应用等量关系建立函数关系式

应用等量关系建立函数关系式
应用等量关系建立函数关系式

二、应用等量关系建立函数关系式

典型例题:

例1. (2012宁夏区10分)某超市销售一种新鲜“酸奶”,此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理.

(1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式。为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?

(2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下:

每天售出瓶数17 18 19 20 频数 1 2 2 5 根据上表,求该超市这10天每天销售酸奶的利润的平均数;

(3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.

例2. (2012新疆区12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B 元.

(1)请填写下表,并求出y A,y B与x之间的函数关系式;

C D 总计

A x吨200吨

B 300吨

总计240吨260吨500吨

(2)当x为何值时, A村的运费较少?

(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.

例3. (2012甘肃白银10分)衬衫系列大都采用国家5.4标准号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小),单位均为:厘米.下表是男士衬衫的部分号、型和码数的对应关系: 号/型 … 170/84 170/88 175/92 175/96 180/100 … 码数

38

39

40

41

42

(1)设男士衬衫的码数为y ,净胸围为x ,试探索y 与x 之间的函数关系式; (2)若某人的净胸围为108厘米,则该人应买多大码数的衬衫?

例4. (2012湖北荆门3分)已知:多项式x 2

﹣kx+1是一个完全平方式,则反比例函数k 1

y=x

-的解析式为【 】 A .1y=

x B . 3y=x - C . 1y=x 或3y=x - D .2y=x 或2y=x

- 例5. (2012北京市7分)已知二次函数23

y (t 1)x 2(t 2)x 2

=++++在x 0=和x 2=时的函数值相等。

(1) 求二次函数的解析式;

(2) 若一次函数y kx 6=+的图象与二次函数的图象都经过点A (3m)-,,求m 和k 的值; (3) 设二次函数的图象与x 轴交于点B,C (点B 在点C 的左侧),将二次函数的图象在点

B,C 间

的部分(含点B 和点C )向左平移n(n 0)>个单位后得到的图象记为C ,同时将(2)中得到的直线y kx 6=+向上平移n 个单位。请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。

例7. (2012浙江嘉兴、舟山12分)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)

(1)公司每日租出x 辆车时,每辆车的日租金为 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?

例8. (2012江苏常州7分)某商场购进一批L 型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件。根据市场调研,若每件每降1元,则每天销售数量比原来多3件。现商场决定对L 型服装开展降价促销活动,每件降价x 元(x 为正整数)。在促销期间,商场要想每天获得最大销售利润,每件降价多少元?每天最大销售毛利润为多少?(注:每件服装销售毛利润指每件服装的销售价与进货价的差) 例9. (2012江苏盐城12分)

知识迁移: 当0a >且0x >时,因为2()a x x

-

≥0,所以2a

x a x -+≥0,从而

a x x +

≥2a (当x a =时取等号).记函数(0,0)a

y x a x x

=+>>,由上述结论可知:当x a =时,该函数有最小值为2a .

直接应用:已知函数1(0)y x x =>与函数21

(0)y x x

=>, 则当x =_________时,12y y +取得最小值为_________.

变形应用:已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求

2

1

y y 的最小值,并指出取得该最小值时相应的x 的值.

实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,

求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

例10. (2012湖北鄂州10分)某私营服装厂根据2011年市场分析,决定2012年调整服装制作方

案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:

服装名称 西服 休闲服 衬衣

工时/件 2

1 3

1 4

1 收入(百元)/件

3

2

1

设每周制作西服x 件,休闲服y 件,衬衣z 件。

(1) 请你分别从件数和工时数两个方面用含有x,y 的代数式表示衬衣的件数z 。 (2) 求y 与x 之间的函数关系式。

(3) 问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?

练习题:

1. (2012青海省8分)夏都花卉基地出售两种花卉,其中马蹄莲每株3.5元,康乃馨每株5元.如果同一客户所购的马蹄莲数量多于1000株,那么所有的马蹄莲每株还可优惠0.5元.现某鲜花店向夏都花卉基地采购马蹄莲800~1200株、康乃馨若干株,本次采购共用了7000元.然后再以马蹄莲每株4.5元、康乃馨每株7元的价格卖出,问:该鲜花店应如何采购这两种鲜花才能使获得的利润最大?

