氨法脱硫原理

氨法脱硫原理
氨法脱硫原理

浅析氨法脱硫工艺

来源:内蒙古科技与经济更新时间:09-11-23 10:55 作者: 冯国, 蒲日军

摘要: 简述了氨法脱硫的特点、原理, 及其需要克服的问题, 根据目前的脱硫趋势说明了氨法脱硫技术突出的技术成本优势。

关键词: 氨法脱硫, 二氧化硫, 氮氧化物, 硫酸铵, 吸收剂

中国是一个以煤炭为主要能源的国家, 随着工业的快速发展, 煤炭燃烧生成的SO 2 已成为中国大气污染的主要污染物。1995 年, 中国SO 2 年排放量2 370万t, 大大超出了环境自净能力, 排放总量超过了美国和欧洲跃居世界首位。

自2002 年, 中国在电力行业内开展了大规模的SO 2 治理工程。随着电厂脱硫治理的开始, 一大批国外烟气脱硫技术被不同的脱硫公司引进到国内, 这其中的绝大部分是石灰

石- 石膏法。随着烟气脱硫在国内电力行业的大规模使用, 其他烟气脱硫方法也逐渐被使用、被认识, 包括海水法、氨法、镁法、双碱法等, 这其中, 氨法正受到越来越广泛的关注。氨法烟气脱硫工艺是采用氨做吸收剂除去烟气中的SO 2 的工艺。70 年代初, 日本与意大利等国开始研制氨法脱硫工艺并相继获得成功。但由于技术经济等方面的原因在世界上应用较少。进入90 年代后, 随着技术的进步和对氨法脱硫观念的转变, 氨基脱硫技术的应用呈逐步上升的趋势。

1氨法FGD 的主要特点

1. 1脱硫塔不易结垢

由于氨具有更高的反应活性, 且硫酸铵具有极易溶解的化学特性, 因此氨法脱硫系统不易产生结垢现象。

1. 2氨法对煤中硫含量适应性广

氨法脱硫对煤中硫含量的适应性广, 低、中、高硫含量的煤种脱硫均能适应, 特别适合于中高硫煤的脱硫。采用石灰石?石膏法时, 煤的含硫量越高, 石灰石用量就越大, 费用也就越高; 而采用氨法时, 特别是采用废氨水作为脱硫吸收剂时, 由于脱硫副产物的价值较高, 煤中含硫量越高, 脱硫副产品硫酸铵的产量越大, 也就越经济。

1. 3无二次污染

氨是生产化肥的原料。以氨为原料, 实现烟气脱硫, 生产化肥, 不消耗新的自然资源, 不产生新的废弃物和污染物, 变废为宝, 化害为利, 为绿色生产技术, 将产生明显的环境、经

济和社会效益。因此, 氨法与钙法具有明显的区别。氨法属于回收法, 钙法属于抛弃法。抛弃法的缺点是消耗新的自然资源、产生新的废弃物和污染污, 具有明显的二次环境问题。

1. 4系统简单、设备体积小、能耗低

氨是一种良好的碱性吸收剂, 从吸收化学机理上分析, SO 2 的吸收是酸碱中和反应, 吸收剂碱性越强, 越利于吸收, 氨的碱性强于钙基吸收剂; 而且从吸收物理机理上分析, 钙基吸收剂吸收SO 2 是一种气- 固反应, 反应速率慢、反应不完全、吸收剂利用率低, 需要大量的设备和能耗进行磨细、雾化、循环等以提高吸收剂利用率, 往往设备庞大、系统复杂能耗高; 而氨吸收烟气的SO 2 是气- 液反应, 反应速度快、反应完全, 吸收剂利用率高; 可以做到很高的脱硫效率, 同时相对钙基脱硫工艺来说系统简单、设备体积小、能耗低。

另外, 其脱硫副产品硫酸铵是一种农用肥料, 硫酸铵的销售收入能冲抵吸收剂的成本, 甚至是整个运行成本, 特别是对于自身副产液氨或有废氨水的企业来说, 可以利用液氨或废氨水作为脱硫吸收剂, 达到用废水治理废气的目的, 副产品的销售收入还可以给脱硫装置带来一定的经济效益。

2氨法FGD 的原理

烟气脱硫是一个十分典型的化工过程, 它基于碱性脱硫剂与酸性SO 2 之间的化学反应。碱性脱硫剂包括石灰石(石灰)、纯碱(烧碱)、氧化镁和氨, 分别可称为钙法、钠法、镁法和氨法。任何FGD 过程都包括两个基本的化学反应过程: ①吸收: SO 2 吸收生成为亚硫酸盐; ②氧化: 亚硫酸盐氧化为硫酸盐。氨法脱硫以水溶液中的SO 2 和NH3 的反应为基础:

吸收: SO 2+ H2O + XNH3= (NH4)XH2- XSO3 (亚硫铵) 氧化: (NH4)XH2- XSO 3+

1?2O 2+ (2- X)NH3= (NH4) 2SO 4 (硫铵) 这是回收法, 其明显特点是: 无二次废渣、废水和废气污染; 回收SO 2, 生产硫铵, 实现SO 2 回收价值的最大化。

3氨法FGD 工艺流程简述

锅炉排出的烟气通过引风机增压后进入FGD 系统, 引风机用来克服整个FGD 系统的压降。烟道上设有挡板系统, 以便于FGD 系统正常运行或旁路运行, 不考虑增设脱硫增压风机。烟气通过引风机后, 进入脱硫塔。吸收塔分为三个区域: 分别为吸收区、浆池区及除雾区, 烟气向上通过脱硫塔, 从脱硫塔内喷淋管组喷出的悬浮液滴向下降落, 烟气与氨?硫酸铵浆液液滴逆流接触, 发生传质与吸收反应, 以脱除烟气中的SO 2、SO 3。脱硫后的烟气经除雾器去除烟气中夹带的液滴后, 从顶部离开脱硫塔, 通过原烟道进入烟囱排放。脱硫塔下部浆池中的氨?硫酸铵浆液由循环泵循环送至浆液喷雾系统的喷嘴, 产生细小的液滴

沿脱硫塔横截面均匀向下喷淋。SO 2 和SO 3 与浆液中的氨反应, 生成亚硫酸铵和硫酸铵。在脱硫塔浆池中鼓入空气将生成的亚硫酸铵氧化成硫酸铵, 由于充分利用了烟气中的热量, 脱硫塔中使得硫酸铵中的水蒸发过饱和而析出硫酸铵结晶, 硫酸铵浆液经过旋流器的脱水提浓后再进入离心机进一步脱水, 最后经干燥后得到硫酸铵产品。脱硫塔浆池中的pH 值由加入的氨量控制, pH 值维持在大约5. 2~5. 8。FGD 系统设置有事故浆液箱, 事故浆液箱用来储存脱硫塔在事故、停运、检修和?或修理期间脱硫塔浆液池中的浆液。

4氨法FGD 需克服的几个问题

4. 1氨的易挥发性

氨法脱硫的特殊之处, 与钙法(石灰石) 脱硫的本质区别是, 前者的脱硫剂在常温常压下是气体, 是易挥发的, 而后者是固体, 是不挥发的。因此, 氨法脱硫的首要问题是围绕着如何对付氨的易挥发性, 防止氨随脱硫尾气溢出损失。

