matlab频谱分析仪

matlab频谱分析仪
matlab频谱分析仪

频谱分析仪

摘要频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,是一种多用途的电子测量仪器。随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。本文介绍了一种使用GUI工具箱用matlab实现的简易虚拟频谱分析仪的设计方法。

关键词matlab,频谱分析仪,时域分析,频域分析

目录

1概述 (3)

2技术路线 (4)

3实现方法 (5)

3.1搭建GUI界面 (5)

3.2信号输入 (6)

3.2.1选择信号输入 (6)

3.2.2声卡输入 (7)

3.2.3读取wav文件 (7)

3.2.4信号发生器输入 (7)

3.3时域分析 (8)

3.4频域分析 (9)

3.5仿真 (10)

3.5.1声卡输入 (10)

3.5.2读取wav文件 (10)

3.5.3信号发生器 (11)

4存在的问题 (15)

5致谢...................................................................................................... 错误!未定义书签。参考文献 (15)

1概述

MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件。可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。MATLAB自带了强大的GUl工具[1]。在本文中,将利用MATLAB的GUI工具,设计出数字频谱分析仪。

频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫兹以下的甚低频到亚毫米波段的全部无线电频段的电信号[2]。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等[3]。本文将给出的则是通过MATLAB软件实现的基于FFT的数字频谱分析仪。

FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步[4]。

通过此次设计,能进一步掌握MATLAB软件开发过程的基本理论、基本知识和基本技能,熟悉基于MATLAB平台的若干信号处理系统开发及调试方法,且成本低,易于实现,容易修改,并可以进行仿真。该设计的进行可以为我们以后的学习工作奠定一定的基础。

2技术路线

本次设计的频谱分析仪模块划分如图1所示:

图1 频谱分析仪模块划分

3实现方法

3.1搭建GUI界面

此次设计搭建的GUI见面如图2所示:

图2 GUI界面

最上方为标题区,用于显示软件标题等信息。再往下是信号输入区,首先应输入采样频率和采样点。信号有3种输入方式,包括声卡输入,读取WAV文件和信号发生器输入。在信号发生器中加入了信号叠加选项,从而可以将产生的信号与原有的信号进行混迭。只有当某个单选框被选中时才允许使用对应的输入框、按钮等。

输入区右边为分析区,除了对wav文件进行播放外,还可以对信号进行时域分析和频域分析,该软件的核心代码都在这两个按钮的回调函数中。

再下方为分析结果区,用于显示波形基本参数与统计量的计算结果,

Axes1为波形显示区,在录音结束、打开WAV文件成功或者信号发生器生成波形时会更新显示。Axes2为频谱图显示区,用于显示各种频谱的谱线,在点击频域分析后会更新显示。点击频谱类型可以显示不同的频谱图。本次设计提供了幅频特性分析和相频特性分析。

3.2信号输入

3.2.1选择信号输入

开始使用频谱分析仪时,除了需要设定采样频率和采样点数外,还需要选择信号输入方式,本次设计提供三种输入,分别是:声卡录音,读取wav文件和信号发生器。其代码如下(仅以选择声卡输入为例):

function record_Callback(hObject, eventdata, handles)

set(handles.record,'value',1);

set(handles.wavfile,'value',0);

set(handles.wave,'value',0);

h=findobj('Tag','recordtime');

set(h,'enable','on');

h=findobj('Tag','startrecord');

set(h,'enable','on');

h=findobj('Tag','wavname');

set(h,'enable','off');

h=findobj('Tag','openfile');

set(h,'enable','off');

h=findobj('Tag','inwave');

set(h,'enable','off');

h=findobj('Tag','inamp');

set(h,'enable','off');

h=findobj('Tag','infre');

set(h,'enable','off');

h=findobj('Tag','inpha');

set(h,'enable','off');

h=findobj('Tag','mix');

set(h,'enable','off');

h=findobj('Tag','wavemake');

set(h,'enable','off');

