电感元件

电感元件
电感元件

电感元件

电感元件指的是电感线圈与各种变压器。它和电阻、电容元件一样,也是各种电器中重要的元件之一。电阻、电容和电感元件一般统称为“无源元器件”(电子管、晶体管、集成电路等一般统秒为有源元器件)。电感线圈有时将它们简称为“电感器”、“电感”或“线圈”,常用字母“L”表示;变压器常用字母“B”或“T”来表示。

基本知识

电感线圈与变压器都是利用电磁感应现象来工作的。如图1.3-1所示,当有交流电流通过线圈L时(其函数为N),便会在线圈的内部及其周围产生交流磁场(用磁通φ表示),由电磁感应定律,这交流磁场会在线圈的两端产生感应电动势。由电工学知识所知:磁场的大小与产生磁场的电流的大小成正比,公式表为ψ=Li。

式中:ψ=Nφ为N线圈的磁通,称为磁通链。比例系数L称为电感系数。由此得到即电感只与本线圈通过的电流有关,也称为“自感”系数。自感系数反映了该线圈电感量的大小,通常也简称为“电感”。

如果在线圈L1的附近有另一线圈L2,则由L1的电流产生的磁通链ψ1除在本线圈作用产生感应电动势外,同时还会与L2相交链,磁耦合在L2两端产生感应电动势。这种现象称为“互感”。通常把通电线圈L1称为初级线圈(或原线圈),L2称为次级线圈(或副线圈)。当然,若线圈L2通过电流i2产生的磁通链ψ2,除与本线圈相交链外,也会由磁耦合,与L1交链,产生互感。通常用互感系数M来表示互感量的大小。互感系数的大小与两线圈(有时还多于两个线圈)的相互位置、方向以及线圈中是否有“心子”等诸多因素有关。变压器就是基于互感现象工作的。线圈电感的大小用“电感量”来表示,其基本单位为“亨利”,简称“亨”,用字母“H”表示。比亨小的单位是毫亨(MH),更小的单位是微亨(UM),它们之间的换算关系为:

1H=103MH=106UH

电感线圈电感量的大小,一般与制作时所用导线的粗细、绕成后线圈的形状、大小以及匝数等因素有关,另外“线圈尽”材料的导磁性能和“心子”与线圈的相对位置对电感量的影响也较大。例如,由铁磁材料做成的“铁心”和“铁氧体磁心”能使线圈的电感量大大增加,而铜心会使电感量减小。有时在一些电路中要求线圈的电感量可以调节,多数情况下可以改变线圈心的位置的方法来改变电感量,也有少数用改变线圈的形状的方法来改变线圈的电感量的。

电感线图在电路中的特性与电容器相反,电容是一种“高通”元件,而电感器则是“低通”元件。即信号的频率越低,电感的阻抗越小。也就是说,低频电信号较之高频信号更容易通过电感线圈。对直流信号而言,电感线圈的直流电阻几乎为零,相当于短路。

电感线圈的种类

几种常见的电感线圈的外形如图1.3-2所示。

电感、变压器在电路中的图形符号见图1.3-3所示

1、高频电感线圈

高频电感线圈是一种电感量较小的电感器,用于高频电路中。高频电感线圈又分为空心线圈、磁心线圈等,前者多用较粗铜线或镀银铜线脱胎绕成,或绕在空间塑料骨架上,后者

多绕在带磁心的塑料骨架上。磁心线圈的电感量可以用改变磁心在线圈中的位置来进行调节,而空心线圈则必须靠增减匝数或匝距来进行调节。

还有一种小型固定高频线圈,叫色码电感,它也是磁心线圈,不过在绕制后再用环氧树脂或塑料封装起来,在其外壳上标以色环或直接用数字标明其电感量数值。固定电感线圈的另一种结构形式是在塑料或瓷骨架上绕成蜂房式结构,称为高频扼流圈。

2、空心式及磁棒天线线圈

它是把绝缘或镀银导线绕在塑料胶木管上或用铁氧体烧结而成的磁棒上,它和可调电容组成收音机的调谐接收回路。工作于中波段的天线线圈的电感量较大,约200~300UH,线圈匝数较多;短波线图电感量小得多,只有几个到十几个UH,线圈匝数也较少,通常只有几圈。

3、低频扼(阻)流圈

低频扼流圈是用漆色线在铁心(硅钢片)外多层绕制而成的大电感量的电感器,一般电感量有数亨,常用于音频或电源滤波电路中。

电感线圈的分类还可按照线圈所使用的线圈心的材料来分,则有铁心电感线圈、铜心电感线圈、铁氧体心电感线圈或空心电感线圈等等;如果按照线圈的绕制方法来分类,则有单层式线圈、多层式线圈、密绕式线圈、间绕式、脱胎式、蜂房式、乱绕式线圈等等;如果按照线圈在电路中的作用来分,又有振荡线圈、扼流线圈、滤波线圈等等。

电感线圈的主要技术参数

1、电感量

电感量是电感线圈的主要参数,电感量的大小与线圈的匝数、绕制方式以及磁心的材料等因素有关。如匝数越多、匝距越小,电感量越大;线圈内有磁心的比无磁心的电感量大;磁心的磁导率大的则电感量大。

2、品质因数(Q值)

品质因数也是电感线圈的主要参数,电工中常用字母Q表示。Q值越高表明线圈的功率损耗越小,效率越高,即“品质”越好。一般线圈的Q值在几十至几百的数量级。电感线圈的Q值与线圈的结构(如导线的粗细、多股或单股、绕法、磁心等)有关,也和工作(或测试)频率有关。一般是频率越高,Q值下降。所以线圈的Q值只对应某一测试频率下的Q值。

3、标称电流

是指线圈允许通过的电流的大小,常以字母A、B、C、D、E来分别代表标称电流值50mA、150mA、300mA、700mA、1600mA。应用时实际通过电感线圈的电流不宜超过标称电流值。

另外,在电感线圈工作时,其层与层之间(或匝与匝之间)客观上会产生电容效应,这一电容称为线圈的“分布电容”(或寄生电容)。虽然这个电容很小,但由于分布电容的存在,使线圈的工作频率受到影响,并使线圈的Q值下降,高频线圈的蜂房或分段式绕法就是为了减小分布电容而设计的。