4. 2亚硫酸铵氧化的困难

向亚硫酸铵水溶液鼓空气直接氧化, 便可得到硫酸铵:

SO3 2- + 1/2 O2= SO4 2-

亚硫铵氧化反应实际上在吸收过程中也会发生, 只不过由于烟气中O 2 含量低, 反应速度慢, 氧化率较低, 其氧化贡献不大。

亚硫酸铵氧化和其他亚硫酸盐相比明显不同, NH4+ 对氧化过程有阻尼作用。肖文德教授早期领导的研究小组阐述了这一独特性质,NH4+ 显著阻碍O2 在水溶液中的溶解。当盐浓度< 0. 5mo l/L (约5% (w t) ) 时, 亚硫铵氧化速率随其浓度增加而增加, 而当超过这个极限值时, 氧化速率随浓度增加而降低。尽管如此, 在大型工业化的脱硫塔中, 气液传质则成为主要的制约因素。

4. 3硫铵的结晶

硫铵在水溶液中的饱和溶解度随温度变化不大, 如下表所示。

表1 硫酸铵的溶解度

温度℃20 30 40 60 80 100 溶解度g?100g 水75. 4 78 81 88 95. 3 103. 3 溶解度% (w t) 43 43. 82 44. 75 46. 81 48. 80 50. 81

可见, 硫铵溶解度随温度变化很小, 结晶析出硫铵的方法一般采用蒸发结晶, 消耗额外蒸汽。因此, 如何控制过程的工艺条件使硫铵饱和结晶从而降低能耗是该方法的第三个技术关键。

4. 4控制亚硫铵气溶胶

在一定条件下, 气相中也会发生如下反应:

NH3 (g) + SO 2 (g) + H2O (g) = NH4HSO 3 ( s)

即在气相形成亚硫酸氢氨的固体, 即气相沉淀。最初形成的固体呈现为超细粉末, 在微米级别, 称为气溶胶。由于在脱硫过程中, 热烟气与水溶液接触, 在液体表面, 饱和水蒸汽向气相传递, 超细的固体颗粒会成为水蒸汽冷凝结露的核心或晶种。因此, 关键是要防止以上反应的发生。

5氨法FGD 的趋势

氨法脱硫工艺在开发初期也遇到了很多问题, 如成本高、腐蚀、净化后尾气中的气溶胶等等, 在氨法工艺的发展过程中得到了不断完善和改进, 进入90 年代后, 氨法脱硫工艺渐渐的到了应用。

在国外, 90 年代以来, 氨法FGD 技术的研究和开发已成为一股潮流。目前氨法FGD 主要工艺技术有: 美国玛苏莱氨法(原GE 氨法)、日本N KK 氨法、德国b ischoff 氨法、国内华东理工大学NADS 氨- 肥法、磷铵肥法等。

中国是一个农业大国, 化肥行业是中国一个比较特殊的行业, 也是长期以来在政策上扶持的行业, 而合成氨是所有氮肥的一个基本原料, 到目前为止, 合成氨的总产量居世界第一, 分布在全国各地, 多数电厂周边都有合成氨厂, 因此氨的供应能满足氨法脱硫的要求。氨法脱硫就吸收SO 2 而言, 氨是一种比任何钙基吸收剂都理想的脱硫吸收剂, 虽然氨的价格相对于石灰石等吸收剂来说是比较高的, 但氨法脱硫的副产品有着良好的销售前景, 通常情

况下可以抵消氨的价格, 甚至可以部分或全部抵消整个装置的运行成本。这是其他脱硫方法难以做到的。由于氨法脱硫工艺自身的这些特点, 对于中国的一些地区及企业非常有吸收力。

氨法脱硫工艺

氨法脱硫 ??????氨法脱硫工艺是用氨水吸收SO2的成熟的脱硫工艺。不同的氨法工艺,区别仅在于从吸收溶液中除去二氧化硫的方法。不同的方法可获得不同的产品。 ??????氨法工艺主要有氨-硫酸铵法、氨-亚硫酸氢铵法、氨- ??????氨-硫酸铵法 一、工艺原理: ??????该工艺利用氨液吸收烟气中的SO2 ??????(1 ?????? ??????2NH3+ ??????随着吸收进程的持续,溶液中的NH4HSO3会逐渐增多,而NH4HSO3已不具备对SO2的吸收能力,应及时补充氨水维持吸收浓度。 ??????(2)氧化过程

??????氧化过程主要是利用空气生成(NH4)2SO4的过程: ??????(NH4)2SO3+O2??→(NH4)2SO4 ??????NH4HSO3+O2??→?NH4HSO4 ??????NH4HSO4+NH3?→(NH4)2SO4 ??????(3)结晶过程 ??????氧化后的(NH4)2SO4经加热蒸发,形成过饱和溶液,( 二、工艺流程 (1 氨-NH3和亚硫酸铵、硫酸铵气溶胶。 氨法脱硫中的氨损失主要包括液氨蒸气损失和脱硫塔雾沫夹带损失两部分。亚硫酸铵、硫酸铵气溶胶一旦形成,很难去除。所以国外公司(如美国GE公司等)在脱硫塔出口设置电除雾器,以消除逃逸的氨损耗和亚硫氨气溶胶。 本公司采用独特的MW微雾净化系统可高效去除逃逸的氨损耗和亚硫氨气溶胶。且空间及额外投资小。 氨-硫酸铵回收法具有丰富的原料,可以是液氨、氨水和碳铵,氨是人工合成,不像石灰石是天然资源,氨是化肥原料,脱硫后副

产品为化肥,我国是人口、粮食和化肥大国,氨法很适合中国国情。???液氨、氨水和碳铵是等效的,它们是氨的不同载体,来源广泛。

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施 、水反应成脱硫产物的基本机理而进行烟气氨法脱硫工艺皆是根据氨与SO 2 的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW,氨法是高效、低耗能的湿法。氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95—99%。氨在水中的溶解度超过20%。氨法具有丰富的原料。氨法以氨为原料,其形式可以是液氨、氨水和碳铵。 目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证,氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景,目前主装置是大型合成氨尿素的热电厂基本上都采用此方法脱硫。但脱 1 硫后烟气温度较低,设备的腐蚀较干法严重并易产生氨逃逸和气溶胶即“气拖尾”现象,需要不断完善。 1 .烟气氨法脱硫氨逃逸及气溶胶的形成原因 1.1 烟气氨法脱硫氨逃逸的形成原因 1.1.1 所谓氨逃逸是氨水温度较高时(一般60℃以上)逐步分解成为气体氨与水的过程,由于气体氨气不参与氨法脱硫反应,所以氨气同脱硫烟气一起从烟囱排出,形成所谓的氨逃逸现象。 1.1.2 氨逃逸是困扰氨法脱硫的一大难题,也是影响脱硫经济性同时影响周边环境的重要因素;有些氨脱硫技术提供商由于技术落后,脱硫率低,为了让二氧化硫排放达标,用氨水过量,在脱硫塔上方形成“白烟”现象,这不但造成

