(2)△ DEF是否为正三角形请说明理由.(3)进一步探究发现,△ ABD的三边存在一定的等量关系,设 BD=a,AD=b,AB=c,请探索 a,b,c 满足的等量关系.【分析】(1)由正三角形的性质得出∠CAB=∠ABC=∠BCA=60°, AB=BC,证出∠ ABD=∠BCE,由 ASA证明△ ABD≌△ BCE即可;(2)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠ FDE=∠ DEF=∠EFD,即可得出结论;(3)作 AG⊥BD于 G,由正三角形的性质得出∠ ADG=60°,在 Rt △ADG 中,DG=b,AG=b,在 Rt△ABG中,由勾股定理即可得出结论.【解答】解:(1)△ ABD≌△ BCE≌△ CAF;理由如下:∵△ ABC是正三角形,∴∠ CAB=∠ ABC=∠BCA=60°, AB=BC,∵∠ ABD=∠ ABC﹣∠ 2,∠ BCE=∠ACB﹣∠ 3,∠ 2=∠ 3,∴∠ ABD=∠ BCE,在△ ABD和△ BCE中,,∴△ ABD≌△ BCE(ASA);(2)△ DEF是正三角形;理由如下:∵△ ABD≌△ BCE≌△ CAF,∴∠ ADB=∠ BEC=∠CFA,∴∠ FDE=∠ DEF=∠EFD,∴△ DEF是正三角形;(3)作 AG⊥BD于 G,如图所示:∵△ DEF是正三角形,∴∠ ADG=60°,在Rt△ADG中, DG=b,AG=b,在Rt△ABG中, c2=(a+b)2 +( b)2,∴c2=a2+ab+b2.【点评】本题是综合题目,考查了正三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,熟练掌握正三角形的判定与性质,证明三角形全等是解决问题的关键.24.(12 分)(2017?衢州)在直角坐标系中,过原点 O及点 A(8,0),C (0,6)作矩形 OABC、连结 OB,点 D 为 OB的中点,点 E 是线段 AB上的动点,连结DE,作 DF⊥DE,交 OA于点 F,连结 EF.已知点 E 从 A 点出发,以每秒 1 个单位长度的速度在线段 AB上移动,设移动时间为 t 秒.(1)如图 1,当 t=3 时,求 DF的长.(2)如图 2,当点 E 在线段 AB上移动的过程中,∠ DEF的大小是否发生变化如果变化,请说明理由;如果不变,请求出tan ∠DEF的值.(3)连结 AD,当 AD将△ DEF分成的两部分的面积之比为 1:2 时,求相应的 t 的值.【分析】( 1)当 t=3 时,点 E 为 AB的中点,由三角形中位线定理得出 DE∥OA,DE=OA=4,再由矩形的性质证出 DE⊥AB,得出∠ OAB=∠DEA=90°,证出四边形DFAE是矩形,得出 DF=AE=3即可;(2)作 DM⊥ OA于 M,DN⊥AB于 N,证明四边形 DMAN是矩形,得出∠ MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△ DMF∽△ DNE,得出 =,再由三角函数定义即可得出答案;(3)作作 DM⊥ OA于 M,DN⊥ AB于 N,若 AD将△ DEF的面积分成 1:2的两部分,设 AD交 EF 于点 G,则点 G为 EF的三等分点;①当点 E 到达中点之前时, NE=3﹣ t ,由△ DMF∽△ DNE得: MF=( 3﹣ t ),求出AF=4+MF=﹣t+ ,得出 G(,t ),求出直线 AD的解析式为 y=﹣x+6,把 G(,t )代入即可求出 t 的值;②当点 E 越过中点之后, NE=t﹣3,由△ DMF∽△ DNE得:MF=(t ﹣3),求出AF=4﹣MF=﹣ t+ ,得出 G(,t ),代入直线 AD的解析式 y=﹣ x+6 求出 t 的值即可.【解答】解:(1)当 t=3 时,点 E 为 AB的中点,∵A(8,0),C( 0, 6),∴OA=8,OC=6,∵点 D 为 OB的中点,∴DE∥OA, DE=OA=4,∵四边形 OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠ OAB=∠DEA=90°,又∵ DF⊥DE,∴∠ EDF=90°,∴四边形 DFAE是矩形,∴DF=AE=3;(2)∠ DEF的大小不变;理由如下:作DM⊥OA于 M,DN⊥AB于 N,如图 2 所示:∵四边形 OABC是矩形,∴OA⊥AB,∴四边形 DMAN是矩形,∴∠ MDN=90°, DM∥ AB,DN∥OA,∴, =,∵点 D 为 OB的中点,∴M、N分别是 OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠ EDF=90°,∴∠ FDM=∠ EDN,又∵∠ DMF=∠DNE=90°,∴△ DMF∽△ DNE,∴=,∵∠ EDF=90°,∴t an ∠ DEF==;(3)作 DM⊥OA于 M, DN⊥AB于 N,若AD将△ DEF的面积分成 1:2 的两部分,设 AD交EF 于点 G,则点 G为 EF的三等分点;①当点 E 到达中点之前时,如图 3 所示, NE=3﹣t ,由△ DMF∽△ DNE得: MF=(3﹣t ),∴AF=4+MF=﹣t+ ,∵点 G为 EF 的三等分点,∴G(, t ),设直线 AD的解析式为 y=kx+b,把 A( 8,0),D(4,3)代入得:,解得:,∴直线 AD的解析式为 y=﹣x+6,把 G(, t )代入得: t= ;②当点 E 越过中点之后,如图 4 所示, NE=t﹣3,由△ DMF∽△ DNE得: MF=(t ﹣3),∴AF=4﹣MF=﹣t+ ,∵点 G为 EF 的三等分点,∴G(, t ),代入直线 AD的解析式 y=﹣x+6 得: t= ;综上所述,当 AD将△ DEF分成的两部分的面积之比为1: 2 时, t 的值为或【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、三角形中位线定理、相似三角形的判定与性质、平行线分线段成比例定理、一次函数解析式的求法等知识;本题综合性强,难度较大.。
中考数学真题知识分类练习试卷:有理数(含答案)
