水热法制备纳米材料
高温高压下的水热合成新型纳米材料

高温高压下的水热合成新型纳米材料随着科技的发展和人们对材料性能要求的不断提高,越来越多的新型材料被研发出来并应用于实际生产中。
其中,纳米材料是一类特殊的材料,具有很多独特的性质和应用价值。
然而,纳米材料的制备过程十分困难,一些传统方法需要耗费大量的能量和资源,同时还存在着制备难度大、纯度低等问题。
而借助于高温高压的水热合成技术,可以快速、有效地制备出高纯度、结晶度高、粒径均匀的纳米材料。
一、水热合成技术的基本原理和流程水热合成技术又称“水热法”,是一种利用高温高压水介质进行化学反应的方法,其基本原理是在高温高压的水环境下,水分子能够形成高度结构化的网络结构,使得反应物分子在其中发生特殊的化学反应,从而制备出纳米材料。
水热合成的基本流程包括三个步骤:反应液混合、高温高压反应和沉淀分离。
首先,将所需反应物按一定比例混合,并在恰当的条件下进行预处理,以去除一些不需要的杂质物。
接着将混合好的反应液置于水热反应釜中,加热到高温高压状态下进行化学反应。
在此过程中,反应物会发生复杂的物理和化学变化,生成新的纳米材料。
最后,通过离心、过滤、干燥等方法将制备好的纳米材料分离出来,即可得到纯净的纳米材料。
二、水热合成技术的应用和发展前景水热合成技术已经被广泛应用于各个领域,包括材料科学、化学、生物医学等。
具体来说,水热法可以制备出各种不同的纳米材料,比如金属、氧化物、硫化物等。
这些纳米材料具有很高的比表面积、粒径均匀等特点,广泛应用于生物医药、能源材料、环境保护和信息技术等领域。
在生物医学领域中,纳米材料可以用作生物传感器、药物载体、成像剂等。
例如,氧化铁纳米粒子可以作为MRI(磁共振成像)的成像剂,同时也可以作为光敏剂,用于肿瘤治疗;金纳米颗粒则可以用于癌细胞的检测、诊断和治疗。
在环境保护领域,纳米材料也有着重要的应用,比如可以用于废水处理、污染物检测等。
利用纳米材料可以达到高效、低能耗的废水处理效果;同时,纳米传感器可以对污染物进行高灵敏度检测,提高对环境污染的监控水平。
微波水热合成法制备纳米材料

实验7微波水热合成法制备纳米材料一、实验导言“纳米”一词出自长度单位之一——nm的中文音译。
20世纪后半叶,科学技术的发展先后出现了以“纳米”为名的一系列名词、术语。
例如,纳米技术:逐个地移动分子或原子的技术称纳米技术,又称分子搭建技术;纳米结构:系统内以纳米级构建的结构件称纳米结构;纳米粒子:粒子直径在1~100 nm的粒子称纳米粒子;纳米材料:由纳米级粒子制成的材料称纳米材料;以及基于纳米级研究的各种具体命名,“纳米型电池”就是一例。
在物质结构研究中,人们从物质的宏观性质,例如,熔点、硬度、稳定性、导电性、磁性、光学性能等追溯到物质的微观结构,即原子结构、化学键、分子结构、晶体结构等来说明物质的性质。
对材料也是如此。
科学上对物质结构的研究从来没有停止过。
纳米级研究为我们展示了一个全新的概念,开辟了一个崭新的空间,即在物质的宏观层次和微观层次之间还存在着不同的亚微观层次,即团簇、纳米、介观等层次。
我们来定量地比较一下上述物质层次:微观粒子的原子个数:1个到数个;亚微观粒子的原子或分子个数:数百个到数千个;宏观粒子的原子或分子个数:无限多。
即纳米粒子是具有数百到数千个原子或分子的粒子。
粒子的尺度如此微细,它与化学成分完全相同的宏观粒子相比,具有许多不同寻常的特点。
例如,表面效应,体积效应和量子尺寸(Kubo)效应等。
体积效应:纳米粒子的尺度与传导电子的德布罗意波长相当或更小时,边界条件被破坏,磁性、内压、光吸收、热阻、化学活性、熔点等都发生很大的变化。
称为体积效应。
表现在宏观性质上,纳米粒子的熔点远低于宏观粒子,例如,普通金的熔点为1063℃,而纳米金的熔点只有330℃。
此特性为粉末冶金提供了新工艺条件。
另外,利用等离子共振频移随颗粒粒度变化的性质可以制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽和隐形技术。
表面效应:粒子的表面原子数与原子总数之比随粒度的减小迅速增加,引起粒子的表面积和表面能迅速增大,称为表面效应。
水热法制备batio3纳米粉体原理

水热法制备batio3纳米粉体原理
水热法制备BaTiO3纳米粉体的原理是通过在高温高压的水热条件下,利用水分子和溶剂分子的高度活跃性,使得反应物中的离子在水热反应的过程中重新排列和结合,最终形成目标产物。
具体原理如下:
1. 水热环境:水热反应一般在高温高压下进行,典型的反应条件是温度在100-200摄氏度之间,压力在1-3 MPa左右。
这样的环境使得反应物能够在水分子的催化下更快地进行反应。
2. 溶解反应物:将所需的反应物,如钛酸铅和钡盐溶解在适当的溶剂中,形成反应物溶液。
溶剂通常选择对反应物具有较好的溶解性,如酸、碱或氢氧化钠等。
3. 反应:将制备好的反应物溶液加入到高压釜中,加热至设定的温度并保持一定的时间。