氨法脱硫工艺

氨法脱硫 氨法脱硫工艺是用氨水吸收SO2的成熟的脱硫工艺。不同的氨法工艺,区别仅在于从吸收溶液中除去二氧化硫的方法。不同的方法可获得不同的产品。 氨法工艺主要有氨-硫酸铵法、氨-亚硫酸氢铵法、氨-酸法和氨-石膏法。 氨-硫酸铵法 一、工艺原理: 该工艺利用氨液吸收烟气中的SO2生成亚硫酸铵溶液,并在富氧条件下将亚硫酸氨氧化成硫酸铵,再经加热蒸发结晶析出硫酸铵,过滤干燥后得化肥产品。主要包括吸收过程、氧化过程和结晶过程。 (1)吸收过程 在脱硫塔中,氨和SO2在液态环境中以离子形式反应: 2NH3+H2O+SO2 → (NH4)2SO3 (NH4)2SO3+H2O+SO2 → 2NH4HSO3

随着吸收进程的持续,溶液中的NH4HSO3会逐渐增多,而NH4HSO3已不具备对SO2的吸收能力,应及时补充氨水维持吸收浓度。 (2)氧化过程 氧化过程主要是利用空气生成(NH4)2SO4的过程: (NH4)2SO3+O2 → (NH4)2SO4 NH4HSO3 +O2 →NH4HSO4 NH4HSO4 +NH3 → (NH4)2SO4 (3)结晶过程 氧化后的(NH4)2SO4经加热蒸发,形成过饱和溶液,(NH4)2SO4从溶液中结晶析出,过滤干燥后得到化肥产品硫酸铵。 二、工艺流程

三、运行参数对脱硫效率的影响 (1)氨水量;(2)氨水浓度;(3)反应温度。 四、值得注意的问题 氨-硫酸铵法脱硫工艺存在的主要问题是存在二次污染的隐患,净化后的烟气含有微量的NH3和亚硫酸铵、硫酸铵气溶胶。 氨法脱硫中的氨损失主要包括液氨蒸气损失和脱硫塔雾沫夹带损失两部分。亚硫酸铵、硫酸铵气溶胶一旦形成,很难去除。所以国外公司(如美国GE公司等)在脱硫塔出口设置电除雾器,以消除逃逸的氨损耗和亚硫氨气溶胶。 本公司采用独特的MW微雾净化系统可高效去除逃逸的氨损耗和亚硫氨气溶胶。

氨法脱硫原理

浅析氨法脱硫工艺 来源:内蒙古科技与经济更新时间:09-11-23 10:55 作者: 冯国, 蒲日军 摘要: 简述了氨法脱硫的特点、原理, 及其需要克服的问题, 根据目前的脱硫趋势说明了氨法脱硫技术突出的技术成本优势。 关键词: 氨法脱硫, 二氧化硫, 氮氧化物, 硫酸铵, 吸收剂 中国是一个以煤炭为主要能源的国家, 随着工业的快速发展, 煤炭燃烧生成的SO 2 已成为中国大气污染的主要污染物。1995 年, 中国SO 2 年排放量2 370万t, 大大超出了环境自净能力, 排放总量超过了美国和欧洲跃居世界首位。 自2002 年, 中国在电力行业内开展了大规模的SO 2 治理工程。随着电厂脱硫治理的开始, 一大批国外烟气脱硫技术被不同的脱硫公司引进到国内, 这其中的绝大部分是石灰 石- 石膏法。随着烟气脱硫在国内电力行业的大规模使用, 其他烟气脱硫方法也逐渐被使用、被认识, 包括海水法、氨法、镁法、双碱法等, 这其中, 氨法正受到越来越广泛的关注。氨法烟气脱硫工艺是采用氨做吸收剂除去烟气中的SO 2 的工艺。70 年代初, 日本与意大利等国开始研制氨法脱硫工艺并相继获得成功。但由于技术经济等方面的原因在世界上应用较少。进入90 年代后, 随着技术的进步和对氨法脱硫观念的转变, 氨基脱硫技术的应用呈逐步上升的趋势。 1氨法FGD 的主要特点 1. 1脱硫塔不易结垢 由于氨具有更高的反应活性, 且硫酸铵具有极易溶解的化学特性, 因此氨法脱硫系统不易产生结垢现象。 1. 2氨法对煤中硫含量适应性广 氨法脱硫对煤中硫含量的适应性广, 低、中、高硫含量的煤种脱硫均能适应, 特别适合于中高硫煤的脱硫。采用石灰石?石膏法时, 煤的含硫量越高, 石灰石用量就越大, 费用也就越高; 而采用氨法时, 特别是采用废氨水作为脱硫吸收剂时, 由于脱硫副产物的价值较高, 煤中含硫量越高, 脱硫副产品硫酸铵的产量越大, 也就越经济。 1. 3无二次污染 氨是生产化肥的原料。以氨为原料, 实现烟气脱硫, 生产化肥, 不消耗新的自然资源, 不产生新的废弃物和污染物, 变废为宝, 化害为利, 为绿色生产技术, 将产生明显的环境、经

氨法脱硫计算过程

氨法脱硫计算过程 风量(标态):,烟气排气温度:168℃: 工况下烟气量: 还有约5%得水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约—200Pa,如果精度高一点,考虑以上两个因素、 1、脱硫塔 (1)塔径及底面积计算: 塔内烟气流速:取 D=2r=6、332m即塔径为6。332米,取最大值为6、5米。 底面积S=πr2=3.14×3、252=33、17m2 塔径设定时一般为一个整数,如6、5m,另外,还要考虑设备裕量得问题,为以后设备能够满足大气量情况下符合得运行要求。 (2)脱硫泵流量计算: 液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5、) ①循环水泵流量: 较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计由于烟气中SO 2 安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右得裕量。裕量为: 119×20%=23.8 m3/h, 泵总流量为:23。8+119=142.8m3/h, 参考相关资料取泵流量为140 m3/h。配套功率可查相关资料,也可与泵厂家进行联系确定。 (3)吸收区高度计算 吸收区高度需按照烟气中二氧化硫含量得多少进行确定,如果含量高,可适当调高吸收区高度、 2。5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为3。7米-3。8米进行设计、吸收区总高度为13.7米—13、8米。

(4)浓缩段高度计算 浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都就是2.5米,上层喷淋距离吸收区最下层喷淋为3、23米,下层距离烟气进口为5米,烟气进口距离下层底板为2。48米。总高为10、71米。 (5)除雾段高度计算 除雾器设计成两段、每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(4、13)m 。冲洗水距离2。5米,填料层与冲洗水管距离为2。5米,上层除雾至塔顶距离1.9米、 除雾区总高度为: 如果脱硫塔设计为烟塔一体设备,在脱硫塔顶部需安装一段锥体段,此段高度为1、65米,也可更高一些。 (6)烟囱高度设计 具有一定速度得热烟气从烟囱出口排除后由于具有一定得初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高得高度。但就是,高度设计必须瞧当地气候情况以及设备建在什么位置,如果远离市区,且周围没有敏感源,高度可与塔体一并进行考虑。一般烟塔总高度可选60-80米。 (7)氧化段高度设计 氧化段主要就是对脱硫液中亚硫酸盐进行氧化,此段主要以计算氧化段氧化时间。 (8)氧化风量设计 1、需氧量A(kg/h)=氧化倍率×0、25×需脱除SO 2量(kg/h)氧化倍率一般取1、 5---2 2、氧化空气量(m 3/h)=A ÷23。15%(空气中氧含量)÷(1-空气中水分1%÷100)÷空气密度1.29 (9)需氨量(T/h)根据进口烟气状态、要求脱硫效率,初步计算氨水得用量。 式中: W 氨水——氨水用量,t/h C SO2-—进口烟气SO 2浓度,mg/Nm 3 V 0——进口烟气量,Nm 3/h η——要求脱硫效率 C 氨水-—氨水质量百分比