(注:800~1200株表示采购株数大于或等于800株,且小于或等于1200株;利润=销售所得金额﹣进货所需金额)

2. (2012四川巴中9分)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件。

如果每

件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元)。设每件商品的售价上涨

x 元(x

为整数),每个月的销售利润为y 元,

(1)求y 与x 的函数关系式,并直接写出x 的取值范围;

(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

3. (2012辽宁锦州10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件

玩具售价不能高于40元. 设每件玩具的销售单价上涨

....),月销售利润为y元.

..了x元时(x.为正整数

(1)求y与x的函数关系式并直接写出自变量x的取值范围.

(2)每件玩具的售价

..定为多少元时,月销售利润恰为2520元?

(3)每件玩具的售价

..定为多少元时可使月销售利润最大?最大的月利润是多少?

4. (2012福建漳州10分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种

养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:

现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x 千克.

(1)至少需要购买甲种原料多少千克?

(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?

5. (2012湖北十堰10分)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.

(1)甲、乙两种材料每千克分别是多少元?

(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?

(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)

6. (2012湖北恩施8分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.

(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);

(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?

7. (2012湖南益阳8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.

(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?

(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.

8. (2012湖南常德7分)某工厂生产A、B两种产品共50件,其生产成本与利润如下表:

A种产品 B种产品

成本(万元/件) 0.6 0.9

利润(万元/件) 0.2 0.4 若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?

9. (2012湖南郴州8分)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.

(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);

(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?

(3)从节约开支的角度来看,你认为采用哪种方案更合算?

10. (2012四川内江9分)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:

(1)符合题意的搭配方案有几种?

(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?

造型花卉甲乙

A 80 40

B 50 70

大学高等数学第一章函数(习题精讲)

第1章 函 数 §1.1 函数的概念与性质 1. 绝对值与不等式(0>a ,0b >) (1)x x x -≤≤;x y x y x y -≤±≤+ (2 )2 112 a b a b +≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n x x x n n x x x +++≤≤ +++ (3){}max ,22a b a b a b -+=+;{}min ,22 a b a b a b -+=- 2. 函数概念与性质 对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。 注意:定义域D 和对应规则f 是函数相等的两要素。 (1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ?∈< 1212()()()()()()f x f x f x f x f x f x ≤???≥? ?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()() ()()()()f x f x f x y f x f x f x -=???-=-??为偶函数,对称于轴为奇函数,对称于原点 注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。 (4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。 常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

应用等量关系建立函数关系式

二、应用等量关系建立函数关系式 典型例题: 例1. (2012宁夏区10分)某超市销售一种新鲜“酸奶”,此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理. (1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式。为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶? (2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下: 每天售出瓶数17 18 19 20 频数 1 2 2 5 根据上表,求该超市这10天每天销售酸奶的利润的平均数; (3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明. 例2. (2012新疆区12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B 元. (1)请填写下表,并求出y A,y B与x之间的函数关系式; C D 总计 A x吨200吨 B 300吨 总计240吨260吨500吨 (2)当x为何值时, A村的运费较少? (3)请问怎样调运,才能使两村的运费之和最小?求出最小值.