电感线圈的等效电阻一般很小,可以忽略不计。但当线圈中通有较大电流时,这个电阻的功耗会引进线圈的发热甚至烧坏线圈,所以有时还应考虑线圈能够承受的电功率。

变压器

电路中变压器的作用一般有两个,即传递电能或信号,隔直流以及变换电压、变换电流

或阻挠变换。变压器一般电线圈、铁(磁)心和骨架(外壳)等部分组成。变压器的外形、原理与符号如图1.3-4所示

1、基本工作原理与分类

变压器接电源的线圈称为初级,其余的线圈称为次级。当初级加上交流电源电压后,在铁心中产生交变的磁场,由于铁心的磁耦合作用,在次级线圈中产生感应电压。

变压器的种类很多(以下仅限于讨论电子设备中的小型变压器),按用途可分为电源变压器、音频变压器、中频变压器、高频变压器、耦合变压器以其它专用变压器等。变压器按其磁心材料来分有铁心变压器、磁心变压器和空心变压器等几种。其中铁心(用硅钢片或坡莫合金材料制成)变压器一般用于低频和中频电路中,而磁心或空心变压器则用于中、高频电路中。各类变压器的外形、电路符号及应用则见见图1.3-5。

2、变压器的主要技术参数

(1)额定功率。指在规定的频率和电压下变压器能长期稳定工作而其温升不超过规定温升时的输出功率。单位为伏安(V A)。

(2)匝比。即次级线圈的匝数N2与初级线圈的匝数N1之比。一般情况下,匝比也就是输出电压与输入电压之比,所以匝比又称为变压比,简称为“变比”。

(3)效率。是指变压器次级输出的电功率与初级输入电轴功率比值的百分数。变压器的效率反映了变压器在能量的传递过程中,变压器自身的能量损耗的大小。效率越高,说明自身的损耗越小。一般对电源、音频变压器要注意效率,而对中频、高频变压器一般不考虑效率问题。

(4)温升。变压器的温升主要是针对电源变压器而言,它指的是变压器通电工作后,其温度上升至稳定值时,这时变压器的温度高出周围环境温度的数值。变压器的温升愈小愈好。

(5)绝缘电阻。理想的变压器各绕组线圈之间和与铁心之间,在电气上应是完全绝缘的。但是,由于绝缘材料或工艺等原因会有一定的漏电流,达不到理想的绝缘。绝缘电阻是施加的试验电压与产生的漏电流之比。

如果变压器的绝缘电阻过低,就可能出现初、次级间短路或与铁心外壳短路,造成电气设备损坏或机壳带电的危险。

(6)漏电感。变压器初级线圈电流产生的磁通并非全部通过次级线圈,不通过次级线圈的这部分磁通叫漏磁通。由漏磁通产生的电感称为漏电感,简称漏感。漏感的存在会影响

变压器的效率及性能,还会影响变压器周围的电路的工作,因此变压器的漏感越小越好。除以上主要技术参数外,不同用途的变压器还有一些特别要求的技术指标,此处不一一介绍。

3.变压器的同名端

我们以一个简单变压器为例,来说明变压器“同名端”的概念。

图1.3-6所示变压器有一个初级线圈(接输入电压Ui)和一个次级线圈,其端电压为Uo,两个端口电压的瞬时参考方向如图所示,若Ui波形如图(b)所示,Uo的波形即U34的波形如图(c)所示,U43的波形如图(d)所示。显然,Ui的波形与U34波形方向一致;U43的波形与它们正好相反。在这种情况下,称引脚1和引脚3为同名端;引脚2与4同样为同名端。而引脚1、4或引脚2、3则互为“异名端”。可见同名端即同极性端。线圈的同名端与线圈绕制时的绕向有关。

对于具有多个次级线圈的变压器,它的每一个线圈的两个端子与其它线圈端子之间的关系同样具有同名端和异名端的关系。对于图1.3-7所示的变压器有一个初级线圈和三个次级线圈。同名端的标记用“*”号或黑点表示。图中表明:引脚1、3、5、7为同名端,未有标记的引脚2、4、6、8也为同名端。而任一个有标记的引脚与任一个未有标记的引脚则称为异名端。对变压器来说,当需要考虑各线圈电流和电压的相位时,应注意区别各线圈同名端引脚的正常连接,但同名端的标记并非是必须的。

电感元件的识别与检测

1、电感器的命名方法

电阻器与电容器都是标准元件,而电感器除少数可采用现成产品外,通常为非标准元件,需根据电路的要求自行绕制。

电感器的命名由名称、特征、型号和序号四部分组成,如图1.3-8所示。

其实各厂家对固定电感器产品型号的命名方法并不完全统一,有的用LG加产品序号,有的采用LG加数字和字母后缀,如其后缀数字1表示卧式,2表示立式,G表示胶木外壳型,P表示圆饼型,E表示耳朵型环氧树脂色封,使用需要时可查阅相关资料或向商家咨询。

2、电感器的一般检测

看外观。看线圈的引线是否霉变断裂、脱焊、绝缘材料是否烧焦和表面是否破损等。

通过万用表的电阻挡测量线圈阻值来判断其好坏。即检查电感器(线圈)是否有短路、断路和绝缘不良等情况。一般电感线圈的直流电阻值很小(如零点几欧至几欧)。低频扼流圈的电感量较大,线圈的匝数相对较多,其直流电阻相对比较大(约为几百或几千欧)。当测得线圈电阻无穷大时,表明线圈内部或端线已断线;若表针指示为零,则说明线圈内部短路。