在高温高压的条件下,溶液中的离子发生迁移和重排,形成新的晶体。
4. 沉淀:经过一定时间的反应后,将高压釜冷却至室温,产物会经历一个从溶液中析出的过程。
这是因为溶解度随温度的下降而降低,导致产物退火结晶生成固态的BaTiO3纳米粉体。
通过水热法制备的BaTiO3纳米粉体具有高度纯净性、均匀性好、粒径小等优点,适用于丰富光电、催化及传感等领域的应用。
实验2-葡萄糖水热法制备纳米碳球

实验1葡萄糖水热法制备纳米碳球一、目的要求〔1〕熟悉葡萄糖水热法制备纳米碳球的方法,熟练掌握高温高压反应釜的组装与应用。
〔2〕熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。
二、实验原理炭微球材料由于其具有高密度、高强度、高比外表积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。
碳微球的形状和大小显著影响着其电学性能。
葡萄糖在水热条件下会发生许多化学反应,实验结果说明:炭微球的增长似乎符合LaMer模型〔见图1-1〕,当mol/L的葡萄糖溶液在低于140 C或反应时间小于1h时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,说明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。
当反应条件为mol/L、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。
从现有的研究结果说明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm〔最初核的大小,实验所得到的最小的尺寸〕生长到1500nm。
由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时外表含有大量活性官能团,具有优良的亲水性和外表反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。
图1-1 水热法形成炭球的结构变化示意图三、实验预备葡萄糖,去离子水,95%乙醇;22um有机滤膜;5mL高压反应釜,鼓风干燥箱,电子天平,抽滤装置。
四、实验过程1.材料制备用电子天平称取6g葡萄糖放入5mL反应釜内衬中,用移液管准确移取4mL去离子水〔葡萄糖溶液的浓度为/L〕加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。
水热法制备SnO2纳米颗粒及其在气体传感器中的应用(DOC)

水热法制备SnO2纳米颗粒及其在气体传感器中的应用摘要纳米SnO2颗粒的化学稳定性好,灵敏度高,气体选择性好,因此在气体传感器方面具有潜在的价值.纳米SnO2颗粒的制作方法多种多样,本文重点就水热法加入制备纳米SnO2颗粒及其气敏性进行研究,并对进一步提高其气体传感性进行了展望.关键词:SnO2纳米颗粒、水热法、气敏性Hydrothermal prepared SnO2 nanoparticles and their applications in gas sensorsAbstractSnO2 Nano-particles in the gas sensor has potential value because of its good che mical stability, high sensitivity, good gas selectivity. Nano SnO2 particles has a wide variety of production methods, the focus of this paper is the hydrothermal method of preparation of nanometer SnO2 particles and gas sensing research, in addition how to further improve its gas sensing prospect.Key Words: SnO2 nanoparticles;hydrothermal method ;gas sensing引言SnO2是一种重要的无机化工原料,具有优良的气敏特性以及阻燃性、光电性能,同时还具有活性大、性能易于控制、制备方法灵活多样等特点,被广泛应用于气敏元件、湿敏元件、液晶显示、催化剂、光探测器、半导体元件、电极材料、保护涂层及太阳能电池等技术领域[1].多晶纳米材料具有表面效应、体积效应和量子尺寸效应,其物理和化学性质明显优于普通材料,近些年来围绕SnO2为基体的气敏材料制备及元件制作技术的研究十分活跃.1水热法制备SnO2纳米颗粒水热法又称热液法[2],是在特制的密闭反应容器高压釜里,采用水溶液或其它流体为反应介质,在高温大于100℃、高压大于0.981MPa的条件下进行有关化学反应的总称.