动点问题的函数图象选择方法

动点问题的函数图象选择方法 近几年中考试题中对动点问题的函数图象考察地很频繁,一般都作为选择题最后一道呈现。解答此类题目的一般过程为:读懂题意,牢牢抓住横轴和纵轴所表示的意义,在模拟运动过程中找到分界点,确定不同时间段并分析题意建立相对应函数模型,列出对应函数关系式,由函数关系式选择图象。但在实际的做题过程中,由于是选择题,我们可以选择不同的方法快速,准确地选出答案。 一.列函数关系式法 例1.(2014年河南第8.题)如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线 AC CB BA 运动,最终回到A 点。设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图象大致是 ( ) 解析:由P 点运动过程AC CB BA 知,分为三个阶段,第一阶段AC 段, y=x(0≤x ≤1),第二阶段CB 段,y=2(1)1x -+(1≤x ≤3),这是一个在定义域内的增函数,但不 是一次函数。第三阶段BA 段,y=5+3-x(3≤x ≤5+3),所以本题选A 。 定评:分析不同阶段的运动过程,利用学习过的知识,建立函数模型,列出函数关系式,由关系式找出对应阶段的图象。这种方法要求高,没有较强的分析能力和数学素养关系式列不出来,当然这种方法耗时较多。 二.分析淘汰法 例2. (2014年兰州第15题)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( ) 解析:由l 运动 的过程,分为两个阶段,第一阶段从O 到BD,的过程中,X 轴,Y 轴方向上都在增加,而要表示面积这两个方向上都能用上,所以这必然为开口向上增大的二次函数模式,选择增长的曲线段。第二阶段从BD 到C 的过程,面积在DC,BC 两条边上增大,而此时面积的表示与这两边没有直接的联系,但可以断定是一个增长的二次函数模式,所以本题选D. 点评:分析运动过程,大体与学习过的正比列函数,一次函数,反比例函数,二次函数A . B . C . D .

几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法 函数是初中数学的重要容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。 但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。 一、 用图形的面积公式确立等量关系 例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式; (2)如果S △ABP =S 体型APCD 请确定P 的位置。 分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式 B C A D P 图1

A D C B E F G N 图2 S=2 1(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(21?+-=x y ,整理得:22 2 +-=x y 。(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上,点F 在BC 上。设 EF=x ,矩形EFCG 的面积为y 。(2002年中考题) (1)求y 与x 的函数关系式; (2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。 分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、 y 之间的关系通过矩形面积公式建立了。 解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴ AN EF BN BF =

函数y=f(x)理解与分析周勇关于

关于函数y=f(x)的理解与分析 作者:周勇 (湖南省长沙市第七中学 邮编:410003) 抽象函数y=f(x)是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。一般以中学阶段所学的基本函数为背景,构思新颖,条件隐蔽,技巧性强。解法灵活,因此它对发展同学们的 抽象思维,培养同学们的创新思想有着重要的作用。 一、关于定义域的理解与分析 例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。 解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4] 原理:一般地,已知函数))((x f ?的定义域是A ,求f (x )的定义域问题,相当于已知 ))((x f ?中x 的取值范围为A ,据此求)(x ?的值域问题。已知f(x)的定义域是A ,求()() x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 又如:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 再如:定义在(]8,3上的函数f(x)的值域为[]2,2-,若它的反函数为f -1 (x),则y=f -1 (2-3x)的 定义域为 ,值域为 。(]8,3,34,0?? ??? ? 原理:这类问题的一般形式是:已知函数f (x )的定义域是A ,求函数))((x f ?的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题实质上相当于已知 )(x ?的值域B ,且A B ?,

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

动点问题与函数图象

动点问题与函数图象 1、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为() A B C D 【知识点】动点问题的函数图象 【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决. 【解析】∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1. ∴当点M位于点A处时,x=0,y=1. ①当动点M从A点出发到AM=1的过程中,y随x的增大而减小,故排除D; ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等.故排除A、C. 故选B. 2、如右图所示,已知等腰梯形ABCD,AD∥BC,若动直 线l垂直于BC,且向右平移,设扫过的阴影部分的面 积为S,BP为x,则S关于x的函数图象大致是 【知识点】动点问题的函数图象 【分析】分三段考虑,①当直线 l经过BA段时,②直线l经过AD段时,③直线l经过DC 段时,分别观察出面积变化的情况,然后结合选项即可得出答案. 【解析】①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快; ②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变; ③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小; 结合选项可得,A选项的图象符合. 故选A. A. … B.