烟气脱硫之氨法烟气脱硫技术

烟气脱硫之氨法烟气脱硫技术 氨回收法符合世界FGD发展趋势 氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。 80-90年代,在我国硫酸和磷肥厂,具有氨法脱硫装置高达100余套。 美国和德国的脱硫石膏已成为一个突出的环境问题,正着力研究转化为硫铵的技术。 据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW · 专家论点 美国Ellison 咨询公司:采用硫铵过程,烟气脱硫可以实现自负盈亏。 美国John Brown工程师和建筑师有限公司:通过大量、高价值的副产品生产,烟气脱硫可以获得卓越的投资效益。 美国GE公司:氨法烟气脱硫时代已经到来了。 Krupp公司:经过二十多年一步一步地漫长的发展,如今,氨法已进入工业化应用阶段。 ·氨法特点 氨法是高效、低耗能的湿法。氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95-99%. 氨在水中的溶解度超过20%.氨法具有丰富的原料。氨法以氨为原料,其形式可以是液氨、氨水和碳铵。目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证。 氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景。

江南氨回收法是湿式氨法的一种。1995年氨法技术作为国家重点科技攻关项目列入"十五"863计划;1998年公司成立了专门的环保研究所进行技术攻关;2000年我们研制的第1台简易氨法脱硫装置通过江苏省科技成果鉴定。此后公司通过与多家科研院校的密切合作,在简易氨法的基础上逐步发展成现在的氨回收法,并在天津碱厂、云南解化、亚能天元等项目上成功运行1年以上,各项指标均达到了预期效果。 · 技术特点 1、完全资源化--变废为宝、化害为利 江南氨回收法技术将回收的二氧化硫、氨全部转化为化肥,不产生任何废水、废液和废渣,没有二次污染,是一项真正意义上的将污染物全部资源化,符合循环经济要求的脱硫技术。 2、脱硫副产物价值高 江南氨回收法脱硫装置的运行过程即是硫酸铵的生产过程,每吸收1吨液氨可脱除2吨二氧化硫,生产4吨硫酸铵,按照常规价格液氨2000元/吨、硫酸铵700元/吨,则烟气中每吨二氧化硫体现了约400元的价值。因此相对运行费用小,并且煤中含硫量愈高,运行费用愈低。企业可利用价格低廉的高硫煤,同时大幅度降低燃料成本和脱硫费用,一举两得。 3、装置阻力小,节省运行电耗 利用氨法脱硫的高活性,使液气比较常规湿法脱硫技术降低。脱硫塔的阻力仅为850Pa左右,无加热装置时包括烟道等阻力脱硫岛总阻力在1000Pa左右;配蒸汽加热器时脱硫岛的总设计阻力也只有1250Pa左右。因此,氨法脱硫装置可以利用原锅炉引风机的潜力,大多无需新配增压风机;即便原风机无潜力,也可适当进行风机改造或增加小压头的风机即可。系统阻力较常规脱硫技术节电50%以上。另外,循环泵的功耗降低了近70%. 4、防腐先进、运行可靠

氨法脱硫的缺点

氨法脱硫的缺点: 一、成本较高: (以3*220T/H锅炉为例) 1、脱硫剂氨价格较高,市价格一般在2500-3000元/吨,每小时用氨量在0.5-1吨之间。 2、电耗较高,一般每小时用电量在1200-1500度之间。(电价约为0.5元/度) 3、水耗较高,一般每小时用水量在20-40吨之间。(水价约为5元/吨) (每小时脱硫剂消耗,电耗,水耗费用在1950元3950元之间。 每小时硫酸铵产量约为2.5-5吨,硫酸铵按400元/吨计算,那么每小时销售的硫酸铵价格在1000-2000元之间。用三耗费用减去硫酸铵销售价,那么每小时脱硫净亏950-1950元。 按年运行8000小时计算,脱硫系统(不算人工费用,税费,检修费用)年亏760万元—1560万元。) 二、腐蚀较重: 1、化学腐蚀,二氧化硫遇水形成亚硫酸和硫酸,会和铁发生化学反应,对铁的腐蚀性较强。由于二氧化硫的不断存在,(遇铁的情况下)腐蚀会连续的发生。 2、结晶腐蚀:在烟气脱硫过程中,浆液中会有硫酸铵,亚硫酸铵和亚硫酸氢铵生成,会渗入防腐层表面的毛细孔内,当设备停用时,在自然干燥下产生结晶型盐,使防腐材料自身产生内应力而破坏,特别在干湿交替作用下,腐蚀更加严重。 3、冲刷腐蚀:由于氨法脱硫是饱和结晶,饱和状态下会有硫酸铵晶体析出,析出的越多,浓度就越大,浆液脱硫是在不间断的情况下连续循环,那么析出的晶体会对设备造成连续的冲刷腐蚀,浓度越高,冲刷腐蚀越重,长时间运行后会把系统的薄的防腐层冲刷掉,是脱硫系统最严重的一种腐蚀。 三、有氨逃逸、气溶胶、气拖尾现象 1、氨逃逸产生的原因: (1)反应时间短接触不充分,造成氨逃逸。 (2)氨水加的过多,过剩造成氨逃逸。 (3)由于氨的性质较活泼,造成氨逃逸。 (4)净烟气温度较高,造成氨逃逸。 (5)加氨位置不合理,造成氨逃逸。 2、气溶胶产生的原因: (1)烟气流速大,造成浆液中小的固体颗粒随气体带出,产生气溶胶。 (2)除雾器性能差或损坏,造成浆液颗料随气体带出,产生气溶胶。 (3)氨逃逸大,和烟气中的SO2反应,生成亚硫酸铵,产生气溶胶。

氨法脱硫 计算过程

氨法脱硫计算过程 风量(标态):,烟气排气温度:168℃: 工况下烟气量: 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内烟气流速:取 D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。 底面积S=πr2=3.14×3.252=33.17m2 塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。 (2)脱硫泵流量计算: 液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。) ①循环水泵流量: 由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。裕量为: 119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h, 参考相关资料取泵流量为140 m3/h。配套功率可查相关资料,也可与泵厂家进行联系确定。 (3)吸收区高度计算 吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。 2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为 3.7米-3.8米进行设计。吸收区总高度为13.7米-13.8米。