水热法制备的纳米粒子具有晶粒发育完整、粒度小、分布均匀、颗粒团聚较少、分散性好和成分纯净等优点,而且制备过程污染小、成本低、工艺简单,尤其是无需后期的高温处理,避免了高温处理过程中晶粒的长大、缺陷的形成和杂质的引入,制得的粉体并且具有较高的烧结活性.水热法制备SnO2纳米颗粒的影响因素有很多,在反应过程中反应物浓度、时间、温度、酸度、有机溶剂、压强、表面活性剂等对SnO2纳米颗粒的形成都有一定的影响.陈祖耀[3]等利用水热法将一定摩尔比的SnCl4溶液和浓硝酸溶液混合,于150℃的温度下加热12小时,水洗后干燥得5nm的四方相SnO2纳米粉体.李燕[4]利用醇和水溶液法得到平均粒径为10nm的纳米粉体.与单纯用水作溶剂相比,发现醇作溶剂时制得的粉体分散性好、粒径小,团聚状况减轻.Chen等[5]以氯化锡为锡源,氢氧化钠为沉淀剂,在不同的反应介质中,结合水热法合成了维数可调的金红石型氧化锡纳米棒,通过分析发现,在乙醇反应介质中,可以得到约4.5-39.1nm的纳米棒;在水/醇(体积比为1比1)的反应介质中,得到了约42-197nm的氧化锡纳米棒;等体积水醇混合溶液中加入十六烷基苯磺酸钠后,得到了5.5-19.3nm的纳米棒.李振昊等[6],用超重力与水热法相结合,以SnCl4·5H2O和氨水为原料,用旋转填充床制备出均一、细小的SnO2前驱体,为水热后处理提供一个良好的溶液粉环境,并研究了水热温度、反应物浓度和水热时间等实验条件对的纳米SnO2体的晶体结构、粒度及分散性的影响.结果表明,在SnO2溶液浓度为0.05 mol/ L、水热温度240~280℃以及陈化时间3~8h得到的粉体结晶性良好、比表面积大(90~170m2/g)、粉体的颗粒大小在2~6nm左右,并具有良好的分散性.王东新等[7]利用氯化锡和氨水作为反应试剂,通过水热合成技术制备了近球形,棒状,椭球形,六角形等粉体形貌和粒径范围从4nm至120nm的纳米氧化锡粉体,并对水热合成条件对粉体的粒径和形貌的影响进行了研究.所制备的粉体的XRD分析结果显示,合成温度在160℃以上并且合成时间在3h以上,粉体全部具有氧化锡晶体结构.魏妙丹[8]等人发现,以SnCl4·5H2O为主要原料,与NH3.H2O反应制备出颗粒粒径为10-30nm分散性较好的近似球形的纳米SnO2颗粒,探求出用乙醇为溶剂,样品的分散性较好;以十六烷基铵作为分散剂与Sn4+的比例为10:1时分散效果最佳.当SnCl4溶液的浓度0.2mol/L时,分散性较好,粒径较小,30-90℃作为反应温度较为适宜.不同的水热处理时间所合成的SnO2粉体具有不同粒径的棒状形貌.近来,有学者对水热法进行了改进,张等[9]用水热法制备出颗粒的粒径7.9nm 近似球状的的SnO2纳米晶体,但发现其分散性不好,同时,他们利用共沸蒸馏法得到颗粒疏松,最小尺寸为4.6nm平均粒径约为20nm的SnO2纳米晶体.用正丁醇代替水分子时,消除了颗粒间Sn-O-Sn化学键的形成.利用溶胶-凝胶法制备最小尺寸为8.2nm,平均粒径约为70nm左右的三角锥形颗粒,使用超声波技术防止团聚使粒径分布更均匀.国外也有一些新的方法取得了新进展.Masayoshi Yuasa等[10]将500mL浓度为1.0mol/L的NH4HCO3溶液滴入100mL浓度为1.0mol/L的SnCl4·5H2O溶液中,利用水热处理得到锡酸悬浮液,通过离心机洗涤并且去离子水数次然后15g的锡酸溶液在压强为10MPa温度为200°C,PH为4.5,体积为300mL的氨溶液中处理3个小时,得到SnO2稳定悬浮液.利用光化学沉积法制备经水热处理Pd改性的二氧化锡稳定悬浮液,通过改变PH值利用旋转涂膜法得到Pd改性的SnO2纳米薄膜式气敏传感器.同时还有美国的Kistler利用渗透膜水解SnC14制胶合成了SnO2粉体,日本的八木秀明用Sn(OC4H9)4水解成胶后焙烧得到SnO2纳米晶体,芬兰H.Tor vela的SnSO4热解法得到SnO2纳米晶体等.综上所述,控制反应物浓度、温度、时间、压强等初始条件可改变晶体的粒径.在合成体系中加入表面活性剂和水溶性多聚物,会在沉淀颗粒表面形成可阻止纳米粒子团聚的保护层,也可使纳米粉体的粒径分布较窄、分散性能更好.添加乙醇、正丁醇等有机溶剂可改变晶体团聚现象.2纳米SnO2颗粒的气敏性及其在传感器方面的应用SnO2属于立方晶系,具有金红石结构.呈N型半导体特性,结构上禁带宽度较宽(3.7eV).因此,SnO2材料具有物理、化学稳定性好,耐腐蚀性强,对气体检测可逆,吸脱时间短;可靠性较高,机械性能良好;电阻随气体浓度的变化呈抛物线变化趋势等特点,由于纳米SnO2本身的结构和特点,使其具有较大的比表面及较高的活性,对其气敏、电导、光敏吸收产生巨大影响,适用于微量、低浓度气体检测等性能,可应用于气敏材料湿敏材料.