3、如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而 成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是 【解析】注入水的体积增加的速度随着高度x的变化情况是:由慢到快→匀速增长→由快到慢,由慢到快的图象是越来越陡,由快到慢的图象是越来越平缓,所以选A。 4、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为() A B C D 【知识点】动点问题的函数图象 【解析】由图中可知:在开始的时候,阴影部分的面积最大,可以排除B,C. 随着圆的穿行开始,阴影部分的面积开始减小,当圆完全进入正方形时,阴影部分的面积开始不再变化.应排除D. 故选A. 5、.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t 秒,y = S△EPF,则y与t的函数图象大致是

函数关系建立教案

数 学 教 案 天山中学 马谦 课题:函数关系的建立(第一课时) 一.教学目标 过程与方法:通过对实际问题的分析与解决,领会分析变量和建立函数关系的思考方法,体验函数模型建立的一般过程. 知识与能力:能够在解决简单的实际问题时建立两个变量间的函数关系式,并学会如何确定函数的定义域.初步形成把实际问题转化成数学问题的建模能力. 情感态度与价值观:通过本节课的学习,加深对事物运动变化和相互联系的认识,初步学会用函数的观点去观察和分析客观事物. 二【教学重点】 建立实际问题中两个变量间的函数关系. 三【教学难点】 把实际问题转化成数学问题,建立函数关系并确定它的定义域. 四、教学流程设计 五、教学过程设 计 (一)、提出问题 引入新课 1.问题1.用一根长为l 的铁丝,制成如图所 示的框架,问如何设计,使得框架的面积S 最大. 2.分析: 分析:设矩形框架的宽为x ,那么长为2 4x l - 面积=长?宽, 所以,24x l x S -?=

∴ x l x S 222- -=, 又,024>-x l 且0>x , ∴4 0l x << ∴x l x S 222--= (4 0l x <<) 我们今天就先学习如何建立函数关系. 3.小结 建立函数关系解题的步骤: (1)仔细审题,设出适当的自变量 (2)找出等量关系,列出函数关系式 (3)根据问题的要求,作适当的变形 (4)根据实际要求,写出函数定义域 [说明] 理解函数的概念,目的是进一步通过建立函数关系解决实际问题,从一个简单的实际问题1的提出,能引起学生的思考,学生能体会到要用数学方法解决这个实际问题时,首先要把问题中的有关变量及其关系用数学的形式表示出来.说明建立函数关系的重要性,对于函数的最值问题在以后的函数性质中再解决. (二)、尝试方法 体验过程 问题2 如图,有一个圆柱形的无盖纸杯,它的表面积是100cm 2(杯子的厚度忽略不计),设底面的半径为x (cm ) (1)写出杯子的高度h (cm )关于x (cm )的函数关系式; (2)写出杯子的容积V (cm 3)关于x (cm )的函数关系式。 解:根据题意, (1)表面积等于底面积与侧面积之和,则 h x x ?+=ππ21002 化简整理得 x x h ππ21002-= 另一方面,根据实际意义,必须x >0且1002