有理数一、单选题1.【湖南省娄底市中考数学试题】的相反数是()A. B. C. - D.【答案】C2.【山东省德州市中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市中考数学试题】计算的结果是()A. 0B. 1C. )1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省中等学校招生考试数学试题】)2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D8.【江苏省连云港市中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8.所以-8的绝对值是8.故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2.故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市中考数学试卷】)3的相反数是()A. 3B. )3C.D. )【答案】A14.【浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+))2)B. 2)))2)C. ))2)+2D. ))2))2【答案】B17.【江苏省连云港市中考数学试题】)8的相反数是()A. )8B.C. 8D. )【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市中考数学试题】-的相反数是()A. B. - C. D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-的相反数是.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市中考数学试题】-的相反数是) )A. -B. -C.D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市中考数学试题】3的相反数是()A. B. 3 C. )3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市中考数学试题】5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市中考数学试题】计算:=__________)分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)三、解答题28.【江苏省南京市中考数学试卷】如图,在数轴上,点)分别表示数).)1)求的取值范围.)2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。
全国各省市-浙江省衢州市中考数学试卷(解析版).doc
2019年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠53.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元4.(3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A.B.C.D.5.(3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°6.(3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.C.D.17.(3分)不等式3x+2≥5的解集是()A.x≥1B.x≥C.x≤1D.x≤﹣18.(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°9.(3分)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为()A.B.C.D.10.(3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣9=.12.(4分)数据5,5,4,2,3,7,6的中位数是.13.(4分)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).14.(4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.15.(4分)如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC= .16.(4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是,点A2018的坐标是.三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.18.(6分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.19.(6分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:20.(8分)“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?22.(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.24.(12分)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.2019年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选C.【点评】本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将138000000000用科学记数法表示为:1.38×1011.故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A.B.C.D.【分析】得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到3列正方形的个数依次为2,1,1.故选C.【点评】考查三视图的相关知识;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.5.(3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.C.D.1【分析】直接利用概率公式计算得出答案.【解答】解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选B.【点评】本题主要考查了概率公式,利用符合题意数据与总数的比值=概率求出是解题的关键.7.(3分)不等式3x+2≥5的解集是()A.x≥1B.x≥C.x≤1D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选A.【点评】本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.8.(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.(3分)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为()A.B.C.D.【分析】先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.【解答】解:设圆锥的母线长为R,由题意得15π=π×3×R,解得R=5,∴圆锥的高为4,∴sin∠ABC=.故选B.【点评】本题考查了圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.10.(3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.