经研究发现,纳米化气敏材料的气敏特性可以从比表面大小的控制机理和晶界势垒控制机理两方面提高:随着纳米粒子粒径的减小,会产生更多的晶界,晶界势垒也相应的增加,由于吸附气体而产生的势垒变化也更为明显;同时,粒径的减小使得材料的比表面积增大,表面原子数大量增加,表面原子数的增多及表面原子配位的不饱和性导致更多不饱和键,使表面吸附气体的能力大大增强,因此表面电荷层厚度受气体吸附的影响更大.目前SnO作为应用最广泛的气敏材料[11],可对H2、CO、NO2、C2H2、H2S、2NH3、CH4、天然气等还原性、可燃性和有毒气体进行全面检测.近年来利用纳米技术制成了超细SnO2粉体,并开发出性能优良的薄膜型[12-13]、厚膜性、体型气敏元件.应用中发现SnO2粉体颗粒的大小、形状及均匀性等都直接影响到元件的灵敏度、选择性和稳定性,要得到灵敏度高的气敏元件,必须先合成粒度分布均匀、单分散性好的超细SnO2粉体[14-15],粉体颗粒越小,比表面积越大,活性越高,对气体的吸附就越多,响应恢复时间会更短,气敏元件灵敏度也就越高.ChaonanXu[16]等发现SnO2粉末粒径低于5nm时,气敏元件灵敏度急剧增大.一般认为,半导体氧化物传感器的传感机理是吸附气体分子对半导体表面电子传导性能的调控作用.也就是:半导体氧化物的表面导电特性在气体分子吸附前后会发生显著变化(灵敏度);吸附不同的气体分子,导电性能的改变程度不同(选择性).由于SnO2纳米的气敏机理是表面电导模型,即当空气中的氧化气体吸附在半导体的表面,电子由半导体的表面形成电荷耗尽层,结果使半导体的电子浓度下降,电导率下降,SnO2纳米材料制备的气敏元器件的工作机制如下:当器件在洁净的空气(氧化性气氛)中加热到一定温度时,将对氧进行表面吸附,在膜表面覆盖氧负离子,这种氧负离子由于温度的不同,可以是O2,O2-,和O-.由于从材料中抽取了电子,吸附的氧在膜的表面形成空间电荷层,呈现出高电阻状态;而在还原性被测气氛中,被测气体与氧负离子发生反应,电子重新回到金属氧化物中,使晶体的吸附氧脱附,致使表面势垒降低,从而使器件的电阻降低,以此来检测气体.其中气体的机制可以分为耗尽型吸附和积累型吸附.耗尽型吸附即当气体分子接触到SnO2表面时,若气体分子(原子)的电子亲和力大于SnO2的功函数时,为了使二者的费米能级相同,吸附的气体分子会从SnO2表面俘获电子,直至平衡为止.增强型吸附即若气体分子的电子亲和力小于半导体的功函数时,电子将由吸附的气体分子处漂移到半导体表面.半导体表面将聚集多余的电子,造成半导体表面的导电性增加.导致半导体表面电荷耗尽层的消失或减少,半导体电子浓度增加,电导率上升,因此可以根据传导器电导的变化来检测环境中的各种气体.对气体传感器的研究表明,金属氧化物半导体材料SnO2已趋于成熟化,特别是在CO2,C2H5OH,CO等气体检测方面,为了进一步提高其性能,这方面的工作主要是利用化学修饰改性方法,对现有气敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性.在影响气敏性方面有多种因素方面上,掺杂效应的影响最为显著.研究发现制成的气敏元件的灵敏度、稳定性和选择性,可尝试掺杂为了更好的提高SnO2过渡金属阳离子(Fe3+、Cu2+、Ni2+等)[17-20]和贵金属(Pt、Pd、Ag、Sb、In、V 等)[21].耿丽娜等[22]采用水热法、苯胺原位聚合法制备了聚苯胺/二氧化锡(PAn/SnO2)杂化材料,结果表明苯胺单体在SnO的表面发生原位聚合,得到壳型PAn/SnO22杂化材料.气敏性试验发现,当测试温度升高到90℃时,PAn/SnO2杂化材料对乙醇气体表现出较好的选择性,并且响应、恢复时间短,可逆性好,适于在较宽浓度范围内对乙醇气体进行检测.邓等[23]发现在SnO2中掺入V2O5可改变元件的电阻,提高稳定性.V2O5含量为0.56wt%时电阻最小.掺碱土金属氧化物的SnO2薄膜元件提高了对乙醇的灵敏度,而对苯、丁烷、液化气、氨气、煤气几乎不敏感,对元件的增敏顺序与碱土金属氧化物的活性顺序一致:MgO>CaO>SrO>BaO.贾维国[24]等通过控制SbCl3的掺杂量来改变SnO2薄膜的电阻率,当Sb的含量达到10%时,电阻率达到极小值.Liu等[25]硅片为基片,分别得到了钯、锑、铂铟掺杂的氧化锡薄膜.结果表明,少量掺入这些金属并没有改变SnO2的粒径,但是少量锑的掺入,增加了氧化锡的费米能级,铟和钯的掺杂降低了SnO2的费米能级,而铂的掺入对SnO2的费米能级值没有影响;氢气吸附到薄膜上,不仅改变了锑和钯的化学价态,而且还改变了SnO2的电子结构.方等[26]发现Fe3+的加入对样品晶型的影响,即水热法可以直接制备Fe3+改性的金红石SnO2纳米颗粒,Fe3+进入SnO2的晶格之中形成固溶体.纳米颗粒为单分散状态,具有较大的比表面积,粒径分布均匀,粒径小于10nm;随着Fe3+添加量的增大,样品的粒径减小,样品的比表面积增大,当Fe3+添加量为15%时,样品的比表面积达到259.8m2·g-1.