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

怎样求一次函数关系式

怎样求一次函数关系式? 广东 林伟杰 一次函数关系式)0(≠+=k b kx y 中有两个待定系数k 和b ,确定了它们就确定了一个一次函数,故一般需要两个条件才能确定一个一次函数.现结合实例介绍求一次函数关系式的方法,供同学们学习时参考. 一、利用代入坐标法求一次函数关系式 例1 已知一次函数的图象经过(1,5)和(3,9)两点,求此一次函数关系式. 分析:先设函数关系式为b kx y +=,然后代入坐标建立方程组,求出方程组的解后再代回所设关系式即可. 解:设所求函数关系式为b kx y +=,则由题意,得???+=+=,39,5b k b k 故? ??==.3,2b k 故所求的函数关系式是32+=x y . 点评:图象上每一点的横坐标和纵坐标都是此函数中自变量与函数的一对对应值,据此可通过建立二元一次方程组来求一次函数关系式. 二、根据直线间的位置关系求一次函数关系式 例2 某一次函数的图象过点(2,1)且与直线32+-=x y 相交于y 轴上的同一点,求此一次函数的关系式. 分析:因直线32+-=x y 与y 轴的交点是(0,3),故设函数关系式为3+=kx y ,代入点(2,1)可求出k ,进而可得关系式. 解:因直线32+-=x y 交y 轴于点(0,3),故某一次函数的图象也与y 轴相交于点(0,3),故设其关系式为3+=kx y ,代入点(2,1),得321+=k ,故1-=k ,故关系式为3+-=x y . 点评:由已知条件得出图象与y 轴的交点坐标,进而正确设出所求关系式是解本题的关键. 三、根据表格信息求一次函数关系式 例3 商店出售某商品时,在进价的基础上加一定的利润,其数量x 与售价y 的关系如下表所示,请根据表中提供的信息求出y 与x 的函数关系式,并求出当数量是2.5千克时的售价. 分析:由表可知,当1=x 时, 4.08+=y ;当2=x 时, )4.08(28.016+=+=y ;当3=x 时, )4.08(32.124+=+=y ;当4=x 时,)4.08(46.132+=+=y ;…… 故x x y 4.8)4.08(=+=. 解:由表中信息可求得函数关系式是x x y 4.8)4.08(=+=(正比例函数是一次函数的特例).当5.2=x 千克时,214.85.2=?=y (元). 四、根据图象信息求一次函数关系式 例4 长途汽车客运公司规定旅客可随身携带一定重量的行李,若超过规定,则要购买

动点问题的函数图像

动点问题的函数图像复习指要 【典例分析】 例1(2014?贵阳,第9题,3分)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为 ) x、y,则下列能表示y与x之间函数关系的大致图象就是( 考点: 动点问题的函数图象. 分析:根据截成的两个部分的体积之与等于三棱柱的体积列式表示出y与x的函数关系式,再根据一次函数的图象解答. 解答:解:∵过P点作与底面平行的平面将这个三棱柱截成两个部分的体积分别为x、y, ∴x+y=10, ∴y=﹣x+10(0≤x≤10), 纵观各选项,只有A选项图象符合. 故选A. 点评:本题考查了动点问题的函数图象,比较简单,理解分成两个部分的体积的与等于三棱柱的体积就是解题的关键. 例2 (2014年?河南省,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s), ) 线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致就是(

A. B. C. D. 考点:动点问题的函数图象. 分析:这就是分段函数:①点P在AC边上时,y=x,它的图象就是一次函数图象的一部分; ②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象; ③点P在边AB上时,利用线段间的与差关系求得y与x的函数关系式,由关系式选择图象. 解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象就是一次函数图象的一部分.故C 错误; ②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=, 则其函数图象就是y随x的增大而增大,且不就是线段.故B、D错误; ③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象就是直线的一部分. 综上所述,A选项符合题意. 故选:A. 点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题. 例3(2014?广西桂林,第12题,3分)如图1,在等腰梯 形ABCD中,∠B=60°,PQ同时从B出发,以每秒 1单位长度分别沿BADC与BCD方向运动至相遇 时停止,设运动时间为t(秒),△BPQ的面积为S(平 房单位),S与t的函数图象如图2所示,则下列结论 错误的就是( ) A.当t=4秒时,S=43 B.AD=4 C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积 考点:动点问题的函数图象. 分析:根据等腰梯形的性质及动点函数图象的性质,综合判断可得答案. 解答:解:由答图2所示,动点运动过程分为三个阶段: (1)OE段,函数图象为抛物线,运动图形如答图1﹣1所示. 此时点P在线段AB上、点Q在线段BC上运动.