【点评】本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)数据5,5,4,2,3,7,6的中位数是5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(4分)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED (只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).故答案为:AB=ED.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.(4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是 1.5千米.【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k|B的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【解答】解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5.故答案为:1.5.【点评】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.15.(4分)如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=5.【分析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【解答】解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3.∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5.故答案为:5.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.16.(4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n 个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.【分析】本题涉及绝对值、零指数幂、乘方、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣3+8﹣1=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.【分析】由全等三角形的判定定理AAS证得△ABE≌△CDF,则对应边相等:AE=CF.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.19.(6分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得:方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点评】本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.20.(8分)“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)【分析】根据题意表示出AD,DC的长,进而得出等式求出答案.【解答】解:如图所示:可得:∠CAD=45°,∠CBD=60°,AB=200m,则设BD=x,故DC=x.∵AD=DC,∴200+x=x,解得:x=100(﹣1)≈73,答:小明还需沿绿道继续直走73米才能到达桥头D处.【点评】本题主要考查了解直角三角形的应用,正确得出AD=DC是解题的关键.21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.22.(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x.在Rt△EHB中,可得(5﹣x)2=x2+()2,解方程即可解决问题;【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB.∵EH⊥AB,∴∠EHB=∠CAB.∵∠EBH=∠CBA,∴△HBE∽△ABC.(2)连接AF.∵AB是直径,∴∠AFB=90°.∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2.∵=,∴∠EAF=∠EAH.∵EF⊥AF,EH⊥AB,∴EF=EH.∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x.在Rt△EHB 中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x ﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.24.(12分)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,作DP∥OB,则∠PDA=∠B.利用平行线分线段成比例定理,计算即可,再根据对称性求出P′;②分两种情形分别求解即可解决问题:如图2中,当OP=OB=10时,作PQ∥OB 交CD于Q.如图3中,当OQ=OB时,设Q(m,﹣m+6),构建方程求出点Q坐标即可解决问题;【解答】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=﹣x+6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.∵DP∥OB,∴=,∴=,∴PA=,∴OP=6﹣=,∴P(,0),根据对称性可知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(,0).②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.∵直线OB的解析式为y=x,∴直线PQ的解析式为y=x+,由,解得,∴Q(﹣4,8),∴PQ==10,∴PQ=OB.∵PQ∥OB,∴四边形OBQP是平行四边形.∵OB=OP,∴四边形OBQP是菱形,此时点M与的Q重合,满足条件,t=0.如图3中,当OQ=OB时,设Q(m,﹣m+6),则有m2+(﹣m+6)2=102,解得m=,∴点Q 的横坐标为或,设点M的横坐标为a,则有:=或=,∴a=或,∴满足条件的t的值为或.【点评】本题考查了一次函数综合题、待定系数法、菱形的判定、平行线分线段成比例定理等知识,解题的关键是学会由分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,所以中考压轴题.。
浙江省金衢十二校2016年联考中考数学二模试卷(解析版)