进一步证明,Fe3+的加入有效地抑制了颗粒的长大.添加Fe3+所提高的比表面积对于SnO2的Fe3+气敏性能是非常有利的.Masayoshi Yuasa等[27]通过光化学沉积法将PdCl42-将钯负载在SnO2表面改变其气敏性.研究发现当钯浓度为0.12%mol时SnO2的气敏性最强.和等[28]采用超声波喷雾技术,以SnCl4·5H2O和CO(NH2)2为前驱原料制备了氧化锡以及Ce稀土离子掺杂纳米粉体.结果表明,制备的SnO2粒子呈球状,尺寸在10~20nm,纳米颗粒均匀,分散性好.以该粉体为基础制备的相应气敏元件测试表明,纳米SnO2半导体气敏元件对NO气体有着良好的响应-恢复特2性,并且具有较高的灵敏度和较低的工作温度.稀土元素的掺杂一方面可以起到稳定剂的作用,另一方面起活化中心的作用,从而进一步增强元件的气敏特性,掺杂少量稀土元素铈能明显提高纳米SnO2粉体的气敏性能.除掺杂效应对气体传感器单一的影响外,我们还可通过改变掺杂物的量,空气的质量改善气体传感器方面的气敏性.Hae-Ryong Kim等[29]通过在SnO2中掺杂NiO后的他们发现如下图图1取自[29]图1为纯的SnO2,0.64NiO- SnO2的和1.27NiO- SnO2的分层球在干燥气氛(空心符号)和25%相对湿度(rh)(实心符号)的气敏性,(气体:50ppm的CO).a1-a4分别为纯SnO2的分层传感器:气体响应(Ra/Rg中)(a1)中,90%的响应时间(τres)(a2)中,90%的恢复时间(τrecov)(a3)中,在空气中的电阻(Ra)(a4).b1〜b4分别为0.64NiO-的SnO2分层传感器:Ra / Rg中(b1)中,τres(b2)中,τrecov(b3)中,和Ra(b4).C1-C4分别为1.27NiO-的SnO2分层传感器:Ra/Rg(c1)中,τres(c2)中,τrecov(c3)中,和Ra(c4)中.图2取自[29]图2为50ppm下的CO暴露在干燥的空气中(a)和4%的湿空气(b)的1小时的期间的吸收光谱.其中非特异性吸光的较大改变仅对纯物质可见.在传感器的应用方面,叶晨圣等[30]发现利用热处理过的二氧化锡纳米粒子对甲醇、乙醇和丙醇有很好的探测灵敏度,最低的探测浓度能达到1.7ppm.另外对不同碳链的醇类和探测讯号间有很好的关联性.图3取自[30]图3为合成的二氧化锡(a)和热处理过的的二氧化锡(b)在220˚C下对乙醇的灵敏度进行测试.(A)对25ppm的乙醇进行再现性实验;(B)不同乙醇浓度(1.7-500ppm)的灵敏度变化.表1取自[30]表1为热处理过的二氧化锡纳米粒子在220˚C下测试甲醇、乙醇和丙醇在不同浓度(1.7ppm到500ppm)的灵敏度,*NA表示未探测.综上可知,今后就水热法制备金属离子或贵金属改性的SnO2纳米颗粒的气敏性能以及光电性能等方面进行研究将是一个新的方向.直接制备有金属或金属氧化物负载的SnO2纳米颗粒对改善晶体气敏性方面有显著的影响.3展望在晶体制备方面,可以通过改变反应条件,添加不同的有机溶剂来制备颗粒较小、更加稳定、比表面积较大的SnO2晶体,如添加其他醇类,或醇类衍生物来改变晶体团聚的方法将是改变粒径的一个新方向.我们还可以通过多种方法结合制作更为需要的晶体,如De liang Chen[31]等则利用微乳液法与水热法相结合的方法在SnCl4·5H2O中加入戊醇、正己烷、CTAB、尿素以及乙醇,在较温和的条件下制备了晶粒尺寸为几纳米的SnO:粉体,其晶粒分布范围只有3nm.从半导体气敏传感器的发展情况看,气敏材料的选择性问题,传感器的稳定性问题,与纳米SnO2性能不稳定和粒径较大有关,因此改善SnO2的粒径和稳定性还是当今研究方向的重要内容,同时气敏材料向多功能、薄膜化、集成化、小型化和智能化发展,也要从SnO2性能方面入手.因此,以后的研究开发中纳米技术和薄膜技术将成为主要方向,如果解决了稳定性问题,那成本低、响应时间短、灵敏度高的SnO2薄膜材料将有很大的发展前景.在纳米SnO2合成、制备中我们可以更多采用表面修饰技术,掺杂技术以改善气敏元件的性能.完善机械化学法制备SnO2纳米晶的装备和工艺,进一步提高纳米晶材料纯度和粒径的稳定性,提高产率.如在增大比表面积来改善气敏性方面可将单层SnO纳米片转换成多层SnO2纳米片[32],这种方法简单,容易制作,使其在制造高灵敏度的SnO2占巨大优势.参考文献:[1]Hell egouarch F,Arefi-Khonsari F,et al.Sensors and Actuators B,2001,73:27[2]Laudise RA,KolbED,Key PL,In:Somiya S.edat.the first inter.Symp.Proc.onHydrothermal Reactions[C].Japan,1982:527-530.[3]陈祖耀,胡俊宝等.低温等离子体化学法制备SnO2超微粒子粉末[J].硅酸盐学报,1986,14(3):326-331.