对低频扼流圈,还应检查线圈和铁心之间的绝缘电阻,即测量线圈引线与铁心或金属屏蔽罩之间的电阻,正常时应为无穷大,否则说明该电感器绝缘不良。

对磁心可变电感器,可变磁心应未有破损,用无感改锥(一般用塑料牙刷杯或竹筷自制)伸缩调整自如,即不松动,也不能太紧。注意磁心较脆,旋动时不可过份用劲。

当需要对电感器(线圈)作精准测量时,就需要借助于专用的电子仪器仪表(如电感电容电桥或Q表)来测量。具体的检测方法,可参阅有关资料及说明。

3、变压器的直观检测

下面以收音机中频变压器(俗称中周)为例,说明变压器的一般的检测方法。

(1)外观检查。仔细观察变压器的外表有无异常情况,推断其好坏。如观察线圈有无烧坏的痕迹,线头有无霉断等情况。

(2)测线圈与外壳的绝缘。用万用表“R×1K”挡或“R×10R”挡,分别测量各线圈与外壳之间的绝缘电阻,若电阻值很小,说明变压器内部引线碰壳,不能使用,见图1.3-9 (3)测各线圈间的绝缘

用万用表“R×1k”或“R×lOk”挡,测量每个绕组线圈之间的绝缘电阻,电阻应为无穷大,否则说明变压器内部短路,不能使用。

(4)检查线圈

用万用表“R×l”挡,测量各绕组线圈,应有一定阻值,因为nl、n2、n3圈数不同,所以R12、R23、R46应略有不同。如测得R=∞,则说明线圈内部断路;如果测得阻值为0,则说明该绕组内部短路。

(5)检查磁心

若可变磁心不松动或未断裂,可用无感改锥进行伸缩调整。

练习与实践:

1、有一电源变压器,标称功率为10W,次级输出电压为9V,试计算:

(1) 次级电流的最大值是多少(理想值)?

(2) 在变压器输出最大电流的情况下,负载阻搞约为多少?

2、讨论题:一般小型电源变压器都使用屏蔽层,问:

(1) 何为屏蔽作用?

(2) 如何使屏蔽层起屏蔽作用?

(3) 若不使用屏蔽层,有什么不良结果?

3、变压器同名端的测试判别。按题3图接线。当按下开关SA时,用直流电压表分别测U3

4、

U56。按要求填题3表。

电子元器件基本常识-电感

电子元器件基本常识——电感部分(全) 发表于 2007-8-10 13:27:34电感 3.1 电感基础知识 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 简单的说电感线圈就是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH), 1H=10^3mH=10^6uH。 3.2 电感的分类: 按电感形式分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 按工作频率分类:高频线圈、低频线圈。 按结构特点分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等 3.3 电感线圈的主要特性参数 电感量L:电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 感抗XL: 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL

电感元件

电感元件 电感元件指的是电感线圈与各种变压器。它和电阻、电容元件一样,也是各种电器中重要的元件之一。电阻、电容和电感元件一般统称为“无源元器件”(电子管、晶体管、集成电路等一般统秒为有源元器件)。电感线圈有时将它们简称为“电感器”、“电感”或“线圈”,常用字母“L”表示;变压器常用字母“B”或“T”来表示。 基本知识 电感线圈与变压器都是利用电磁感应现象来工作的。如图1.3-1所示,当有交流电流通过线圈L时(其函数为N),便会在线圈的内部及其周围产生交流磁场(用磁通φ表示),由电磁感应定律,这交流磁场会在线圈的两端产生感应电动势。由电工学知识所知:磁场的大小与产生磁场的电流的大小成正比,公式表为ψ=Li。 式中:ψ=Nφ为N线圈的磁通,称为磁通链。比例系数L称为电感系数。由此得到即电感只与本线圈通过的电流有关,也称为“自感”系数。自感系数反映了该线圈电感量的大小,通常也简称为“电感”。 如果在线圈L1的附近有另一线圈L2,则由L1的电流产生的磁通链ψ1除在本线圈作用产生感应电动势外,同时还会与L2相交链,磁耦合在L2两端产生感应电动势。这种现象称为“互感”。通常把通电线圈L1称为初级线圈(或原线圈),L2称为次级线圈(或副线圈)。当然,若线圈L2通过电流i2产生的磁通链ψ2,除与本线圈相交链外,也会由磁耦合,与L1交链,产生互感。通常用互感系数M来表示互感量的大小。互感系数的大小与两线圈(有时还多于两个线圈)的相互位置、方向以及线圈中是否有“心子”等诸多因素有关。变压器就是基于互感现象工作的。线圈电感的大小用“电感量”来表示,其基本单位为“亨利”,简称“亨”,用字母“H”表示。比亨小的单位是毫亨(MH),更小的单位是微亨(UM),它们之间的换算关系为: 1H=103MH=106UH 电感线圈电感量的大小,一般与制作时所用导线的粗细、绕成后线圈的形状、大小以及匝数等因素有关,另外“线圈尽”材料的导磁性能和“心子”与线圈的相对位置对电感量的影响也较大。例如,由铁磁材料做成的“铁心”和“铁氧体磁心”能使线圈的电感量大大增加,而铜心会使电感量减小。有时在一些电路中要求线圈的电感量可以调节,多数情况下可以改变线圈心的位置的方法来改变电感量,也有少数用改变线圈的形状的方法来改变线圈的电感量的。 电感线图在电路中的特性与电容器相反,电容是一种“高通”元件,而电感器则是“低通”元件。即信号的频率越低,电感的阻抗越小。也就是说,低频电信号较之高频信号更容易通过电感线圈。对直流信号而言,电感线圈的直流电阻几乎为零,相当于短路。

coil电感器件特性

认识电感器Inductor组件特性 电感器种类: 一般电感器依功能特性可区分为信号电路用及电源电路用两种. 依其形状则有卧式Axial, 座式Radial, 贴片式SMD三种不同的包装型态. 此外还有类似变压器结构之电感器, 及以铁粉芯产生电感量的EMC防护组件. 1.电感器主要电气规格: 电感量与误差值(与测试频率有关), 最低Q值(与测试频率有关), 最大额定工作 电流, 工作温度范围. 其它依组件使用特性另有其它特定之规格. 2.信号电路用电感器参考规格如下: Inductor for Signal Line Radial Winding *工作温度范围: (-20/+80) *Rated Current: Radial winding之定义为电感量-10%之工作电流, Axial winding之定义为温升超出20℃之工作电流. *Test Frequency: 一般信号电路用电感器, 需使用Q Meter测试频率依电感量标准设定. *Self Resonant Frequency: 高频电感器其内部有寄生电容量与本身电感量形成共振电路. 3.电源电路用电感器参考规格如下: Inductor for Power Line Radial Winding

SMD Winding *工作温度范围: Axial Winding 为(-20/+80℃) 其它为(-40/+85℃) *Rated Current: 数值较高者为电感量-10%之工作电流, 数值较低者为温升超出20℃之工作电流. *Test Frequency: 一般电源电路用电感器, 需使用LCR Meter测试频率设定1KHz. 5. 铁粉芯EMC防护组件参考规格如下: EMC Ferrite Core Impedance (Z in Ohm) *Impedance 10MHz/100MHz: 一般EMI辐射较强的部分为30-300MHz, 故100MHz阻抗越高效果越佳, 10MHz阻抗则视信号电路频率响应需要决定. *上述阻抗数值为针对单一线所产生之数据. *注意上述资料显示HF40/HF70材质不同, 造成10MHz/100MHz相对阻抗的差异. 此外阻抗随铁芯厚度与深度成正比例增加.