浙江省金衢十二校2016年联考中考数学二模试卷(解析版)一、选择题(本题有10小题,每小题3分,共30分)1.的倒数等于()A.3 B.﹣3 C.D.2.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x•x2=x3D.(﹣2x2)2=﹣4x43.神州7号运行1小时的行程约28 600 000m,用科学记数法可表示为()A.0.286×108m B.2.86×107m C.28.6×106m D.2.86×105m4.下列手机软件图标中,属于中心对称的是()A.B.C.D.5.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°6.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10 B.8 C.7 D.57.若点(x0,y0)在函数y=(x<0)的图象上,且x0y0=﹣2,则它的图象大致是()A.B.C.D.8.利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=09.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km10.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为()A.32πB.32π+24 C.32π+48 D.8π+24二、填空题(本题有6小题,每小题4分,共24分)11.若x+y=﹣2,x﹣y=4,则x2﹣y2=.12.李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.13.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2016个梅花图案中,共有个“”图案.14.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,若△PEF 的面积S1=1,则▱ABCD的面积S=.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD 的边长为4,则正方形EFGH的边长为.16.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,则移动时间t=.(2)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm).当d<2时,求t的取值范围.三、计算题(本题有8小题,共66分)17.计算:﹣|﹣2|+(1﹣)0﹣9tan30°.18.解不等式组,并写出符合不等式组的整数解.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.20.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.22.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD 分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的实际意义.(2)求线段CD所表示的y2与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?23.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.24.在平面直角坐标系中,已知抛物线y=﹣x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),直角顶点B的坐标为(4,﹣1),三角形另一个顶点C在第一象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.①在滑动过程中,线段PQ的长度是否发生变化,若不变,请直接写出PQ的长度,若改变,请说明理由;②若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;③取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.2016年浙江省金衢十二校联考中考数学二模试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.的倒数等于()A.3 B.﹣3 C.D.【分析】根据倒数的定义求解.【解答】解:∵3×=1,∴的倒数等于3.故选A.【点评】主要考查了倒数的定义:两个乘积为1的数互为倒数,0没有倒数.2.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x•x2=x3D.(﹣2x2)2=﹣4x4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂的除法,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为x2+x2=(1+1)x2=2x2,故本选项错误;B、应为x2÷x=x2﹣1=x,故本选项错误;C、x•x2=x1+2=x3,正确;D、应为(﹣2x2)2=(﹣2)2x2×2=4x4,故本选项错误.故选C.【点评】本题主要考查合并同类项,同底数幂的除法,同底数幂的乘法,积的乘方,熟练掌握运算性质是解题的关键.3.神州7号运行1小时的行程约28 600 000m,用科学记数法可表示为()A.0.286×108m B.2.86×107m C.28.6×106m D.2.86×105m【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:28 600 000m=2.86×107m.故选B.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.4.下列手机软件图标中,属于中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的定义解答.【解答】解:A、不是中心对称,故此选项错误;B、是轴对称图形,不是中心对称,故此选项错误;C、是中心对称,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACE的度数.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故选:B.【点评】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10 B.8 C.7 D.5【分析】根据根与系数的关系求出两边的和,即可求出答案.【解答】解:设x2﹣4x+2=0的两个根为x1,x2,则x1+x2=4,∵三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,∴此三角形的周长为4+3=7,故选C.