[4]李燕.醇水溶液加热法制备SnO2纳米粉[J].安徽建筑工业学院学报(自然科学版),2000,8(2):66-68[5]Chen D L,Gao L Facile synthesis is of single-crystal tin oxide nanorodswith tuable dimensions via hydrothermalprocess[J].Chen.Phys.Lett,2004,398(1-3):201-206.[6] 李振昊,乐园,郭奋,等.纳米二氧化锡粉体的超重力-水热制备与表征[J].北京化工大学学报,2007,34(4):354-357.[7]王东新,钟景明,孙本双等.水热合成法对纳米氧化锡粉体粒径和形貌的控制研究[J].无机化学学报,2008,24(6):892-896[8]魏妙丹,庞雪蕾,王磊,等.纳米氧化锡粉体的制备及性能表征[J].河北工业科技,2011,28(6):351-354.[9]张倩瑶,苑媛,刘金鑫,等.纳米二氧化锡的多种方法制备、表征及其对比[J].化学工程师,2012,07:5-7.[10]Masayoshi Yuasa,*Tetsuya Kida,and Kengo Shimanoe.2012 American ChemicalSociety.2012, 4, 4231−4236.[11] Edwin A,et al.Mater Res Bull,2001,36:837.[12] Hellegouarch F,Arefi-Khonsari F,et al.Sensors and Actuators B,2001,73:27.[13] Nam S B,et al.Sensors and Actuators B,2000,65:97.[14] Song K C,Kang Y.Materials Letters,2000,42:283.[15] Sager W,Eicke H F,Sun W.Colloids Surfaces A:Physichem EngAspects,1993,79:199.[16]高艳阳,崔子文,高建峰.华北工学院学报,1996,(2):124.[17]Kurihara,L.A.;Fujiwara,S.T.;Alfaya,R.V.S.;Gushikem,V.;Alfaya,A.A.S.;Ca stro,S.C.J.Colloid and Interface Science,2004,274:579.[18] Tana,O.K.;Caoa,W.;Zhua,W.;Chaib,J.W.;Pan,J.S.Sensors and ActuatorsB,2003, 93:396.[19] Kotsikau,D.;Ivanovskaya,M.;Orlik,D.;Falasconi,M.Sensors And Actuators B,2004, 101:199.[20] Tan,O.;Zhu,W.;Yan,Q.Sensors and Actuators B,2000, 65:361.[21] Weber,I.T.;Valentini,A.;Probst,L.F.D.;Longoa,E.;Leite,E.R.Sensors and Actuators B,2004, 97:31.[22]耿丽娜,吴世华. 聚苯胺/二氧化锡杂化材料的制备、表征及气敏性测试[J].无机化学学报.2011,27(1):47-52.[23]邓希敏.材料研究学报[J],1995,(5):438.[24]贾维国,宋晓琴等.内蒙古大学学报(自然科学版)[J].1999,(6):697.[25]Liu W,Cao X P,Zhu Y F,et al The effect of dopants on the electron ic structure of SnO2 thin film [J].Sens.Ac2 tuators B,2000,66(1-3):219-221.[26]方丽梅,李志杰,刘春明等.物理化学学报(自然科学版)[J].2006,22(10):1212~1216.[27] Masayoshi Yuasa,*Tetsuya Kida,and Kengo Shimanoe.2012 American Chemical Society.2012, 4, 4231−4236[28]和宁宁,夏海平,王冬杰.超声喷雾共沉淀法制备纳米氧化锡粉体及其气敏性研究[J].中国稀土学报,2011,29(1):88-94.[29]Hae-Ryong Kim , Alexander Haensch , Il-Doo Kim , Nicolae Barsan , * Udo Weimar ,and Jong-Heun Lee* The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO 2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic StudiesAdv. Funct. Mater. 