(4)浓缩段高度计算 浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。总高为10.71米。 (5)除雾段高度计算 除雾器设计成两段。每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(4.13)m 。冲洗水距离2.5米,填料层与冲洗水管距离为2.5米,上层除雾至塔顶距离1.9米。 除雾区总高度为: 如果脱硫塔设计为烟塔一体设备,在脱硫塔顶部需安装一段锥体段,此段高度为 1.65米,也可更高一些。 (6)烟囱高度设计 具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。但是,高度设计必须看当地气候情况以及设备建在什么位置,如果远离市区,且周围没有敏感源,高度可与塔体一并进行考虑。一般烟塔总高度可选60-80米。 (7)氧化段高度设计 氧化段主要是对脱硫液中亚硫酸盐进行氧化,此段主要以计算氧化段氧化时间。 (8)氧化风量设计 1、需氧量A (kg/h )=氧化倍率×0.25×需脱除SO 2量(kg/h )氧化倍率一般取1.5---2 2、氧化空气量(m 3/h )=A ÷23.15%(空气中氧含量)÷(1-空气中水分1%÷100)÷空气密度1.29 (9)需氨量(T/h )根据进口烟气状态、要求脱硫效率,初步计算氨水的用量。 式中: W 氨水——氨水用量,t/h C SO2——进口烟气SO 2浓度,mg/Nm 3 V 0——进口烟气量,Nm 3/h η——要求脱硫效率 C 氨水——氨水质量百分比 (10)硫铵产量(T/h ) W3=W1×2 ×132/17。W3:硫胺产量,132为硫胺分子量,17为氨分子量

氨法脱硫技术方案

220t/h锅炉烟气氨法脱硫项目 技术方案 [ - 山东雪花生物化工股份有限公司 2011年5月

目录 1 项目概况 (3) 2 基本参数及设计要求 (4) 3 规范和标准(不仅限于此) (5) ] 4 脱硫系统技术指标 (10) 二、技术方案及工艺特点 (11) 1设计原则 (11) 2 氨法脱硫概述 (12) 4本工艺技术特点 (14) 5脱硫及硫酸铵回收工艺系统描述 (15) 6 主要经济技术指标 (25) 7脱硫系统运行费用与硫酸铵回收统计(年运行时间按7500小时计) (26) { 8主要设备选型及设备表 (26) 三、投资概算 (33) 四、工程施工周期 (33) 五、施工组织计划 (34) 六、施工准备 (35) 补充说明: (37)

一、技术方案设计大纲 1 项目概况 ' 随着工业经济的不断发展,世界环境日益恶化。尤其是随着发展中国家的工业化进程的不断推进,排向大气的污染物绝对量快速增长。人类越来越被因自己而造成的恶果而感到疲于应付、甚至恐惧。燃煤电厂所排放烟气中的二氧化硫是造成大气污染主要的因素之一,它不仅能造成酸雨危害人类,而且据最近世界环境专家断言,还是破坏大气臭氧层的一个重要因素。因此,二氧化硫的治理迫在眉睫。 燃煤电厂S02排放超过全国SO2排放总量的50%。随着新型能源基地的发展战略逐渐向煤电并举,输电为主的方向转变,在燃煤电厂的设计或脱硫改造工程中,如何合理选用脱硫工艺,并以较低的初投资和运行费用达到脱硫后SO2排放量符合国家排放标准的规定以及建设机组环境评价要求,是燃煤电厂烟气脱硫行业健康发展的关键问题。 燃煤是大气环境中S02、氮氧化物、烟尘等污染物的主要来源。从煤的消耗量来看:煤炭在我国能源消费中的比例保持在70%左右,且短期内难以改变;从煤的使用方式上看:煤炭消费量的80%直接用于燃烧,其中燃煤电厂燃煤量占煤炭消耗量的50%以上。 “十二五”规划主要大气污染物排放总量持续削减,按照目前统计口径,全国二氧化硫排放总量比“十一五”减少10%,重点行业和重点地区氮氧化物排放总量比“十一五”减少10%,全国氮氧化物增长趋势得到遏制。电力行业仍为减排重点领域,新建燃煤机组全部配套建设脱硫设施,脱硫效率达到95%以上,并根据排放标准和建设项目环境影响报告书批复要求配套建设烟气脱硝设施,脱硝效率达到80%以上,除淘汰机组外,“十一五”期间未脱硫的燃煤机组安装脱硫设施,综合脱硫效率提高到90%以上,已投运的脱硫设施中不能稳定达标排放或实际燃煤硫分超过设计硫分

氨法脱硫技术

论文题目:提升燃煤锅炉烟气氨法脱硫工艺氨的综合利用效率 主要内容:燃煤锅炉烟气氨法脱硫工艺氨的综合利用效率,关系到氨法脱硫的运行成本,同时最为关键的氨的综合利用效率低会造成氨的逃逸量大,形成气溶胶,在烟囱排放时形成较长的烟羽不能有效扩散。通过改造塔内喷淋结构,增加吸收浆液循环量,提高浆液的覆盖率;通过气体再分布装置,增强气体分部效果;改变吸收剂氨的加入方式,实现吸收段浆液PH至分级阶梯控制;利用水洗段洗涤烟气,吸收烟气中逃逸的游离氨,水回收利用;合理控制一级浆液的氧化率,一级浆液的比重,提高吸收浆液的吸收速率。通过以上改进和工艺优化,提升氨的综合利用效率,可以较为有效的控制烟羽的长度。 一、氨法脱硫技术: 燃煤锅炉烟气氨法脱硫工艺利用气氨或氨水做为吸收剂,气液在脱硫塔内逆流接触,脱除烟气中的SO2。氨是一种良好的碱性吸收剂,从吸收化学机理上分析,二氧化硫的吸收是酸碱中和反应,吸收剂碱性越强,越有利于吸收,氨的碱性强于钙基吸收剂;而且从吸收物理机理分析,钙基吸收剂吸收二氧化硫是一种气固反应,反应速率慢,反应不完全,吸收剂利用率低,需要大量的设备和能耗进行磨细、雾化、循环等以提高吸收剂利用率,设备庞大、系统复杂、能耗高;氨吸收烟气中的二氧化硫是气液反应,反应速率快,反应完全、吸收剂利用效率高,可以做到很高的脱硫效率。同时相对于钙基脱硫工艺来说系统简单、设备体积小、能耗低。脱硫副产品硫酸铵是一种农用废料,销售收入能降低一部分成本。就吸收SO2

而言,氨是一种比任何钙基吸收剂都理想的脱硫吸收剂,就技术流程可知,整个脱硫系统的脱硫原料是氨和水,脱硫产品是固体硫铵,过程不产生新的废气、废水和废渣。既回收了硫资源,又不产生二次污染。 氨法脱硫吸收反应原理: NH3+H2O+SO2=NH4HSO3 (1) 2NH3+H2O+SO2=(NH4)2SO3 (2) (NH4)2SO3+H2O+SO2=2NH4HSO3 (3) NH3+NH4HSO3 = (NH4)2SO3(4) 在通入氨量较少时发生①反应,在通入氨量较多时发生②反应,而式③表示的才是氨法中真正的吸收反应。在吸收过程中所生成的酸式盐 NH4HSO3对SO2不具有吸收能力,随吸收过程的进行,吸收液中的NH4HSO3含量增加,吸收液吸收能力下降,此时需向吸收液中补氨,发生④反应使部分NH4HSO3转变为(NH4)2SO3,以保持吸收液的吸收能力。因此氨法吸收是利用(NH4)2SO3-NH4HSO3的不断循环的过程来吸收烟气中的SO2,补充的NH3并不是直接用来吸收SO2,只是保持吸收液中(NH4)2SO3的组分量比。 吸收后的浆液利用空气进行强制氧化, NH4HSO3+1/2O2= NH4HSO4 (NH4)2SO3+1/2O2=( NH4)2SO4 氨化反应: NH3+NH4HSO3 = (NH4)2SO3(1) NH3+NH4HSO4 = (NH4)2SO4(2) 氧化后的硫酸铵采用塔内结晶技术,利用热烟气将浆液的水分蒸发,硫酸铵浆液在塔内浓缩结晶后,固含量约5%~15%的硫酸铵浆液由结晶泵送入旋流器进行初步固液分离,清液进入料液槽,底流(固含量20%~