【点评】本题考查了解一元二次方程,根与系数的关系的应用,能求出两边的和是解此题的关键.7.若点(x0,y0)在函数y=(x<0)的图象上,且x0y0=﹣2,则它的图象大致是()A.B.C.D.【分析】首先由x0y0=﹣2,得出k的值,然后根据x<0及反比例函数y=的图象性质作答.【解答】解:因为(x0,y0)在函数y=(x<0)的图象上,所以k=x0y0=﹣2<0;又因为x<0,所以图象只在第二象限.故选B.【点评】反比例函数y=的图象是双曲线.当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.解答本题时要注意,x<0时图象只有一个分支.8.利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0【分析】利用已知将原式变形,结合完全平方公式得出答案.【解答】解:由题意可得:x=,可变形为:2x=﹣1,则(2x+1)=,故(2x+1)2=6,则可以构造出一个整系数方程是:4x2+4x﹣5=0.故选:B.【点评】此题主要考查了一元二次方程的定义,正确应用完全平方公式是解题关键.9.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km【分析】根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案.【解答】解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.【点评】此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.10.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为()A.32πB.32π+24 C.32π+48 D.8π+24【分析】根据将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积,由此即可计算.【解答】解:将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积=π82+68=32π+24.故选B.【点评】本题考查扇形面积、菱形的性质、旋转等知识,解题的关键是理解此菱形绕点A 逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积,学会转化的思想,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.若x+y=﹣2,x﹣y=4,则x2﹣y2=﹣8.【分析】利用平方差公式对所求代数式进行因式分解,然后把已知条件代入求值即可.【解答】解:∵x+y=﹣2,x﹣y=4,∴x2﹣y2=(x+y)(x﹣y)=﹣2×4=﹣8.故答案为:﹣8.【点评】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.12.李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.【分析】总共有四种情况,抽到小明是其中之一,利用概率公式进行计算即可.【解答】解:李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.故答案为.【点评】本题考查了概率计算公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2016个梅花图案中,共有504个“”图案.【分析】观察图形可知,这组图案的排列规律是:四个图案一个循环周期,每个周期都有一个,由此计算出第2016个图案经历了几个周期即可解答.【解答】解:∵2016÷4=504,∴有504个,故答案为:504.【点评】此题考查了图形的变化规律,理解题意,得出图案的排列周期规律是解决本题的关键.14.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,若△PEF 的面积S1=1,则▱ABCD的面积S=8.【分析】利用三角形中位线定理得出EF∥BC,EF=BC,再利用相似三角形的判定与性质得出=,进而利用平行四边形的面积求法得出答案.【解答】解:∵E,F分别为PB,PC的中点,∴EF∥BC,EF=BC,∴△PEF∽△PBC,∴=,∴=,∵S1=1,∴S△PBC=4,∵四边形ABCD是平行四边形,∴S▱ABCD=2×4=8.故答案为:8.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质以及三角形中位线定理等知识,得出=是解题关键.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为2﹣2.【分析】根据题意得出抛物线解析式,进而表示出G点坐标,再利用2OF=FG,进而求出即可.【解答】解:∵正方形ABCD边长为4,∴顶点坐标为:(0,4),B(2,0),设抛物线解析式为:y=ax2+4,将B点代入得,0=4a+4,解得a=﹣1,∴抛物线解析式为:y=﹣x2+4设G点坐标为:(m,﹣m2+4),则2m=﹣m2+4,整理的:m2+2m﹣4=0,解得:m1=﹣1+,a2=﹣1﹣(不合题意舍去),∴正方形EFGH的边长FG=2m=2﹣2.故答案为:2﹣2.【点评】此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.16.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,则移动时间t=2+.(2)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围2﹣<t<2+2.【分析】(1)连接OO1,并延长交l2于点E,过点O1作O1F⊥l1于点F,当点O1,A1,C1恰好在同一直线上时,AA1﹣A1F=O1E;(2)当d=2时,⊙O与直线AC相切,且直线AC与⊙O相切有两种情况,①当直线AC 在⊙O的左边时,AA1+A1F=O1E;②当直线AC在⊙O的右边,AA1﹣A1F=O1E.【解答】解:(1)连接OO1,并延长交l2于点E,如图1,过点O1作O1F⊥l1于点F,∴由题意知:OO1=3t,AA1=4t,∵tan∠DAC=,∴∠DAC=60°,∴tan∠O1A1F=,∴A1F=,∵AA1﹣A1F=O1E,∴4t﹣=3t+2,∴t=2+;(2)当d=2时,此时⊙O与直线AC相切,当直线AC在⊙O的左边,如图2,由(1)可知,A1F=,∴AA1+A1F=O1E,∴4t+=3t+2,∴t=2﹣,当直线AC在⊙O的右边,如图3,此时,A1F=2∴AA1﹣A1F=O1E,∴4t﹣2=3t+2,∴t=2+2,综上所述,当d<2时,t的取值范围为:2﹣<t<2+2.故答案为:(1)2+;(2)2﹣<t<2+2.【点评】本题考查圆的综合问题,涉及切线的性质,锐角三角函数,解方程等知识,内容较为综合,考查学生灵活运用知识的能力.三、计算题(本题有8小题,共66分)17.