电路基本元件R,C,L(电阻,电容,电感) 介绍

电路基本元件R,C,L(电阻,电容,电感)介绍 1.电阻元件 电阻是表征电路中电能消耗的理想元件。一个电阻器有电流通过后,若只考虑它的热效应,忽略它的磁效应,即成为一个理想电阻元件。电阻元件的图形符号如图1-16所示。图中电压和电流都用小写字母表示,表示它们可以是任意波形的电压和电流。图1-16中,u和i 的参考方向相同,根据欧姆定律得出 即电阻元件上的电压和与通过的电流成线性关系,两者的比值是一个大于零的常数,称为这一部分电路的电阻,单位是欧姆(Ω)。 在直流电路中,电阻的电压与电流的乘积即为电功率,单位是瓦(W)。 在t时间内消耗的电能为W=Pt。 W的单位是焦[耳](J),工程上电能的计量单位为千瓦?小时(kW?h),1千瓦?小时即1度电,1度电与焦的换算关系为1kW?h=3.6×106J。这些电能或变成热能散失于周围的空间,或转换成其他形态的能量作有用功了。因此,电阻消耗电能的过程是不可逆的能量转换过程。 2.电容元件 电容是用来表征电路中电场能储存这一物理性质的理想元件。图1-17是一电容器,当电路中有电容器存在时,电容器极板(由绝缘材料隔开的两个金属导体)上会聚集起等量异号电荷。电压u越高,聚集的电荷q就越多,产生的电场越强,储存的电场能就越多。q与u的比值为C=q/u。C称为电容。式中,q的单位为库[仑](C);u的单位为伏[特](V);C的单位为法[拉](F)。由于法[拉]的单位太大,工程上多用微法( F)或皮法(pF),它们的换算关系为 1F=10-6pF,1pF=10-12F。 当极板上的电荷量q或电压u发生变化时,在电路中就要引起电流流过。其大小为 (1-5) 上式是在u和i的参考方向相同的情况下得出的,否则要加负号。

电感:介绍和理解

电感:介绍和理解 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感可以隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。 电感的作用再用八个字来说就是:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。 电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但是,由于外界原因,电流和磁场都可能必须要发生变化。 给电感线圈加上电压,电流想从零变大,可是磁场会反对,所以电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没有了,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。 给一个电感线圈外加一个变化磁场,只要线圈有闭合的回路,线圈就会产生电流。如果没有回路的话,就会在线圈两端产生一个电压。产生电压的目的就是企图产生电流。当两个或者多个丝圈共用一个磁芯(聚集磁力线的作用)或者共用一个磁场时,线圈之间的电流和磁场就会互相影响,这就是电流的互感现象。 大家看得见,电感就是一根导线,电感对直流的电阻很小,甚至可以忽略不计。电感对交流电呈现出很大的电阻作用。 电感的串联、并联非常复杂,因为电感实际上就是一根导线在按一定的位置路线分布,

因此,电感的串联、并联也跟电感的位置有关(主要是磁力场的互相作用有关),如果不考虑磁场作用以及分布电容、导线电阻(Q值)等影响的话就相当于电阻的串联、并联效果。 交流电的频率越高,电感的阻碍作用越大。交流电的频率越低,电感的阻碍作用越小。 电感和充满电的电容并联在一起时,电容放电会给电感,电感产生磁场,磁场会维持电流,电流又会给电容反向充电,反向充电后又会放电,周而复始……如果没有损耗,或者能及时的补充这种损耗,就会产生稳定的振荡。 二极管的作用和功能用四个字来说:“单向导电。”二极管常用来整流、检波、稳压、钳位、保护电路等。资料免费下载,视频在线免费观看 在随身听的供电回路中串上一只整流二极管,当直流电源接反时,不会产生电流,不会损坏随身听。 给二极管(硅材料)加上低于0.6V的正向电压,二极管基本上不产生电流(反向就更加不能产生电流了),这个电压就叫死区电压、门槛电压、门限电压、导通电压等三极管的作用和功能因为四个字来完成:“电阻可变。”由于三极管等效成的电阻值可以无限制的变化,因此三极管可以用来设计开关电路、放大电路、震荡电路。 三极管的集电极电流等于基极电流乘以放大倍数,当基极电流大到一定程度时,集电极的电流由于各种原因不可能再增大了,这时集电极电压已经等于或者接近发射极电压了,相当于电阻值变成0欧姆。 确定三极管的放大状态绝招:发射结正偏,集电结反偏。 三极管是电流控制器件,场效应管是电压控制器件。场效应管性能优量,但在分立元件中,低电源电压适应性比三极管要差。 场效应管是电压控制器件,很容易被静电损坏,因此,场效应管中大多都有保护二极管。 可控硅实际上是一个高速的、没有机械触点的电子开关,这个开关需要用一个小电流去