《氨法脱硫工艺设计》文献综述

北京化工大学北方学院 毕业设计文献综述 题目名称《氨法脱硫工艺设计》文献综述 题目类别毕业设计 专业班级应化0906 学号 090105161 姓名王冲 指导老师尹建波老师 完成时间 2012年10月25日

引言 据统计,中国1995年SO2排放量为2370万吨,占世界第1位。 SO2排放量剧增使大多数城市SO2浓度处于较高的污染水平。SO2排放量的增加,使中国的酸雨发展异常迅速,严重的酸性降水和脆弱的生态系统使我国经济损失严重,1995年,仅酸雨污染给森林和农作物造成的直接经济损失已达几百亿。随着经济的发展、社会的进步和人们环保意识的增强,工业烟气脱除SO2日益受到重视。由于历史的原因,目前主流的脱硫技术仍为钙法,但钙法脱硫的二次污染、运行不经济等问题日益显现出来,于是,氨法脱硫技术逐渐受到关注,许多的企业、研究单位对氨法脱硫技术的前景作出了乐观的评价。国内已成功地在60MW机组烟气脱硫工程上使用了氨法,其各项经济技术指标居脱硫业的领先水平。由于氨法脱硫工艺自身的一些特点,可充分利用我国广泛的氨源生产需求大的肥料,并且氨法脱硫工艺在脱硫的同时又可脱氮,是一项较适应中国国情的脱硫技术。为帮助大家全面了解氨法,本文对氨法脱硫技术的发展、机理和不同技术的特点进行简述,并侧重介绍湿式回收法氨法脱硫技术。

1. 氨法脱硫技术概况 1.1 氨法脱硫工艺特点 氨法脱硫工艺是采用氨作为吸收剂除去烟气中的SO2的工艺。氨法脱硫工艺具有很多特点。氨是一种良好的碱性吸收剂,氨的碱性强于钙基吸收剂;而且氨吸收烟气中SO2是气-液或气-气反应,反应速度快、反应完全、吸收剂利用率高,可以做到很高的脱硫效率,相对于钙基脱硫工艺来说系统简单、设备体积小、能耗低。另外,其脱硫副产品硫酸铵是一种常用的化肥,副产品的销售收入能大幅度降低运行成本。 1.2 氨法脱硫的发展 70年代初,日本与意大利等国开始研制氨法脱硫工艺并相继获得成功。氨法脱硫工艺主体部分属化肥工业范筹,这对电力企业而言较陌生,是氨法脱硫技术未得到广泛应用的最大因素,随着合成氨工业的不断发展以及厂家对氨法脱硫工艺自身的不断完善和改进,进入90年代后,氨法脱硫工艺渐渐得到了应用。 国外研究氨法脱硫技术的企业主要有:美国:GE、Marsulex、Pircon、Babcock & Wilcox;德国:Lentjes Bischoff、Krupp Koppers;日本:NKK、IHI、千代田、住友、三菱、荏原;等等。 国内目前成功的湿式氨法脱硫装置大多从硫酸尾气治理技术中发展而来,主要的技术商有江南环保工程建设有限公司、华东理工大学等,现国内湿式氨法脱硫最大的业绩是天津永利电力公司的60MW机组的烟气脱硫装置。 近来出现的磷铵法、电子束法、脉冲电晕放电等离子体法等烟气脱硫脱硝技术皆是氨法的演变与发展,改进之处在于降低水耗、改进氧化及后处理、降低装置压降、提高脱硝能力等方面,以求使氨法烟气脱硫技术更加经济更加适应锅炉的运行。 2. 氨法脱硫的技术原理 氨法脱硫工艺皆是根据氨与SO2、水反应成脱硫产物的基本机理而进行的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。 2.1 电子束氨法(EBA法)与脉冲电晕氨法(PPCP法) 电子束氨法与脉冲电晕氨法分别是用电子束和脉冲电晕照射喷入水和氨的、已降温至70℃左右的烟气,在强电场作用下,部分烟气分子电离,成为高能电子,高能电子激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧

氨法脱硫工艺

氨法脱硫工艺流程 随着国家环保政策要求越来越严格,SO2排放指标越来越低,新的排放标准为400mg/mm3,这么低的排放指标,对每一个企业来说不采用高效脱硫设备是很难达到这个指标的,气动浮化脱硫塔具有占地面积少、耐磨耐腐蚀、脱硫效率高、低阻力降等许多优点被国内外许多家企业首选的脱硫设备。脱硫方法国内外有成百上千种,但国内采用最多最实用的方法仍为钙法、钠法和氨法,钙法因需投资庞大的处理系统和堆渣场地、产生新的固废,不能为企业创造利润被越来越少的企业采用;钠法因投资太大,往往投入多回报少也不被大多数企业看中;氨法具有吸收高、投资少、见效快诸多优点被广泛采用。 氨法脱硫的工艺原理是:液氨首先经蒸发变成气氨,氨气与水生成氨水,氨水与烟气中的SO2结合生成亚硫氢铵,亚硫氢铵溶液继续与NH3反映生成亚硫酸铵,不断地通入氨,不断地吸收SO2循环往复,当溶液达到一定的浓度时候,将浓溶液移入中和槽,通氨中和,等反映完全,离心分离亚铵产品。 主要反映的化学方程式: NH3+H2O→NH3·H2O+Q NH3·H2O+ SO2→NH4HSO3+Q NH4HSO3+ NH3→(NH4)2SO3+Q (NH4)2SO3+ SO2→NH4HSO3+Q

分为以下几个系统: 一、氨蒸发系统 液氨由储罐出来经蒸发变为气氨,气氨进入储罐,供中和吸收系统使用。 二、吸收系统 烟气进入吸收塔,经过下部喷淋的含氨母液和浮化层含氨母液充分吸收,反应后,达标排放,母液循环使用,氨气通过控制加入,母液循环到一定浓度,部分移入高倍中和槽,循环槽补充低浓度母液或清水继续吸收。 三、中和系统 母液打入中和槽后,根据比重、母液温度情况决定何时通氨,通氨前将冷却系逐步加大,母液温度适合时通氨,通入氨后定时测PH值和中和温度。根据中和温度控制通氨量,达到终点后,待溶液温度降下后通知包装工离料出产品,并取样,交化验进行质量检定。 四、循环水系统 因为母液吸收和中和过程均有热量,为了移走热量,在循环槽内和中和槽内均加装冷却管束,用循环水移走多余热量,热水经冷却塔降温后循环使用。