计算:﹣|﹣2|+(1﹣)0﹣9tan30°.【分析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣2+1﹣9×=﹣﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组,并写出符合不等式组的整数解.【分析】分别解两个不等式得到x<4和x≥﹣1,利用大于小的小于大的取中间可确定不等式组的解集,然后写出不等式组的整数解即可.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1,0,1.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;点B1坐标为:(﹣2,﹣1);(2)如图所示:△A2B2C2,即为所求,点C2的坐标为:(1,1).【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.20.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).【分析】(1)由统计图可知第4天A款运动鞋销量是6双且B款运动鞋的销售量是A款的可得;(2)根据平均数与中位数定义求解可得;(3)设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,根据第1天和第5天的总销售额列方程组求出A、B款运动鞋单价,即可得解.【解答】解:(1)6×=4(双).答:第4天B款运动鞋的销售量是4双;(2)B款运动鞋每天销售量的平均数为:=5.8(双),销售量从小到大排列为:3,4,6,7,9,故中位数为6(双);(3)根据题意,设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,则:,解得:.故第3天的总销售额为11×100+9×200=2900(元).【点评】本题主要考查条形统计图和折线统计图的应用能力及平均数、中位数的计算,根据题意从不同的统计图中获取解题所需的数据是关键.21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.【分析】(1)作DK⊥BC于K,如图,根据切线的性质得DG⊥AB,再根据菱形的性质得BD平分∠ADC,则根据角平分线的性质得DG=DK,然后根据切线的判断定理即可得到⊙D与边BC也相切;(2)根据菱形的性质和垂径定理解答即可.【解答】(1)(1)证明:作DK⊥BC于K,连结BD,如图,∵AB与⊙D相切于点G,∴DG⊥AB,∵四边形ABCD为菱形,∴BD平分∠ADC,而DG⊥AB,DK⊥BC,∴DG=DK,即DK为⊙D的半径∴⊙D与边BC也相切.(2)解:∵在菱形四边形中,CD=AB=4,CD∥AB,∴∠DCK=∠ABC=60°.又∵∠DKC=90°,∴DK=CD=2,∴DE=DK=2.又∵∠ADC=∠ABC=60°,EF⊥AD,∴EH=DE=3,∴EF=2EH=6.【点评】本题主要考查了菱形的性质,切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线,作出恰当的辅助线是解答此题的关键.22.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD 分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的实际意义.(2)求线段CD所表示的y2与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为140kg时,该产品每千克生产成本与销售价相等,都为40元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先求出销售价y2与产量x之间的函数关系,利用:总利润=每千克利润×产量列出有关x的二次函数,求得最值即可.【解答】解:(1)点D的实际意义:当产量为140kg时,该产品每千克生产成本与销售价相等,都为40元.(2)设线段CD所表示的y2与x之间的函数表达式为y2=k1x+b1,∵点(0,124),(140,40)在函数y2=k1x+b1的图象上∴,解得:,∴y2与x之间的函数表达式为y2=﹣x+124(0≤x≤140);(3)设线段AB所表示的y1与x之间的函数表达式为y1=k2x+b2,∵点(0,60),(100,40)在函数y1=k2x+b2的图象上∴,解得:,∴y1与x之间的函数表达式为y1=﹣x+60(0≤x≤100)设产量为x千克时,获得的利润为W元①当0≤x≤100时,W=[(﹣x+124)﹣(﹣x+60)]x=﹣(x﹣80)2+2560,∴当x=80时,W的值最大,最大值为2560元.②当100≤x≤140时,W=[(﹣x+124)﹣40]x=﹣(x﹣70)2+2940由﹣<0知,当x≥70时,W随x的增大而减小∴当x=100时,W的值最大,最大值为2400元.∵2560>2400,∴当该产品的质量为80kg时,获得的利润最大,最大利润为2560元.【点评】本题考查了待定系数法求函数解析式及二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.23.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.【分析】(1)由于对角线互相垂直,所以四边形ABCD的面积可化为+的和;(2)由于对角线互相垂直,由勾股定理分别表示出AB2、CD2、AD2、BC2;(3)①过点P作PD⊥AC于点D,构造△PAD∽△BAC后,利用BP2+CQ2=PQ2+BC2列出关于t的方程;②连接BE、CG、BG、CE,证明四边形BCGE是垂直四边形,然后利用其性质“一组对边的平方和等于另一组对边的平方和”,即可得出EG与BC的数量关系.【解答】解:(1)∵四边形ABCD是“垂直四边形”,∴AC⊥BD,∴△ABD的面积为:,△CBD的面积为:,∴四边形ABCD的面积: +=BD(AO+CO)=ACBD=×8×7=28;(2)∵四边形ABCD是“垂直四边形”,∴AC⊥BD.由勾股定理可知:AB2+CD2=(AO2+BO2)+(DO2+CO2),AD2+BC2=(AO2+DO2)+(BO2+CO2),∴AB2+CD2=AD2+BC2;(3)①如图2,过点P作PD⊥AC于点D,由题意知:AP=5t,CQ=6t,∵∠ACB=90°,∴AB==10∵PD∥BC.∴△PAD∽△BAC,∴==,∴==,∴AD=3t,PD=4t,∴DQ=AC﹣AD﹣CQ=6﹣9t,∵四边形BCQP是“垂直四边形”.∴BP2+CQ2=PQ2+BC2,∴(10﹣5t)2+(6t)2=(4t)2+(6﹣9t)2+82,∴解得t=或t=0(舍去),∴当四边形BCQP是“垂直四边形”时,t的值为;②如图3,连接CG、BG、BE、CE,CE与BG交于点O由题意知:EA=BA,AC=AG∠EAB=∠CAG=90°∴∠EAB+∠BAC=∠CAG+∠BAC∴∠EAC=∠BAG在△EAC与△BAG中,∴△EAC≌△BAG(SAS)∴∠CEA=∠GBA∴∠EAB=∠BOE=90°∴四边形BCGE是“垂直四边形”∴BC2+EG2=BE2+CG2,∵AB=3AC,∴EG2=BC2.