2011, 21, 4456–4463[30]葉晨聖*、邱惠琪.水熱法合成二氧化錫奈米粒子並應用在醇類氣體的感測器上[J].Phys.Chem.C.2007,111,7256-7259.[31]CHENDL,GAOL.Novel synthesis of wel·dispersed crystallineSnO2 nanoparticles by water—in—oil microemulsion-assisted hydrother-mal process.Journal ofColloid and Interface Science,2004,(279):137—142.[32]Kun-Mu Li; Yi-Jing Li; Ming-Yen Lu;Chung-I Kuo;and Lih-JuannChen*;Adv.Funct.Mater.2009,19,2453–2456.。
水热法制备纳米氧化铟的方法

水热法制备纳米氧化铟的方法
水热法是一种常用的制备纳米材料的方法之一。
其基本原理是在
高温高压下将适当比例的前驱体溶液置于反应锅中,通过调节反应条
件(如反应温度、时间和压力等),在溶液中形成一定阶次的胶体粒子,最终在减压冷却的过程中,制备出所需的纳米材料。
在制备纳米氧化铟过程中,水热法也被广泛应用。
其主要步骤为:首先制备氧化铟的前驱体,如氧化铟乙醇溶胶液;然后将前驱体溶液
置于反应锅中,控制反应温度、时间和压力等条件,使其形成一定阶
次的氧化铟胶体粒子;最后将反应产物经过离心、洗涤和干燥等步骤,即制备出纳米氧化铟。
水热法制备纳米氧化铟的优点在于制备简单、成本低廉、对环境
友好,同时还可以控制纳米材料的形貌和粒径等特性,使其具有更好
的应用性能。
因此,这种方法在纳米材料的制备和应用中具有广泛应
用前景。
水热法制备球形硒

水热法制备球形硒水热法是一种常用的制备纳米材料的方法,其简单易行且能够控制粒径大小和形态。
在水热法中,水作为溶剂和反应介质,在高温高压的条件下,可以促进物质的溶解和反应,从而制备出具有特殊结构和性质的纳米材料。
硒是一种重要的无机元素,具有广泛的应用前景。
球形硒是一种形态特殊的硒纳米材料,具有较大的比表面积和丰富的表面活性位点,因而在光电、催化、生物医学和能源等领域具有重要应用价值。
下面将介绍以水热法制备球形硒的过程和相关研究。
1.实验原理水热法制备球形硒的过程主要涉及硒的溶解、析出和形态控制。
在水热条件下,硒可以在水中溶解形成硒酸根离子(SeO4^2-),然后通过还原反应得到硒。
在反应过程中,溶液中的硒离子会发生聚集,形成硒纳米颗粒。
控制水热反应的条件、溶剂和添加剂可以实现硒纳米颗粒的球形形态。
2.实验步骤(1)制备硒溶液:将一定质量的硒粉加入适量的蒸馏水中,并在磁力搅拌的条件下,加热至硒完全溶解为止。
(2)调节溶液条件:根据需求,可以在硒溶液中加入一定量的还原剂(如亚硫酸氢钠)和表面活性剂(如十二烷基硫酸钠),以调节反应条件和控制硒纳米颗粒的形态。
(3)水热反应:将调节后的硒溶液转移到高压釜中,加热至一定温度,并保持一定时间。
在水热的条件下,硒离子会发生还原反应和聚集,形成球形硒纳米颗粒。
(4)冷却和离心:将反应结束后的溶液冷却至室温,并通过离心等手段将球形硒纳米颗粒分离出来。
(5)洗涤和干燥:用适量的蒸馏水反复洗涤球形硒纳米颗粒,去除残留的溶液和杂质。
最后将洗涤后的球形硒颗粒在真空下干燥得到最终产物。
3.实验结果通过控制水热反应的温度、时间和添加剂的浓度,可以制备出不同粒径和形态的球形硒纳米颗粒。
研究表明,在适当的反应条件下,可以得到均一分散、尺寸一致的球形硒颗粒,并且可以通过改变添加剂的种类和浓度来调节球形硒的大小和形态。
4.应用前景由于球形硒纳米颗粒具有较大的比表面积和丰富的表面活性位点,因此在光电、催化、生物医学和能源等领域具有广泛的应用前景。
实验三_水热法制备纳米二氧化钛

水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。
选择理由:优势:直接制备结晶良好且纯度高的粉体,需作高温灼烧处理,避免形成粉体硬团聚,粒径分布均匀。
缺点:反应时间长、杂质离子难以除去、纯度不高。
二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。
OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。
纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。
纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OHa = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。