氨法脱硫后硫酸铵的回收技术方案

氨法脱硫后硫酸铵回收技术方案 2),工艺技术要求 (1)冷凝水水质:冷凝水的含盐量不大于1.0%。 (2)装置的设计需要考虑此种水质的特性,对装置设备进行针对设计,保证装置的机械清洗周期大于10天,必要时配备专用清洗工具。同时也 要保证三效蒸发器蒸发室内有足够的高度,防止物料起泡及蒸发携带 引起的冷凝水水质超标。 (3)防冻措施:本装置需考虑必要的防冻措施及停运时的防冻措施,以保证各单元处理设施冬季正常运行。 (4)本装置汽耗比不大于0.4; 二,设计和验收依据 执行与三效蒸发器相关的国家、行业现行有效的设计、施工标准和规范,采用最新有效版本。 压力容器执行相关的国家、行业现行有效的设计、施工标准和规范,采用最新有效版本。 包括但不限于如下标准: 《压力容器安全技术监察规程》国家质量技术监督局1999年 《钢制压力容器》GB150 《钢制压力容器-分析设计标准》JB4732 《压力容器法兰》JB4700~4707 《衬里钢壳设计技术规定》HG/T 20678 《钢制管法兰、垫片、紧固件》HG20592~20635

《钢制人孔和手孔》HG/T21514~21535 《不锈钢人、手孔》HG21594~21604 《钢制压力容器用封头》JB/T4746 《钢制压力容器焊接规程》JB/T4709 《钢制压力容器焊接工艺评定》JB4708 《钢制压力容器产品焊接试板的力学性能检验》JB4744 《承压设备无损检测》JB/T4730.1~.6 《压力容器用钢锻件》JB4726~4728 《补强圈》JB/T4736 《鞍式支座》JB/T 4712 《腿式支座》JB/T 4713 《支承式支座》JB/T 4724 《耳式支座》JB/T 4725 《压力容器波形膨胀节》GB16749 《钢制压力容器焊接规程》JB/T4709 《压力容器涂敷与运输包装》JB/T4711 《压力容器波形膨胀节》GB 16749 《压力容器安全技术监察规程》(劳锅字(1990)8号) 《压力容器设计单位资格管理与监督规则》(劳锅字(1992)12号)《压力容器无损检验》JB4730 《压力容器油漆、包装、运输》JB2532 《钢制化工容器设计基础规定》HG20580 《钢制化工容器材料选用规定》HG20581 《钢制化工容器强度计算规定》HG20582 《钢制化工容器机构设计规定》HG20583 《钢制化工容器制造技术要求》HG20584 《板式换热器》GB1649 《换热器学会标准—蒸汽表面冷凝器标准》HEI 《管式换热器制造商学会标准》TEMA 《管式换热器》GB151 三,方案选择:

DG-12039型火电厂锅炉中硫烟煤烟气电除尘湿式氨法脱硫系统设计

目录 1 锅炉燃烧的相关计算 (3) 1.1实际烟气量计算 (3) 1.2烟气含尘、二氧化硫浓度的计算 (4) 2 除尘结构设计计算 (5) 2.1电除尘器的工作原理 (5) 2.2电除尘器的主体结构 (5) 2.3影响电除尘器性能的因素 (5) 2.4电除尘器的优点 (8) 2.5电除尘器的缺点 (9) 2.6运行参数的选择和设计 (9) 2.7电除尘设备结构设计计算 (10) 3 脱硫设备结构设计计算 (14) 3.1 湿式氨法原理 (14) 3.2氨法脱硫具有的特点 (14) 3.3净化效率的影响因素 (15) 3.4参数的选择 (15) 3.5 脱硫设备结构设计计算 (16) 4 烟囱设计计算 (19) 4.1 烟囱高度的确定 (19) 4.2 烟囱抬升高度计算H (19) 4.3 烟囱的有效高度H (20) 4.4 烟囱高度校核 (20) 4.5烟囱直径的计算 (21) 4.6 烟囱底部直径 (21) 4.7 烟囱阻力 (21) 5 管道系统设计,阻力计算 (22) 5.1管道直径的确定 (22) 5.2 系统阻力 (22)

5.3 局部阻力损失 (23) 5.4 系统总阻力的计算 (23) 6 风机电机的选择 (24) 6.1 风机风量的计算 (24) 6.2 风机风压的计算 (24) 7 总结 (25) 8 参考文献 (26) 10附图 (27)

1锅炉燃烧的相关计算 1.1实际烟气量计算 设有1000g 该成份的煤,由质量百分比组成确定其摩尔组成: 成分 质量(g) 摩尔数(mol/kg) mol/mol(C) C 650 54.2 1 H 20 20 0.369 O 100 6.25 0.115 N 10 0.71 0.013 S 30 0.94 0.017 A 150 - - W 40 2.22 0.041 V 80 - - 对于该种煤,其组成可表示为:CH 0.369O 0.115N 0.013S 0.017 燃料的摩尔质量,包括灰分,为:)(/45.18) (2.54g 1000C mol g C mol M ==δ 燃煤的反应方程式: 2 22222017.0013.0115.0369.0)78.30065.0(017.0185.0)78.3(N a SO O H CO N O a S N O CH ++++→++其中05.12 115 .0017.04369.01=-++ =a 每千克该煤需要空气的标准体积0a V : kg m mol m kg g g mol V o /09.6/104.221100045.18)78.31(05.1333a =???+?= - 每千克煤理论空气量条件下烟气组成(mol ): CO 2:54.2; H 2O :10+2.22; SO 20.94; N 2:215.47 理论烟气量:kg m V o vg /34.61000 4 .22)47.21594.022.122.54(3=? +++= 空气过剩系数为1.1,

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施 烟气氨法脱硫工艺皆是根据氨与SO 、水反应成脱硫产物的基本机理而进行 2 的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW,氨法是高效、低耗能的湿法。氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95—99%。氨在水中的溶解度超过20%。氨法具有丰富的原料。氨法以氨为原料,其形式可以是液氨、氨水和碳铵。 目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证,氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景,目前主装置是大型合成氨尿素的热电厂基本上都采用此方法脱硫。但脱 1 硫后烟气温度较低,设备的腐蚀较干法严重并易产生氨逃逸和气溶胶即“气拖尾”现象,需要不断完善。 1 .烟气氨法脱硫氨逃逸及气溶胶的形成原因 1.1 烟气氨法脱硫氨逃逸的形成原因 1.1.1 所谓氨逃逸是氨水温度较高时(一般60℃以上)逐步分解成为气体氨与水的过程,由于气体氨气不参与氨法脱硫反应,所以氨气同脱硫烟气一起从烟囱排出,形成所谓的氨逃逸现象。 1.1.2 氨逃逸是困扰氨法脱硫的一大难题,也是影响脱硫经济性同时影响周边环境的重要因素;有些氨脱硫技术提供商由于技术落后,脱硫率低,为了让二氧化硫排放达标,用氨水过量,在脱硫塔上方形成“白烟”现象,这不但造成了氨的浪费成本增加,造成严重的氨逃逸现象。 1.1.3 氨逃逸的根本原因是氨水挥发性强、蒸汽压较高,目前还没有能完全防止氨逃逸的脱硫工程技术公司实例存在,各个做氨法脱硫公司之间的技术差别仅限于对氨逃逸多少的控制。 1.2烟气氨法脱硫气溶胶的形成原因