【点评】本题考查新定义型问题,解题的关键是对新定义的理解,涉及到勾股定理,全等三角形的性质与判定,相似三角形的性质与判定等知识内容,题目较新颖和综合,需要学生将新旧知识联系起来.24.在平面直角坐标系中,已知抛物线y=﹣x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),直角顶点B的坐标为(4,﹣1),三角形另一个顶点C在第一象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.①在滑动过程中,线段PQ的长度是否发生变化,若不变,请直接写出PQ的长度,若改变,请说明理由;②若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;③取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【分析】(1)把A、B两点坐标代入抛物线解析式解方程组即可解决问题.(2)①不变,直线AC与抛物线的交点就是抛物线顶点P,求出PA的长即可解决问题.②分两种情形:Ⅰ当PQ为直角边时:点M到PQ的距离为2(即为PQ的长),过点B作直线l1∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点.Ⅱ当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为,如答图1,取AB的中点F,则点F的坐标为(2,﹣1),过点F作直线l2∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点.③存在最大值,由①知PQ=2为定值,则当NP+BQ取最小值时,有最大值,如答图2,取点B关于AC的对称点B′,当B′、Q、F三点共线时,NP+BQ最小,求出这个最小值即可解决问题.【解答】解:(1)由题意,得点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)①不变,PQ=2.②∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1,设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上,∵点P在直线AC上滑动,∴有平移的性质可得,PQ=2=AP0.若△MPQ为等腰直角三角形,则可分为以下两种情况:Ⅰ当PQ为直角边时:点M到PQ的距离为2(即为PQ的长),由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=2,如答图1,过点B作直线l1∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点,∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5,解方程组,得:,,∴M1(4,﹣1),M2(﹣2,﹣7).Ⅱ当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为,如答图1,取AB的中点F,则点F的坐标为(2,﹣1),由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为,过点F作直线l2∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点,∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3,∴直线l2的解析式为:y=x﹣3,解方程组,得:,,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).③存在最大值.理由如下:由①知PQ=2为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形,∴NP=FQ,∴NP+BQ=FQ+B′P≥FB′==2,∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2,∴的最大值为=.【点评】本题考查二次函数综合题、一次函数、等腰直角三角形的判定和性质、勾股定理、最值问题等知识,解题的关键是把求交点坐标转化为解方程组,构建一次函数是解题的关键,学会把问题转化为我们熟悉的问题,体现了转化的思想,是中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省衢州市中考数学试卷 参考答案与试题解析 一、选择题(本题有10小题,每小题3分,共30分) 1.在,﹣1,﹣3,0这四个实数中,最小的是( ) A. B.﹣1 C.﹣3 D.0 【考点】实数大小比较. 【分析】根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可. 【解答】解:∵﹣3<﹣1<0<, ∴最小的实数是﹣3, 故选C.
2.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( ) A.3.19×105 B.3.19×106 C.0.319×107 D.319×106 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6. 【解答】解:319万=3 190 000=3.19×106. 故选B.
3.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )
A. B. C. D. 【考点】简单组合体的三视图. 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形. 故答案为:C.
4.下列计算正确的是( ) A.a3﹣a2=a B.a2•a3=a6 C.(3a)3=9a3 D.(a2)2=a4 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解. 【解答】解:A、a3,a2不能合并,故A错误; B、a2•a3=a5,故B错误; C、(3a)3=27a3,故C错误; D、(a2)2=a4,故D正确. 故选:D.
5.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是( )
A.45° B.55° C.65° D.75° 【考点】平行四边形的性质. 【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可. 【解答】解:∵四边形ABCD是平行四边形, ∴∠A=∠BCD=135°,
∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.