当选择了一种输入方式之后,另外两种输入方式将不能使用。

3.2.2声卡输入

这里声卡输入是指由麦克风录音得到的声音信号的输入,MATLAB提供了wavrecord函数,该函数能够实现读取麦克风录音信号。

声卡输入的主要代码如下所示[5]:

function startrecord_Callback(hObject, eventdata, handles)

Fs=str2double(get(handles.samplefre,'String'));

N=str2double(get(handles.recordtime,'String'))*Fs;

handles.y=wavrecord(N, Fs,'double');

handles.inputtype=1;

guidata(hObject,handles);

plot(handles.axes1,handles.y);

ysize=size(handles.y);

set(handles.samplenum,'String',num2str(ysize(1)));

3.2.3读取wav文件

MATLAB提供了wavread函数,该函数能够方便的打开并读取WAV文件中的声音信息。其代码如下:

function openfile_Callback(hObject, eventdata, handles)

[filename,filepath]=uigetfile('*.wav','wavfile');

set(handles.wavname,'string',filename);

[handles.y,Fs,bit]=wavread(filename);

handles.inputtype=2;

guidata(hObject,handles);

plot(handles.axes1,(1:length(handles.y))/Fs,handles.y);

ysize=size(handles.y);

set(handles.samplenum,'String',num2str(ysize(1)));

set(handles.samplefre,'string',Fs);

3.2.4信号发生器输入

MATLAB可以产生标准信号,如sin能够产生正弦波,首先利用get函数获得波形,频率f,幅值a和相位p,然后判断是否有信号叠加,若无叠加,则直接生成信号波形,如有叠加,则进行信号混叠。

function wavemake_Callback(hObject, eventdata, handles)

Fs=str2double(get(handles.samplefre,'String'));

N=str2double(get(handles.samplenum,'String'));

x=linspace(0,N/Fs,N);

t=get(handles.inwave,'Value');

f=str2double(get(handles.infre,'String'));

a=str2double(get(handles.inamp,'String'));

p=str2double(get(handles.inpha,'String'));

switch t

case 1

y=a*sin(2*pi*x*f+p);

case 2

y=a*sign(sin(2*pi*x*f+p));

case 3

y=a*sawtooth(2*pi*x*f+p,0.5);

case 4

y=a*sawtooth(2*pi*x*f+p);

case 5

y=a*(2*rand(size(x))-1);

end

if get(handles.mix,'Value')==0.0

handles.y=y;

else

handles.y=handles.y+y;

end

handles.inputtype=3;

guidata(hObject,handles);

plot(handles.axes1,handles.y);

xlim([0 200]);

3.3时域分析

时域分析直接在时间域内对系统动态过程进行研究的方法。根据输出量的时域表达式,可以分析系统的稳定性、瞬态和稳态性能。该设计中,时域分析包括峰峰值、均值、均方值、方差的计算。MATLAB提供了mean,std等函数,能够方便地计算均值、方差。主要设计代码如下:

function pushbutton3_Callback(hObject, eventdata, handles)

Fs=str2double(get(handles.samplefre,'String'));

N=str2double(get(handles.samplenum,'String'));

set(handles.VPP,'String',(max(handles.y)-min(handles.y)));

set(handles.ave,'String',mean(handles.y));

set(handles.RMS,'String',mean(handles.y.^2));

set(handles.var,'String',std(handles.y)^2);

3.4频域分析

频域分析包括幅值谱、相位谱等的计算,结果以图形显示出来。频域分析需要作Fourier变换,MATLAB提供了fft函数,能够方便地实现快速Fourier变换算法。本次设计中,除了能从图形看出频率,幅值等信息,也可以用坐标捕获来获取坐标值。主要代码如下:

%频域分析代码[6]:

function pushbutton4_Callback(hObject, eventdata, handles)

Fs=str2double(get(handles.samplefre,'String'));