三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。
2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。
四、操作步骤在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:水热法制备纳米TiO
2
水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。
在水热条件下可以使反应得以实现。
在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。
水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。
一.实验目的
1.了解水热法的基本概念及特点。
2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。
3.熟悉XRD操作及纳米材料表征。
4.通过实验方案设计,提高分析问题和解决问题的能力。
二.实验原理
水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。
为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。
水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。
反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。
三.实验器材
实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。
实验试剂:无水TiCl4;蒸馏水;无水乙醇。
四.实验过程
1.取10mL量筒,50mL的烧杯洗净并彻底干燥。
2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。
3.用量筒量取2mL的无水TiCl4,缓慢滴加到冰水混合物中。
4.继续搅拌10min,即可得到TiO2的乳浊液。
5.将制得的乳浊液放入到高压反应釜内,在120℃的控温烘箱中反应5h后取出。
6.取出样品自然冷却后,用蒸馏水洗涤3次,无水乙醇洗涤1次,抽滤,干燥后称重M2。
7.将干燥的样品进行XRD衍射,得出衍射图。
五.数据记录与处理
1.产率计算:
理论产量M1=1.4567g
实际产量M2=0.3773g
则TiO2的产率=实际产量÷理论产量
即:P%=0.3773÷1.4567=25.90%
2.将实验得到的样品进行XRD衍射,得出衍射图如下:
3
/ 5
姓名 学号 组别 日期 评阅人
TiO 2 XRD 衍射图
横坐标表示角度,纵坐标表示峰强度。
六.思考题
1.什么是水热法?
水热法又称热液法,属液相化学法的范畴。
是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。
水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。
其中水热结晶用得最多。
原理: 水热结晶主要是溶解———再结晶机理。
利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通
过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。
2.水热法的特点是什么?
1)合成的晶体具有晶面,热应力较小,内部缺陷少;
2)密闭的容器中进行,无法观察生长过程,不直观;
3)设备要求高(耐高温高压的钢材,耐腐蚀的内衬)、技术难度大(温压控制严格)、成本高;
4)安全性能差。
3.水热法生产的特点是什么?
水热法生产的特点是粒子纯度高、分散性好、晶形好且可控制,生产成本低。
用水热法制备的粉体一般无需烧结,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点。
4.影响水热合成的因素有哪些?
温度的高低、升温速度、搅拌速度以及反应时间等。
七.实验心得
本次实验最大的体会是不一定要全部统一做一个实验,如果觉得自己的实验方案切实可行,可以进行适当的尝试。
实验时需要了解试剂样品、实验仪器的使用说明,比如TiCl4,它在移取过程中容易接触空气中的水分形成酸雾,这就要求在通风厨内操作,并且使用来移取的量筒和胶头滴管必须干燥。
将其加到冰水混合物过程中需要慢慢加入。
又比如XRD,因为它的测试成本高,所以尽量排好队一起测量,省得耗费器材。
测试时,因为它有很强的辐射,这个时候了解它辐射区范围,找个相对安全的
位置也很重要。
以后实验操作一定要深刻了解试剂、仪器的使用规范,为安全、成功的实验打基础。