剖析函数yfx与yftx的奇偶性

剖析函数y=f(x)与y=f[t(x)]的奇偶性 函数的奇偶性是高中数学的重要内容,它与函数的单调性,周期性一起构成研究函数性质的三把钥匙。函数的奇偶性是教学过程中的一个难点,笔者现就教学过程中遇到的问题加以探讨。 教材中奇偶性的定义:一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x)则称f(x)为这一定义域内的奇函数。一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)则称f(x)为这一定义域内的偶函数。 在函数的奇偶性定义中,若函数y=f(x)的定义域I是关于原点对称(即x?I,则-x?I)且f(-x)=f(x)(或f(-x)=-f(x))则函数叫偶(或奇)函数。由此可知:函数的定义域关于原点对称是该函数为奇(或偶)函数的必要条件。本文主要谈谈函数y=f(x)与函数y=f(kx+b)(k10)在奇偶性方面的不同表现形式。 例1: y=f(x)是单调递增的奇函数,它的定义域为[-1,1],求已知函数 1 y. 2 y=f(x) 的定义域为[-1,1] 解:Q 1 x-? \ -1£231 -1£x+1£1 f(23 x-)3-f(x+1) y=f(x)是奇函数 Q 1 \ 2£2x£4 -2£x£0 x-)3f(-x-1) f(23 y=f(x)是单调递增函数 Q 1 \ -2£x£ 23 x-3-x-1

\ -2£x £x £-2 或 x 3 1 \x ?{}2- 故2y 的定义域为x ?{}2- 此时2y =0 \ 值域: 2y ?{}0 点评:y=f(x)(x ?R)为奇函数Tf(-x-1)=-f(x+1) (x ?R) 例2: 若函数y=f(2x+1)为奇函数,则f(-2x+1)=___________ 若函数y=f(2x+1)为偶函数,则f(-2x+1)=_____________ 解:由于对应法则后边不是x ,而换成了2x+1,学生无从下手,其实,此题是把自变量x 换成了2x+1后的函数,在运算后的自变量仍然是x ,f(2x+1)是奇函数实质上还是对x 而言的。故y=f(2x+1)是奇函数\f(-2x+1)=-f(2x+1) 同理:若函数y=f(2x+1)为偶函数\ f(-2x+1)=f(2x+1) 点评:若函数y=f(2x+1)为偶函数\ f(-2x+1)=f(2x+1),即 f(1+2x)=f(1-2x),这表明函数y=f(a+x) 的图象与y=f(a-x)的图象关于y 轴对称。应注意:y=f(a+x) 的图象与y=f(a-x)的图象关于y 轴对称,这里是两个函数图象间的对称;而函数y=f(a+x)为偶函数,它的图象关于y 轴对称,这里是一个函数图象内部之间的自身的对称。 例3: (2003年安徽三市联考)已知f(2x+1)为偶函数,那么函数f(2x)图像的对称轴方程为_____________ 解法1: Q y=f(2x+1)=f[2(x+12)]的图像向右平移12 个单位得到函数y=f[2(x)]=f(2x)的图像, Q y=f(2x+1)是偶函数\它的图像关于y 轴对称, 即x=0是函数f(2x+1)的图象的对称轴,直线x=0也向右平移12 个单位得直线方程为x=12,故直线x=12 是函数f(2x)的图象的对称轴。 解法2: Q f(2x+1)为偶函数\y=f(-2x+1)=f(2x+1),即f(1-2x)=f(1+2x), Q 定义在R 上的函数y=f(x)满足f(a+x)=f(a-x) (x ?R),则函数y=f(x)的图象关于直线x=a 对称 \函数y=f(x)的对称轴方程为x=1,故函数y=f(2x)的对称轴方程为x=12 . 点评:y=f(2x+1)为偶函数Tf(-2x+1)=f(2x+1).

中考专题动点问题的函数图像

题型一 动点问题的函数图像 (10年3考) 【题型解读】近10年考查3次,考查类型及频次:①判断函数图象考查1次;②分析函数图象考查2次. 类型一 判断函数图像 (2014.8) 1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O 的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( ) 第1题图 2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( ) 第2题图 3.如图,A 、B 是反比例函数y =k x (k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )

第3题图 4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是() 第4题图 5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为() 第5题图 6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()