N=str2double(get(handles.samplenum,'String'));

sample=handles.y;

f=linspace(0,Fs/2,N/2);

P=2*fft(sample,N)/N;

Pyy=sqrt(P.* conj(P));

a=get(handles.popupmenu1,'Value');

switch a

case 1

plot(handles.axes2,f,Pyy(1:N/2));

case 2

plot(handles.axes2,f,angle(P(1:N/2)));

case 3

plot(handles.axes2,f,real(P(1:N/2)));

case 4

plot(handles.axes2,f,imag(P(1:N/2)));

case 5

plot(handles.axes2,f,abs(P(1:N/2)).^2);

end

%坐标捕获代码:

function pushbutton5_Callback(hObject, eventdata, handles)

[xaxis,yaxis]=ginput(1);

set(handles.amp,'string',xaxis);

set(handles.phase,'string',yaxis);

3.5仿真

3.5.1声卡输入

选择录音,设定录音时间,点击开始录音按钮进行录音,录音完成后将在图形区axes1内显示波形,对其进行频谱分析,结果如图3所示:

图3 声卡输入

3.5.2读取wav文件

选择wav文件,对其进行频域分析(仅以幅频特性为例),结果如图4所示:

图4 wav文件幅频特性

3.5.3信号发生器

设置波形,幅值,频率,相位等信息,生成波形,并对其进行时域分析和频域分析,通过坐标获取获得峰值坐标。

对幅值为13,频率500,相位10的正弦波进行幅频特性分析结果如图5所

示:

图5 正弦信号幅频特性

将幅值23,频率330,相位10的正弦波和幅值15,频率500,相位30的方波进行叠

加,相频特性如图6所示:

图6 叠加信号相频特性

对幅值为24,频率400,相位0的正弦信号频谱分析,结果如图7所示:

图7 正弦信号相频特性

其他特性分析结果如图8—10所示:

图8 三角波实频特性

图9 锯齿波虚频特性

图10 白噪声功率谱

4存在的问题

本次设计虽然基本实现了频谱分析仪的要求,但是还是存在一些不足。比如未实现加窗功能,坐标捕获所得的峰值坐标不够精确等。对于加窗,我进行了尝试,但是因为知识所限,时间较短,最后以失败告终。在后面的学习中,有机会将进行研究。

参考文献

[1]. 张志涌等.精通MATLAB [M].北京:北京航空航天大学出版社,2003.

[2]. https://www.360docs.net/doc/0011953337.html,/view/421901.htm

[3]. 基于MATLAB的声音信号频谱分析仪设计.

https://www.360docs.net/doc/0011953337.html,/view/96c1b81da300a6c30c229fae.html

[4]. https://www.360docs.net/doc/0011953337.html,/view/7562.htm#3

[5] 李亚微, 郭敏. 基于Matlab的音频数据采集系统. 语音技术,2007.03.

[6]. 胡成西. 基于MATLAB的信号分析仪器仿真. 青海师范大学学报, 2005.1.

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

手机原理与故障维修技巧与实例习题答案

《手机原理与故障维修技巧与实例》习题答案 思考与练习1 1、什么是通信?移动无线通信系统由什么构 成? 答通信是指信息的传递。 移动无线电通信系统由移动通信系统一般由移动台(MS)、基地站(BS)、移动业务交换中 心(MSC)、市话网(PSTN)、中继线等组成。 2、数字移动通信采用什么分区方式,为什么?答:数字移动通信是采用小区制方式,因为数字移动通信要求容纳更多的用户,需要提供数字化的信息服务。 3、越区切换在数字通信中有什么作用? 答越区切换的作用是在数字蜂窝移动通信 中,当移动台从一个小区移动到另一个小区时,为了保持继续正常通话,不至中断,需要进行 越区切换,即由移动服务交换中心(MSC)命令移 动台从一个小区的无线频道上的通话转接到另 —小区的无线频道上。 4、双频手机的两个频段的频率范围是多少? 5、双工间隔是指什么?移动通信的双工间隔 是多少?信道间隔是指什么?