故选A.
6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,
其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A.众数 B.方差 C.平均数 D.中位数 【考点】中位数. 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的, 而且7个不同的分数按从小到大排序后,中位数之后的共有3个数, 故只要知道自己的成绩和中位数就可以知道是否进入前3名. 故选:D.
7.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下: x … ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的对称轴是( ) A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0 【考点】二次函数的图象. 【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可. 【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等, ∴二次函数的对称轴为直线x=﹣2. 故选:B.
8.已知关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则实数k的取值范围
是( ) A.k≥1 B.k>1 C.k≥﹣1 D.k>﹣1 【考点】一元二次方程根的分布. 【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可. 【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根, ∴△=(﹣2)2+4k>0, 解得k>﹣1. 故选:D.
9.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,
若∠A=30°,则sin∠E的值为( )
A. B. C. D. 【考点】切线的性质. 【分析】首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案. 【解答】解:连接OC, ∵CE是⊙O切线, ∴OC⊥CE, ∵∠A=30°,
∴∠BOC=2∠A=60°,
∴∠E=90°﹣∠BOC=30°,
∴sin∠E=sin30°=. 故选A.
10.如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,
垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是( ) A. B. C.
D. 【考点】函数的图象. 【分析】由△DEB∽△CMB,得==,求出DE、EB,即可解决问题. 【解答】解:如图,作CM⊥AB于M. ∵CA=CB,AB=20,CM⊥AB,
∴AM=BM=15,CM==20 ∵DE⊥BC, ∴∠DEB=∠CMB=90°,
∵∠B=∠B, ∴△DEB∽△CMB,
∴==,
∴==, ∴DE=,EB=, ∴四边形ACED的周长为y=25+(25﹣)++30﹣x=﹣x+80. ∵0<x<30, ∴图象是D. 故选D.
二、填空题(本题有6小题,每小题4分,共24分) 11.当x=6时,分式的值等于 ﹣1 . 【考点】分式的值. 【分析】直接将x的值代入原式求出答案.
【解答】解:当x=6时, ==﹣1. 故答案为:﹣1.
12.二次根式中字母x的取值范围是 x≥3 . 【考点】二次根式有意义的条件. 【分析】由二次根式有意义的条件得出不等式,解不等式即可. 【解答】解:当x﹣3≥0时,二次根式有意义, 则x≥3; 故答案为:x≥3.
13.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示: 时间(小时) 5 6 7 8 人数 10 15 20 5 则这50名学生这一周在校的平均体育锻炼时间是 6.4 小时. 【考点】加权平均数. 【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.
【解答】解: =6.4. 故答案为:6.4.
14.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,
B,C为顶点的四边形是平行四边形,则x= 4或﹣2 . 【考点】平行四边形的判定;坐标与图形性质. 【分析】分别在平面直角坐标系中确定出A、B、O的位置,再根据两组对边分别平行的四边形是平行四边形可确定C的位置,从而求出x的值. 【解答】解:根据题意画图如下:
以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1), 则x=4或﹣2; 故答案为:4或﹣2. 15.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔
开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为 432 m2.
【考点】一元一次不等式的应用. 【分析】要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为x,根据题目所给出的条件列出S与x的关系式,再根据函数的性质求出S的最大值. 【解答】解:如图,设设总占地面积为S(m2),CD的长度为x(m), 由题意知:AB=CD=EF=GH=x, ∴BH=48﹣4x, ∵0<BH≤50,CD>0, ∴0<x<12, ∴S=AB•BH=x(48﹣x)=﹣(x﹣24)2+576 ∴x<24时,S随x的增大而增大, ∴x=12时,S可取得最大值,最大值为S=432
16.如图,正方形ABCD的顶点A,B在函数y=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变. (1)当k=2时,正方形A′B′C′D′的边长等于 . (2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是
≤x≤18 .
【考点】反比例函数图象上点的坐标特征;反比例函数的性质;正方形的性质. 【分析】(1)过点A′作AE⊥y轴于点E,过点B′⊥x轴于点F,由正方形的性质可得出“A′D′=D′C′,∠A′D′C′=90°”,通过证△A′ED′≌△D′OC′可得出“OD′=EA′,OC′=ED′”,设OD′=a,