函数的概念与关系式

主 题 函数的概念与关系式 教学内容 1. 加深理解函数的概念; 2. 掌握求解函数定义域的基本方法. (以提问的形式回顾) 1. 初中阶段我们学过哪些函数?请分别画出他们的图像。 我们学过正比例函数,反比例函数,一次函数,二次函数。也会有学生说,常值函数也是可以的。 2. 对于二次函数2y x =当x 值确定了,y 值是否也唯一确定?,如果y 值确定了(y >0),是否x 值也唯一确定? 当x 值确定了,y 值就唯一确定。但y 值确定了,x 值并没有唯一确定。 探究一: 一枚炮弹发射后,经过26s 落到地面击中目标.炮弹的射高为845m ,且炮弹距离地面的高度h (单位:m )随时间t (单位:s )变化的规律是: 2 1305h t t =- 思考1:这里的变量t 的变化范围是什么?变量h 的变化范围是什么?试用集合表示? 答:{|026},{|0845}A t t B h h =≤≤=≤≤ 思考2:高度变量h 与时间变量t 之间的对应关系是否为函数?若是,其自变量是什么? 答:从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系h ,在数集B 中都有唯一确定的高度h 和它对应.所以它们的对应关系是函数。其中t 是自变量。

探究二: 近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况. 思考1:根据曲线分析,时间t 的变化范围是什么?臭氧层空洞面积S 的变化范围是什么?试用集合表示? 答:{|19792001},{|026}A t t B S S =≤≤=≤≤ 思考2:时间变量t 与臭氧层空洞面积S 之间的对应关系是否为函数?若是,其自变量是什么? 答:对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.而数集B 中的某些值却有多个t 和它对应,并不唯一确定。自变量是t . 探究三: 思考1:从集合与对应的观点分析,上述两个实例中变量之间的关系都可以怎样描述? 答:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 和它对应,记作 :f A B →. 思考2:上述两个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义? 答:设,A B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作 ()()y f x x A =∈。其中,x 叫做自变量,与x 值相对应的y 值叫做函数值. 思考3:在一个函数中,自变量x 和函数值y 的变化范围都是集合,这两个集合分别叫什么名称? 20 25 5 10 15 30 图1 26 25 t S O 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001

2020年中考数学题型专练一 动点问题的函数图像(含答案)

题型一 动点问题的函数图像 类型一 判断函数图像 (2014.8) 1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O 的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( ) 第1题图 2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( ) 第2题图 3.如图,A 、B 是反比例函数y =k x (k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )

第3题图 4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是() 第4题图 5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为() 第5题图 6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法: 已知复合函数[()]f g x 的表达式,求()f x 的解析式。(注意定义域) 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知221)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x 2、换元法: 已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。(注意所换元的定义域的变化) 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2 )1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x (2)设.)(,,,1111111 11-=∴-=-===x x f t t t f t x t x t )(代入已知得则

3、待定系数法: 当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(1212102242222--=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法: 已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1(2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1(2)( ① 显然,0≠x 将x 换成x 1,得: x x f x f 1)(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(--= 五、赋值法: 当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

2020年中考数学题型专练一 动点问题的函数图像(含答案)

3.如图,A、B是反比例函数y=(k>0)在第一象限图象上的两点,动点P从坐标原点O出发,沿图中 题型一动点问题的函数图像 类型一判断函数图像 (2014.8) ︵ 1.如图,AB是半圆O的直径,点P从点O出发,沿OA→AB→BO的路径运动一周,设点P到点O 的距离为s,运动时间为t,则下列图象能大致地反映s与t之间的关系的是() 第1题图 2.如图,在△Rt ABC中,AC=BC=4cm,点D是AB的中点,点F是BC的中点,动点E从点C出发,沿CD→DA以1cm/s的速度运动至点A,设点E运动的时间为x△s,EFC的面积为y cm2(当E,F,C 三点共线时,设y=0),则y与x之间的函数关系的大致图象是() 第2题图 k x 箭头所指方向匀速运动,即点P先在线段OA上运动,然后在双曲线上由A到B运动,最后在线段BO上运动,最终回到点O.过点P作PM⊥x轴,垂足为点△M,设POM的面积为S,点P运动时间为t,则S关于t的函数图象大致为()

第3题图 4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止△.设APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是() 第4题图 5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为() 第5题图 6.(2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为△x,CPE的面积为y,则下列图象能大致反映y与x函数关系的是()

相关文档
最新文档