6、手机中时钟的晶体类型有那些?时钟晶体 损坏将引起那些故障?主时钟晶体电路的构成有那些类型? 答手机的时钟晶体有开机时钟晶体和时间显示时间晶体。主时钟晶体损坏将引起不能开机或不能入网的故障。时间晶体损坏将引起不能显示时间的故障,有的手机时间晶体损坏也会引起手机不开机。主时晶体电路构成有现两种,即MOTOROLA、ERICSSON基本采用26MHz晶体、中频芯片中的正反馈放大器、变容二极管组成的,而SAMSUNG及NOKIA采用晶体及芯片构成的。这两种时钟信号振荡器的区别是:前者需要AFC控制信号加到中频电路外围变容二极管的负极上上,控制变容二极管的电压,从而改变电路的谐振频率,并且还需要振荡三极管、电感、电容来构成时钟振荡器电路;后者由中频电路、晶体、AFC控制信号构成,不需要外加振荡三极管、变容二极管等元件。 7、什么是APC电路?有何作用,试画出简图说明APC电路的控制过程?答 APC电路的作用是自动功率控制电路,控制手机的发射

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

matlab频谱分析仪

频谱分析仪 摘要频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,是一种多用途的电子测量仪器。随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。本文介绍了一种使用GUI工具箱用matlab实现的简易虚拟频谱分析仪的设计方法。 关键词matlab,频谱分析仪,时域分析,频域分析

目录 1概述 (3) 2技术路线 (4) 3实现方法 (5) 3.1搭建GUI界面 (5) 3.2信号输入 (6) 3.2.1选择信号输入 (6) 3.2.2声卡输入 (7) 3.2.3读取wav文件 (7) 3.2.4信号发生器输入 (7) 3.3时域分析 (8) 3.4频域分析 (9) 3.5仿真 (10) 3.5.1声卡输入 (10) 3.5.2读取wav文件 (10) 3.5.3信号发生器 (11) 4存在的问题 (15) 5致谢...................................................................................................... 错误!未定义书签。参考文献 (15)

1概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件。可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。图形用户界面(Graphical User Interface,简称GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。与早期计算机使用的命令行界面相比,图形界面对于用户来说在视觉上更易于接受。MATLAB自带了强大的GUl工具[1]。在本文中,将利用MATLAB的GUI工具,设计出数字频谱分析仪。 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫兹以下的甚低频到亚毫米波段的全部无线电频段的电信号[2]。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等[3]。本文将给出的则是通过MATLAB软件实现的基于FFT的数字频谱分析仪。 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步[4]。 通过此次设计,能进一步掌握MATLAB软件开发过程的基本理论、基本知识和基本技能,熟悉基于MATLAB平台的若干信号处理系统开发及调试方法,且成本低,易于实现,容易修改,并可以进行仿真。该设计的进行可以为我们以后的学习工作奠定一定的基础。

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

Lab1 Spectrum Analyzer频谱分析仪的使用

LAB # 1 – ANALYZING SIGNALS IN THE FREQUENCY DOMAIN INTRODUCTION You have probably connected various equipment to an oscilloscope in order to test various characteristics; if so, you know that the oscilloscope display shows the user a graph of amplitude (voltage) vs. time. Amplitude is on the vertical axis and time is on the horizontal axis. In telecommunications, when dealing with radio frequency (RF) waves, it is often beneficial to view signals in the frequency domain, rather than in the time domain. In the frequency domain, the vertical axis is still amplitude (usually power), but the horizontal axis is frequency instead of time. TIME DOMAIN: Amplitude vs. Time FREQUENCY DOMAIN: Amplitude vs. Frequency In this experiment, we will look at the characteristics of an RF signal using an oscilloscope (time domain) and using a spectrum analyzer (frequency domain). This will prepare you for future labs that deal with frequency-domain signals. MATERIALS & SETUP ? 1 MHz Signal Generator ? Oscilloscope ?HP Spectrum Analyzer ?BNC T-Connector ? Coaxial Cables ?RF adapters Fig. 1-1