电感器的符号及类型

电感器的符号及类型 符号(L): 电感器 1.电感器 电感器的图形如上面所示。在电子制作中虽然使用得不是很多,但它们在电路 中同样重要。电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。电感器用符号L表示,它的基本单位是亨利(H),常用毫亨(mH)为单位。它经常和电容器一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了扼流圈、变压器、继电器等。 电感器的特性恰恰与电容的特性相反,它具有阻止交流电通过而让直流电通过的特性。 电感器的技术指标主要包括:电感量L;品质因数Q值;自谐频率f ;直流 电阻RDC;额定电流I等。固定电感器主要用于电视机、摄像机、录像机、微处理机、微电机及其它电子设备和通讯设备中起谐振、耦合、延迟、滤波、陷波扼流抗干扰等作用。 小小的收音机上就有不少电感线圈,几乎都是用漆包线绕成的空心线圈或在骨架磁芯、铁芯上绕制而成的。有天线线圈(它是用漆包线在磁棒上绕制而成的)、中频变压器(俗称中周)、输入输出变压器等等。 2.分类列述 (1) 固定电感器 LGB-X 、LGB-S型立式固定电感器,单层或多层绕线在铁氧体 工型磁芯上,外包装分别采用硅橡胶套管和热缩套管。可用于电视机和 其他电子设备中起滤波和扼流作用。 (2) 工字形电感 ※特性: ● 储存高; ● 损耗小; ● 价格低。 ※用途:

● 微波消除,RF滤波; ● 输出扼流; ● EMI/RFI滤波; ● 广泛用于电脑、显示器; ● 彩电及各种电子设备等。 (3) 棒装线圈 ※特性: ● 输出电流大; ● 价格低; ● 结构坚实。 ※用途: ● 微波消除; ● 输出扼流; ● EMI/RFI滤波; ● 广泛用于各类电子电路和电子设备等。 (4)“尖波杀手”电感器 ※特性: ● 高效率; ● 低溫升; ● 很好的饱和特性; ● 抑制尖波能力强。 ※用途: ● 开关电源的微波抑制; ● 电子电路中的二极管恢复特性补偿。 (5) 电流感測器 ※特性: ● 感应灵敏度高; ● 绝缘性能好。 ※用途: ● 电流传感; ● 常用于电子控制系统和电子设备等。 (6) 电源变换器 ※特性: ● 滤波性能好; ● 负载能力强; ● 损耗小。 ※用途:● AC-AC、AC-DC转换;● 广泛用于收音机; ● 收录机;● 无线电话及其它小型电器等。

电感主要参数介绍

电感主要参数介绍 除固定电感器和部分阻流圈为通用元件(只要规格相同,各种电子整机上均可使用)外,其余的均为电视机、收音机等专用元件。专用元件一般都是一个型号对应一种机型(代用除外),购买及使用时应以元件型号为主要依据,具体参数大都不需考虑,若需了解,可查相应产品手册或有关资料,这里不可能一一示例。下面谈谈固定电感器及阻流圈的主要参数及识别。 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。当通过一个线圈的磁通(即通过某一面积的磁力线数)发生变化时,线圈中便会产生电势,这是电磁感应现象。所产生的电势称感应电势,电势大小正比于磁通变化的速度和线圈匝数。当线圈中通过变化的电流时,线圈产生的磁通也要变化,磁通掠过线圈,线圈两端便产生感应电势,这便是自感应现象。自感电势的方向总是阻止电流变化的,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L 的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)和IxH(微亨),三者的换算关系如下:1μH—103→1mH—103→1H。 2.感抗XL 感抗XL在电感元件参数表上一般查不到,但它与电感量、电感元件的分类品质因数Q等参数密切相关,在分析电路中也经常需要用到,故这里专门作些介绍。前已述及,由于电感线圈的自感电势总是阻止线圈中电流变化,故线圈对交流电有阻力作用,阻力大小就用感抗XL来表示。XL与线圈电感量L和交流电频率f成正比,计算公式为:XL (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时XL小。通过直流电时XL为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时XL大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q 这是表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗XL和等效损耗电阻之比即为Q值,表达式如下:Q=2лL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。值得注意的是,损耗电阻在频率f较低时可视作基本上以线圈直流电阻为主;当f较高时,因线圈骨架及浸渍物的介质损耗、铁芯及屏蔽罩损耗、导线高频趋肤效应损耗等影响较明显,R就应包括各种损耗在内的等效损耗电阻,不能仅计直流电阻。 Q的数值大都在几十至几百。Q值越高,电路的损耗越小,效率越高,但Q值提高到一定程度后便会受到种种因素限制,而且许多电路对线圈Q值也没有很高的要求,所以具体决定Q 值应视电路要求而定。 4.直流电阻

第三节电阻、电容、电感元件及其特性.

第三节电阻、电容、电感元件及其特性 —、电阻元件 1、电阻元件:是一个一端元件,其电斥与电流的关系,可 在平面上画线,称为伏安特性曲线。 2、线性电阻 (1)线性电阻:是伏安特性曲线为一条过原点的直线,即满 足II 二Ri 的电阻称为线性电阻。 (2)电阻的单位 第一* (3)电导:电阻特性的另一种表示, ① 表示符号G 。G =1/R 欧(Q ) 1MQ =10^0 lKO=10^O

② 电导G 的单位: 3、 欧姆定律数学表达式 Uj^=Rij^ 或 I R 二GU R 4、 线性电附元件吸收的功率 (1) 电压、电流相关联参考方向,线性电阻 元件吸收的 功率为 P 二U R I R 二 RI R I R 二 PR = IVG P 二U R I R = U/R/R 二 U2G = LI2/R (2) 电压、电流取关联参考方向,线性 电阻元件吸收的 功率为 P A U R I R 二 RI R U R Z/R (3) 关于电阻需注意儿点; 1) 若P>0,则R>0为“止电阻”,即此电阻恒为耗能元件。 2) 若P<0,则取0为“负电阻”,即此电阻向外传输功率 如 图1 4线性电阻元件的伏安特性 西门子 (S ) 图I 3线性电阻元件

运算放人器等)。 3) R-8,无论电压%为何值,电流iR恒等于零,称为开路。 4) R二0,无论iR为何值,电压U R恒等于零,称为短路。

第一*电給的辰#*命如矍律 5.电阻吸收的电能W W=;(I 7 = J to'R i2(11= J UoG ? 2(1 f 例1-1:一盏灯泡额定值为(220V,60W),每天累计明5小时,问: 1)一个月(按30天计算)用电多少度? 2)每度电电费为0.39元,则应付电费多少元? 解:W = pt = 6() X 1 (L3 X 5 X 3()kwh=0.9 度 ¥=0.39X0.9=0.35 元 第一*电給的辰#*命如矍律 二、电容元件 1、线性电容 (1)线性电容两端电圧为〃,正极板积累电荷量为G 则电容元 件的容Sc为: + //U 图1?5线性电容元件图 1?6线性电容元件的库伏特性