氨法脱硫技术运行总结

氨法脱硫技术运行总结 牛琳(河北金万泰化肥有限责任公司,河北新乐050700) 摘要:本文主要论述了河北金万泰化肥有限责任公司选用 氨法脱硫技术对锅炉烟气进行脱硫的运行情况,同时总结了该技术在实际运行过程中需要注意的几个问题。 关键词:氨法脱硫;SO2;改造 1.概述 随着国家对环境保护的日益重视,有效地控制SO 2的污染已成为国家规划的一部分。削减SO 2排放量,控制大气污染,提高环境质量,是目前及未来长时期内我国环境保护的重要课题。基于以上原因,金万泰公司选用了氨法脱硫技术对锅炉烟气进行脱硫处理,经过实际论证和改造,装置于2013年12月正式投产,现在整套系统基本运行平稳,烟气脱硫效果也基本达到设计要求。但在试运行过程中,该技术也反映出一些在实际运行中应该注意的问题。 2.氨法脱硫的工艺原理及工艺流程 2.1工艺原理 氨法脱硫用含氨溶液通过喷淋与烟气接触,吸收烟气中的二氧化硫,生成亚硫酸铵。反应过程可基本表述为:烟气中的二氧化硫与烟气接触时首先被水吸收,生成氢离子、亚硫酸氢根离子与亚硫酸根离子,然后氢离子与氨水溶于水后生成的氢氧根结合生成水分子,由于氢离子与氢氧根离子不断消耗,使二氧化硫溶于水和氨溶于水的反应得以持续进行,烟气中的二氧化硫得以吸收净化。同时体系中的铵离子、亚硫酸氢根离子、亚硫酸根离子不断增多,然后亚硫酸根离子与亚硫酸氢根离子经氧化生成硫酸根,最终在浓缩阶段生成硫酸铵并回收。吸收反应式如下: SO 2+H 2O?H ++HSO 3-HSO 3-?H ++SO 32-NH 3+H 2O?NH 3·H 2O NH 3·H 2O?NH 4++OH -H ++OH -?H 2O 4HSO 3-+3O 2?4SO 42-+2H 2O 2SO 32-+O 2?2SO 42-2NH 4++SO 42-?(NH 4)2SO 4↓2.2工艺流程: 工艺流程图如图1所示。 图1氨法脱硫工艺流程图 经除尘合格后的烟气由引风机加压后进入脱硫塔浓缩段, 与喷淋雾化的浓缩段循环液逆流接触,充分利用烟气的热量将浓缩段循环液中的水分蒸发带走,同时完成烟气的降温增湿。经降温增湿的烟气,穿过脱硫塔浓缩段与脱硫段之间的升气帽进入脱硫段,与来自氧化槽的脱硫液逆流接触,烟气中的SO 2等酸性气体被吸收,生成亚硫酸铵,烟气得到净化。净化后的烟气经脱硫塔上部的折流板除雾器去除烟气中的残余的雾沫后经烟道进入烟囱排放,生成的亚硫酸铵自流入氧化槽。 脱硫过程中生成的亚硫酸铵进入氧化槽后,一部分经循环 泵送入脱硫塔脱硫段作为脱硫液与烟气接触吸收烟气中SO 2; 一部分经氧化泵加压送入氧化喷射器,用空气将亚硫酸铵强制氧化为硫酸铵。氧化槽中硫酸铵溶液自流入母液罐中,与结晶机分离出的母液相混合,经母液泵送入脱硫塔浓缩段,经硫铵泵在浓缩段进行自循环,与烟气进行热交换提浓,当达到一定浓度后,经结晶泵打入到厂房内的结晶罐中,结晶罐内下部的稠厚体进入离心机经离心机分离得到固态硫酸铵产品。 3.调试过程中存在的问题及改造措施 3.1脱硫塔升气帽漏液 由于设计中脱硫塔内升气帽的结构设计不合理,运行过程中脱硫段的脱硫液通过升气帽向浓缩段漏液,经过与设计单位沟通,将升气帽的结构进行改造,增大了升气帽防水面积,提高了烟气的局部流速,使脱硫液不会通过升气帽进入浓缩段,消除了漏液现象。3.2氧化过程不充分 氧化过程原设计为曝气氧化,参加反应的氧气不足,造成氧化率低,氧化反应不充分。经与设计院协商,将氧化槽改为喷射器自吸空气强制氧化装置,同时在脱硫塔的浓缩段新增一级曝气氧化,从而提高了氧化率,增强了氧化效果。3.3仪表设施不全 3.3.1原设计脱硫塔浓缩段液位计是通过曝气风压转换为浓缩液的液位,当脱硫塔浓缩段溶液密度增大时,风压会随之增大,转化的浓缩液液位值也会增大,但实际液位并未增大,造成指示误差。后经改造,增加了一个双法兰差压式液位计作为参考液位,以免影响正常操作。 3.3.2原设计整套系统所有设备只能通过PLC 系统进行操作,无现场操作柱,导致现场发现问题后不能及时操作,存在安全隐患。后经改造,在生产现场增加了一套电气操作柱,既方便了操作,又解决了安全问题。 3.3.3在脱硫塔入口增加了SO 2、烟尘、烟气流量的在线监测设备,以方便调整装置负荷及监测脱硫效率。 4.运行中注意事项 4.1锅炉除尘必须严格管理 设计要求入脱硫系统的锅炉烟气粉尘含量不大于50mg/m 3,否则会直接影响脱硫装置的运行。含飞灰的烟气通过脱硫塔,会增加浓缩液密度,增大出料难度,造成结晶管线、溶液系统管线和喷头的堵塞,所以在运行过程中要严格控制粉尘含量。 4.2注意运行过程中的溶液浓度,防止结晶 根据设计的入塔烟气温度及浓缩塔溶液温度指标要求,出料浆液的比重应控制在1.27左右,如果比重过高,容易造成结晶,堵塞系统。 4.3对材质腐蚀加强监测 钢制脱硫塔的内壁衬有一层玻璃鳞片,具有防腐蚀作用,但这种玻璃鳞片极易脱落,一旦脱落,塔内壁的铁材质很容易被腐蚀,所以应定期检查,加强监测。 5.结语 氨法烟气脱硫技术不仅有效保障了我公司锅炉烟气中SO 2 达标排放的问题,而且把对大气造成严重污染的SO 2转化成有经济价值的化肥原料,与其他烟气脱硫工艺比较,具有良好的经济效益和社会效益。在解决了诸多技术问题以后,氨法烟气脱硫现在已经发展成为一种成熟的工业化技术,其投资费用低、运行简单等特点将成为越来越多企业的选择。 作者简介:牛琳(1986—),女,2009年毕业于中国矿业大学,助理工程师。

相关文档
最新文档