频谱分析仪介绍

频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。 但需注意的是,频谱仪测量的是高频信号,其高灵敏度也就决定了,要注意被测信号的幅度范围,以免损坏高频头,在2.24uv-1V之间,超过其范围应另加相应的衰减器。 AT5010频谱分析仪频率范围在0.15~1000MHz(1G),其系列还有3G、8G、12G等产品。 AT5010频谱分析仪可同时测量多种(理论上是无数个)频率

及幅度,Y轴表示幅度,X轴表示频率,因此能直观的对信号的组成进行频率幅度和信号比较,这种多对比件的测量,示波器和频率计是无法完成的。 2.性能指标 (1)频率 频率范围:0.15—1050MHz 中心频率显示精度:士lOOkHz 频率显示分辨率:lOOkHz 扫频宽度:100kHz/格—100MHz/格 中频带宽(一3dB):400kHz和20kHz 扫描速度:43Hz (2)幅度 幅度范围:一100~+13dBm 屏幕显示范围:80dBm(10dB/格) 参考电平:一27-13dBm(每级10dB) 参考电平精度:±2dD 平均噪声电平:一99dBm (3)输入。 输入阻抗:50n 插座:BNC 衰减器:0~40dB 输入衰减精度:±1dDm

频谱分析仪和信号分析仪有什么区别呢

频谱分析仪:测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 信号分析仪:它一方面集成了频谱分析仪的功能,另一方面测量在仪器的中频带宽内输入信号在单一频率上的幅度和相位。测量信号更加丰富如振动信号、声学信号等。 频谱分析仪和信号分析仪这两个术语多数情况下可以相互使用。但用信号分析仪描述更贴切,可进行更全面的频域、时域和调制域信号分析。 我们通过比较两款典型的频谱分析仪和信号分析仪来更深入对定义的理解。 安捷伦Agilent35670a是一种有二通道或四通道(选件AY6)的FFT类型频谱分析仪。这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。 晶钻仪器CoCo-80X是新一代手持一体化的动态信号分析仪与数据采集仪。四至八个通道数,最高150dB的动态范围,102.4kHz的采样率,进行各类频谱分析、结构分析、倍频程分析与声级计、旋转机械阶次跟踪等。另外,它支持多种语言动态切换,有英语、中文、日文、法语和西班牙语。

从上面两款仪器比较我们可以了解,外观上台式频谱分析仪有20Kg,而手持式动态信号分析仪只有2Kg。信号分析仪从可操作性、便携性、功能上都具有明细的优越性。功能上来说,频谱分析仪主要对FFT频谱信息分析,起到信号调节的功能。而动态信号分析仪除了继承频谱分析功能外,增加了振动结构分析、声学分析、转子动力学分析等功能,这些功能都是在频谱分析功能基础上增加的分析功能。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

频谱仪使用

频谱分析仪系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectru m Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(R BW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RB W密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念. 频谱分析仪的使用 一、什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即 X轴表示频率,Y轴表示信号幅度。 二、原理:用窄带带通滤波器对信号进行选通。 三、主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。 四、测量机制: 1、把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载 波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。 2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如 DG、DP、CLDI、调制深度、频偏等。 五、操作: (一)硬键、软键和旋钮:这是仪器的基本操作手段。 1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显 示在屏幕上。 2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对 应于按键处显示什么,它就是什么按键。 3、其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USE R测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个B KSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗

第七章 无线电监测在无线电管理中的地位和作用

第七章无线电监测在无线电管理中的地位和作用 一、无线电监测在无线电管理中的地位和作用 1、无线电监测是无线电管理不可分割的一部分 现代化的无线电频谱管理是将行政和科学技术管理手段相结合,对无线电频率和空间卫星轨道资源实施科学、有效地管理。随着无线电通信业务的快速发展,有效地使用频谱资源已成为人类关注的主要问题。为此,世界各国都成立了专门机构,对频谱资源进行计划、指配和管理,其主要目的是既要保障通信业务的安全,不受干扰侵害,又要合理使用和开发频谱资源,提高频率的使用效率。 无线电管理是国家通过专门机构对无线电波和卫星轨道资源研究、开发、使用所实施的,以实现合理有效利用无线电频谱和卫星轨道资源的行为。 无线电管理的概念,实际上表达了四层含义: *无线电管理是一种国家行为。它是由国家所授权和特许的机关来实施的活动。 *无线电管理的对象是研究、开发、使用无线电波的各种活动。由于开发、使用、研究电磁波的活动是由具体的人使用设备达到的,所以无线电管理必然要涉及到人和设备。 *对开发、使用、研究无线电波和卫星轨道的活动所实施的这种管理,是通过计划、规划、组织、控制、协调、监督、执行等手段和方法来实现的。它贯穿于无线电管理的全部过程中。 这是无线电管理的职能,也是无线电管理工作的具体内容。表现为各级无线电管理机构对无线电台站的审批、频率指配、电波的监测、型号的核准、设备的管理、规章制度的制定和监督检查以及对用户的教育和服务等等。 *无线电管理的最终目的是保证合理、有效地利用无线电频谱和卫星轨道资源。要达到这一目标,就必须要用相应的管理机构和现代化的技术手段。 无线电管理的具体内容包括:

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

NPI阶段发现的重要性论述

【摘要】通常npi项目开展过程中,分为设计、试制、测试、维修能力的建立等过程。这里重点阐述了维修能力的建立方面,在维修分析过程中发现和反馈在新产品研发过程中起着极其重要的作用。对于一个新产品在投入量产之前,将会有几个版本的试制过程,如果能够在产品定型前期我们能够更早的发现设计缺陷,对整个设计的改进将会提供关键机会,避免一些缺陷带到后面的产品中,造成一次合格率不高,返工、返修等的浪费增加,给企业和客户带来不利影响。本文中的项目过程中,我们在b2阶段前就发现了几个关键问题并且通过采取相应的措施而得到解决,使得我们的一次通过率在b2时就达到90%以上,项目因此减少了一个版本的试制,节省了时间,减少投入约一千万,取得了很好的效果。 【关键词】npi 维修分析发现和反馈设计改进流程优化一次通过率 1 关于npi项目背景分析 我们有一个美国项目2013年4月可行性论证结束,开始投入npi的p3阶段即产品的原型设计的开始阶段。这个项目可谓是设计时间短,交货时间紧,而且是一个新的平台,成功了我们将获得后续的更多大单。不过这个项目所使用的部分关键器件供应商也处于npi阶段,这里面存在着巨大的风险和挑战,特别值得一提的是关键芯片--dfe芯片,它是由美国博通公司研发、设计、制造的,集成了同时实现4个通道60mhz至90mhz带宽的lte信号上行、下行数据的处理技术,它的成功与否将决定我们这个项目的成败。这个项目引起了全公司的高度重视。如果设计、试制过程中能越早发现问题越好,这样调整设计会有足够的时间,而且对于保证高质量和高合格率的产品的按期交货将起着重要作用,项目管理者特别关注维修分析团队这一部分,他们安排了最精干的有丰富维修分析经验的我们几个,排除一切干扰因素,让我们全身心的投入到这个项目中。经过全体相关同事的共同努力,最终我们这个项目成功的实现了各项性能指标的要求,而且取得了杭州研发自成立以来最成功的一个项目,试制过程中因为各项指标在b2时大大好于预期的结果,一次通过率达到了90%,项目决策层做出决定,这个项目减少计划中的b3版本的试生产,这一决定节约了研发、生产等环节资金约一千万。项目p7比计划也提前了一个月完成,得到了公司管理层的高度赞扬和肯定,满足了客户的要求,客户因此也增加了订单,其它国家也跟随下了订单,为公司取得了好的效益。 2 npi阶段发现和反馈在项目中的重要性 这里给出了一些证据来论证我们做这个项目时的一些发现和反馈在项目进行过程中的重要性。 2.1 关于关键器件之一 dfe(digital front to end)器件,这个器件在开始b0.3阶段时统计约有26%的失效率发生,这一器件的故障现象首先是被我们发现的,因为这个器件它控制着4路上行和下行的信号,我们发现一旦有一个通道有任何异常情况,它就会被挂死。我们将这一发现的现象报告了杭州r&d团队,他们立即着手同博通公司研发团队一起在杭州实验室分析、研究(博通公司也很重视这一新品的开发和完善,专门派驻了3名精干力量驻扎在杭州),他们通过修改调整相关参数,检查链路的工作情况,展开各方面的验证工作,最后确认是器件的硬件链路缺陷。为了尽快解决这个问题,他们提出的解决方案是对生产的芯片增加ate(auto test environment)链路筛选步骤来保证供应给我们使用的器件质量。这一步骤使得我们的单板测试的一次通过率提高了百分之二十一个点(我们将这个问题及录入我们公司的gemini系统中,作为质量跟踪)。随着我们样本数量的增加以及指标要求的收紧和提高,新的故障也随之暴露出来,当工序环境温度变化过程中,dfe的结温有不同的变化,从而导致有四种毛刺现象(用频谱分析仪n9020捕捉到的图片,如图1)呈现在后续的生产过程中。我们及时的将这一现象反馈报告给研发团队,并且将更换下来的芯片返回到博通公司做功能分析,在美国博通公司实验室里我们送寄的芯片能够在他们那里复现,于是进一步的ate筛选步骤被增加到博通