电感器的结构、分类及特性

电感器的结构、分类及特性 电感器是能够把电能转化为磁能而存储起来的元件。 电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。 电感器又称扼流器、电抗器、动态电抗器。 一、电感器的发展 最原始的电感器是1831年英国M.法拉第用以发现电磁感应现象的铁芯线圈。1832年美国的J.亨利发表关于自感应现象的论文。人们把电感量的单位称为亨利,简称亨。 19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的H.R.赫兹,1890年美国N.特斯拉在实验中所用的电感器都是非常著名的,分别称为赫兹线圈和特斯拉线圈。 二、电感器的功能用途 电感器在电路中主要起到滤波、振荡、延迟、陷波等作用,还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等作用。电感在电路最常见的作用就是与电容一起,组成LC滤波电路。 电容具有“阻直流,通交流”的特性,而电感则有“通直流,阻交流”的功能。 如果把伴有许多干扰信号的直流电通过LC滤波电路,那么,交流干扰信号将被电感变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 电感器具有阻止交流电通过而让直流电顺利通过的特性,频率越高,线圈阻抗越大。因此,电感器的主要功能是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、电感器的结构 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1、骨架 骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。空心电感器(也

电阻电容电感特性

再谈电阻、电容、三极管等电子元件基础 第一章:基本元件 第一节电阻器 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母"Ω"表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,"电阻"说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:"找一个100欧的电阻来!",指的就是一个"电阻值"为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。 一、电阻器的种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 电阻器当然也有功率之分。常见的是1/8瓦的"色环碳膜电阻",它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了 二、电阻器的标识 这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的标记难以看清。因此,国际上惯用"色环标注法"。事实上,"色环电阻"占据着电阻器元件的主流地位。"色环电阻"顾名思义,就是在电阻器上用不同颜色的环来表示电阻的规格。有的是用4个色环表示,有的用5个。有区别么?是的。4环电阻,一般是碳膜电阻,用3个色环来表示阻值,用1个色环表示误差。5环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环也是表示误差。下表是色环电阻的颜色-数码对照表:

《电感元件》.

电感元件 1. 电压与电流的相量关系 图1(a )是一个线性电感L 的交流电路,根据电感元件L 的物理特性,在取关联参考方向情况下,u L 和i L 满足微分关系 t i L u d d L L = 对直流电路而言,由于稳态时电感电流i L 为一恒定值,故这时没有感应电压u L ,即u L =0,所以在直流电路中电感元件L 相当于两端短接;而在交流电路中,由于i L 随时间按正弦规律变化,就会在L 两端产生感应电压u L ,它仍为一正弦函数,这时它的物理特性是起阻碍电流变化的作用。 设t I i m ωsin L =,则有 ()() 90sin cos d sin d d d L L +====t LI t LI t t I L t i L u m m m ωωωωω () 90sin +=t U m ω (1) 由此看出在理想电感电路中,u L 和i L 是同频率的正弦量并且在相位上u L 超前于电流i L 90,如图1(b)所示。 如用一个相量式来表达电感中电压和电流之间的大小和相位两方面的关系,则此相量式可表述如下 m m I L j U ω= 或 I L j U ω= (2) 若令L X ω=L ,则上式可写成 I jX U L = (3) 可用相量图表示为图1(c)所示。 X L 称为电感元件的感抗,它同样具有电阻的量纲即其单位也是欧姆(Ω),其大小与频率f 及电感量L 成正比。频率越高或者是电感量越大则感抗X L 就越大,它对电流的阻碍作用也就越大,所以在高频电路中X L 趋于很大,电感元件L 可看作开路;而对直流电路来说由于f =0,感抗X L =0,此时电感元件就相当于短路,这和我们在前面所介绍的有关内容是十分符合的。 需提请注意的是,感抗X L 是电感中电压与电流的幅值或有效值之比,而不是瞬时值的比值,所以不能写成i u X =L ,这与电阻电路是不一样的。在电感元件中电压与电流之间成

元器件简介

常用电子元器件介绍 在我们电子设计的过程中会用到很多的电子元器件,常用的一般有电阻、电容、电感、二极管、三极管、led、各类集成块、芯片等。 一.电容 常见电容器:纸介电容器、有机薄膜电容、云母电容、陶瓷电容、电解电容器、表贴电容器、空气介质可变电容等。 具体的分类如下: 1.从结构分:固定电容器、可变电容器和微调电容器。 2.从电解质分:有机介质电容器、无机介质电容器、电解电容器和空气介质电 容器等。 3.从用途分:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型 电容器。 应用:电源滤波,低频耦合,去耦,旁路等 二.电感 1. 分类:a.按电感形式分类:固定电感、可变电感。 b.按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。c.按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 d.按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 2.主要参数:电感量,品质因数,额定电流 3.应用:滤波、振荡、延迟、陷波等,阻交流通直流,阻高频通低频(滤波) 滤波用的。 三.二极管 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。 常用二极管的特性:1.正向导电性 当正向电压达到某一数值(锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 3发光特性 常用二极管的应用:1、整流 2、开关3、限幅4、继流在开关电源的电感中和继电器等感性负载中起继流作用。5、检波在收音机中起检波作用。 四.LED LED也是二极管的一种,它是一种发光二极管, 这种半导体组件一般是作为指示

电感的特性

什么是电感?及电感的特性 电感是开关电源中常用的,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

1. 当电感L中有电流I流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。 从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽

基础贴片元器件介绍

创易讲座系列一:基础贴片元器件介绍 (2010-01-09 15:46:10) 转载 当前社会已经完全进入了贴片元器件时代,也就是常说的SMD,然而可悲的是,学校大部分还在用插脚元器件,他们不会焊接贴片元器件,总觉得体积太小,这个问题的根本,是学校的老师,他们的水平太差并且还怕学习导致的。 常规电阻电容电感贴片元器件的封装为0402、0603、0805,比如0402,就是指长度为40mil,宽度为20mil,mil为毫英寸,1mil=0.0254mm, 40mil= 1mm。所以0402就是1mm*0.5mm,0603就是1.5mm*0.75mm,实际上是1.6mm*0.8mm,0805就是2mm*1.25mm,实际是2mm*1.2mm。此外日本还有一种规定,就是直接用公制的,比如 0402对应公制1005 0603对应公制1608 0805对应公制2012 这个大家一看就懂。 因为日本是基础元器件的强国,所以日本的品牌都是按公制来标号的,国内有些也按日本的做法,也用公制。但欧美还比较喜欢用英制。 一般0402用于消费类电子,适合机器生产的,成本最低,降低板子面积和费用,所以广泛应用于手机、MP3、MP4等消费类电子。 一般0603用于量不是太大,批量性不强的地方,并且对功率有一些要求的地方,如消费类电源等,小工厂比较喜欢,因为0603比较适合手工贴片,生产简单。 一般0805适合用于需要一定功率的地方,尤其是功率电源等方面,还有对可靠性要求比较高的地方,焊接质量好,性能可靠。 此外还有1206、1210等封装,现在用的越来越少了,主要在大功率电源上比较多。

钽电容一般分为A、B、C、D型,注意后缀是公制,比如B型,就是3.5mm*2.8mm A型 3216 B型 3528 C型 6032 D型 7343 E型 7343 贴片元器件,体积小,占用PCB版面少,元器件之间布线距离短,高频性能好,缩小设备体积,尤其便于便携式手持设备。 然而贴片元器件有它的缺点,因为是贴片,所以对生产设备要求比较高,同时对器件的质量要求也比较高。比如,贴片器件机器生产,一般要求元器件出厂在一年之内,否则器件因为保存时间太长,导致焊盘氧化,焊接不良,尤其是越小的封装,品质要求越高。 贴片器件相对插脚器件,生产难度大,插脚器件比较适合简易作坊,一个锡炉就可以,而贴片器件,一般需要SMD刮锡膏台,锡膏搅拌机,回流焊机,尤其是回流焊接机,一般几千元的,因为温度不均匀很容易导致元器件假焊或者立碑,一般需要通道式回流焊接机,这个价格比较贵,需要上万元。 此外电容电感等器件,因为没有标记,很容易混淆,建议保存在样品条中,不建议放入小盒子等,一来避免混淆,二来提高保存时间。 创易讲座系列二:贴片电阻的基础知识及细节 (2010-01-09 15:48:34) 转载 标签:

电感器的常见种类

电感器的常见种类 电感可由电导材料盘绕磁芯制成,典型的如铜线,也可把磁芯去掉或者用铁磁性材料代替。比空气的磁导率高的芯材料可以把磁场更紧密的约束在电感元件周围,因而增大了电感。新晨阳的电感质量好且有很多种,大多以外层瓷釉线圈(enamel coated wire )环绕铁氧体(ferrite)线轴制成,而有些防护电感把线圈完全置于铁氧体内。一些电感元件的芯可以调节。由此可以改变电感大小。小电感能直接蚀刻在PCB板上,用一种铺设螺旋轨迹的方法。小值电感也可用以制造晶体管同样的工艺制造在集成电路中。在这些应用中,铝互连线被经常用做传导材料。不管用何种方法,基于实际的约束应用最多的还是一种叫做“旋转子”的电路,它用一个电容和主动元件表现出与电感元件相同的特性。用于隔高频的电感元件经常用一根穿过磁柱或磁珠的金属丝构成。 小型电感器:

小型固定电感器通常是用漆包线在磁芯上直接绕制而成,主要用在滤波、振荡、陷波、延迟等电路中,它有密封式和非密封式两种封装形式,两种形式又都有立式和卧式两种外形结构。 立式密封固定电感器立式密封固定电感器采用同向型引脚,国产电感量范围为0.1~2200μH(直标在外壳上),额定工作电流为0.05~1.6A,误差范围为±5%~±10%,进口的电感量,电流量范围更大,误差则更小。进口有TDK系列色码电感器,其电感量用色点标在电感器表面。 卧式密封固定电感器卧式密封固定电感器采用轴向型引脚,国产有LG1.LGA、LGX等系列。 可调用电感器:

常用的可调电感器有半导体收音机用振荡线圈、电视机用行振荡线圈、 行线性线圈、中频陷波线圈、音响用频率补偿线圈、阻波线圈等。 半导体收音机用振荡线圈:此振荡线圈在半导体收音机中与可变电容器等组成本机振荡电路,用来产生一个输入调谐电路接收的电台信号高出465kHz的本振信号。其外部为金属屏蔽罩,内部由尼龙衬架、工字形磁心、磁帽及引脚座等构成,在工字磁心上有用高强度漆包线绕制的绕组。磁帽装在屏蔽罩内的尼龙架上,可以上下旋转动,通过改变它与线圈的距离来改变线圈的电感量。电视机中频陷波线圈的内部结构与振荡线圈相似,只是磁帽可调磁心。 电视机用行振荡线圈:行振荡线圈用在早期的黑白电视机中,它与外围的阻容元件及行振荡晶体管等组成自激振荡电路(三点式振荡器或间歇振荡器、多谐振荡器),用来产生频率为15625HZ的的矩形脉冲电压信号。

磁性元件知识介绍

磁性元件知识培训 刘德强

磁性元件说明 ?磁性元件通常由绕组和磁芯构成 ?主要包括电感器和变压器两大类。 ?在电路中的作用:储能、滤波、能量转换、电气隔离等 ?参数:电感量、电压、电流、温度、传输功率、频率、匝数比、漏感、损耗等。 ?应用领域:开关电源、LED驱动电源、光伏逆变器等.

第一章: 电感器介绍

电感器定义和特点 定义:电感器是一种将电能和磁能相互转化的元器件,将电能转化为磁能存储起来或将存储的磁能转化为电能释放出来. 特点: 1.它具有充放电特性和阻止交流电流通过,允许直流电流通过的能力。 2.电感阻碍电流的变化就是不让电流变化,当电流增加时电感阻碍电流的增加,当电流减小时电感阻碍电流的减小。电感阻碍电流变化过程并不消耗电能,阻碍电流增加时它将电能转化为磁能暂时储存起来,等到电流减小时再将磁能转化为电能释放出来,因此流过电感器的电流不能突变。 3.电感器的感抗与频率、电感量之间成正比。感抗计算公式:Z =ωL (ω=2πf, f为频率)。 L 电感器在电路中的符号(L) 不含磁芯或铁芯电感器含磁芯或铁芯电感器共模电感 电感器单位:亨 (H)、毫亨(mH)、微亨 (μH)、纳亨(nH). 感值换算关系: 1H=103mH,1mH=103μH, 1μH=103nH

电感器分类 电感器贴片式 按贴装方式分类: 插件式

电感值的表示方法: 1. 直标法:电感器的标称电感量用数字和文字符号直接标在电感体上。 2. 文字符号法:电感器的标称值用数字和文字符号按一定的规律组合标示在电感体上。4R7表示:4.7μH ,330表示330μH.

技术大牛教你电感如何选型

技术大牛教你电感如何选型 器件选型是硬件工程师的基本工作,本文主要从电感的工艺和应用出发,介绍电感如何选型。一、电感的基本原理电感,和电容、电阻一起,是电子学三大基本无源器件;电感的功能就是以磁场能的形式储存电能量。以圆柱型线圈为例,简单介绍下电感的基本原理如上图所示,当恒定电流流过线圈时,根据右手螺旋定则,会形成一个图示方向的静磁场。而电感中流过交变电流,产生的磁场就是交变磁场,变化的磁场产生电场,线圈上就有感应电动势,产生感应电流:电流变大时,磁场变强,磁场变化的方向与原磁场方向相同,根据左手螺旋定则,产生的感应电流与原电流方向相反,电感电流减小;电流变小时,磁场变弱,磁场变化的方向与原磁场方向相反,根据左手螺旋定则,产生的感应电流与原电流方向相同,电感电流变大。以上就是楞次定律,最终效果就是电感会阻碍流过的电流产生变化,就是电感对交变电流呈高阻抗。同样的电感,电流变化率越高,产生的感应电流越大,那么电感呈现的阻抗就越高;如果同样的电流变化率,不同的电感,如果产生的感应电流越大,那么电感呈现的阻抗就越高。所以,电感的阻抗于两个因素有关:一是频率;二是电感的固有属性,也就电感的值,也称为电感。根据理论推导,圆柱形线圈的电感公式如下:可以看出电感的大小

与线圈的大小及内芯的材料有关。实际电感的特性不仅仅有电感的作用,还有其他因素,如:·绕制线圈的导线不是理想导体,存在一定的电阻;·电感的磁芯存在一定的热损耗;·电感内部的导体之间存在着分布电容。因此,需要用一个较为复杂的模型来表示实际电感,常用的等效模型如下:等效模型形式可能不同,但要能体现损耗和分布电容。根据等效模型,可以定义实际电感的两个重要参数。自谐振频率(Self-Resonance Frequency)由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。品质因素(Quality Factor)也就是电感的Q值,电感储存功率与损耗功率的比,Q值越高,电感的损耗越低,和电感的直流阻抗直接相关的参数。自谐振频率和Q值是高频电感的关键参数二、电感的工艺结构电感的工艺大致可以分为3种:2.1 绕线电感(Wire Wound Type)顾名思义就是把铜线绕在一个磁芯上形成一个线圈,绕线的方式有两种:圆柱形绕法(Round Wound)圆柱形绕法很常见,应用也很广,例如:图片来自Bing,彩虹圈,应该是出彩中国人平面形绕法(Flat Wound)平面形绕法也很常见,大家一定见过一掰就断的蚊香平面形绕法优点很明显,就是减小了器件的高度。由前文的公式可知,磁芯的磁导率越大,电感值越大,磁芯可以是·非磁

浅谈电感线圈的主要特性参数及分类

浅谈电感线圈的主要特性参数及分类 电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利(mH)、微亨利(uH), 1H=10^3mH=10^6uH。 一、电感的分类 按电感形式 分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。 二、电感线圈的主要特性参数 1、电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2、感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 3、品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。 4、分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。 三、常用线圈 1、单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 2、蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角

十大常见电子元器件介绍

幻灯片1 十大常见电子元器件介绍 幻灯片2 一、电阻 ●随着电子技术及其应用领域的迅速发展,所用的元器件种类日益增多,学习和掌握常 用元器件的性能、用途、质量判别方法,对提高电气设备的装配质量及可靠性将起重要的保证作用。电阻、电容、电感、二极管、三极管等都是电子电路常用的器件。这里列举出电子行业中常用的十大电子元器件,及相关的基础概念和知识,和大家一起温习一遍。 ●明星一:电阻 ●作为电子行业的工作者,电阻是无人不知无人不晓的。它的重要性,毋庸置疑。人们都 说“电阻是所有电子电路中使用最多的元件。” ●电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致 电子流通量的变化,电阻越小,电子流通量越大,反之亦然。没有电阻或电阻很小的物质称其为电导体,简称导体。不能形成电流传输的物质称为电绝缘体,简称绝缘体。 ●在物理学中,用电阻来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对 电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻元件是对电流呈现阻碍作用的耗能元件。 ●电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系 数,其定义为温度每升高1℃时电阻值发生变化的百分数。 幻灯片3

二、电容 ●电容指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。一般来 说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。也是电容器的俗称。 ●1、电容在电路中一般用“C”加数字表示。电容是由两片金属膜紧靠,中间用绝缘 材料隔开而组成的元件。电容的特性主要是隔直流通交流。电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 幻灯片4 三、晶体二极管 ●晶体二极管固态电子器件中的半导体两端器件。这些器件主要的特征是具有非线性的 电流-电压特性。此后随着半导体材料和工艺技术的发展,利用不同的半导体材料、掺杂分布、几何结构,研制出结构种类繁多、功能用途各异的多种晶体二极管。制造材料有锗、硅及化合物半导体。晶体二极管可用来产生、控制、接收、变换、放大信号和进行能量转换等。 ●晶体二极管在电路中常用“D”加数字表示. ●作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很 小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电

相关文档
最新文档