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

周林频谱仪有效期多少年

周林频谱仪有效期多少年 只要有发热就可以一直放心使用。 【批准文号】粤食药管械(准)字2005第2260017号 【频谱范围】具有宽频谱特性,包括近、中、远红外,并延伸至毫米波段(微弱)。 【供电电压】220V~,50Hz~60Hz, 【辐射器件使用寿命】 >6000小时 【环境条件】环境温度-10~+40℃相对湿度≤85% 【功率】75~300W 【重量】1.6公斤 【生产企业】北京周林频谱科技有限公司委托周林生物频谱(深圳)有限公司 【周林频谱仪WS-301各部件名称】 1 辐射器件 2 反射板 3 金属网罩 4 保护罩 5 支架把手 6 电源开关 7 强弱开关 8 电源接线盒 9 电源线及插头 10 电源指标 【周林频谱仪WS-301作用原理】 WS系列频谱保健治疗仪是电磁波辐射理疗仪器,具有宽频谱特性,涉及可见光、红外线全频段(主能区),并延伸至微波范围(微弱)。仪器以直接照射方式作用于人体,产生有益的生理、生化反应,达到保健治疗效果。 【周林频谱仪WS-301适用范围】 1 保健: 2 妇女:促进女性激素的分泌,改善皮肤微循环,具有美容效果。 3 老年人:改善微循环,提高机体免疫能力,调节神经和内分泌功能,具有防病和抗衰老作用。 4 儿童:提高儿童对疾病的免疫能力,增进营养的吸收和消化。 5 青壮年:促进代谢,促使精力充沛,减轻疲劳。 6 治疗:具有促进血液循环、消炎、镇痛、改善神经系统功能等作用。对支气管炎、骨关节病、伤口愈合不良、慢性盆 腔炎、慢性胃炎、带状疱疹、冻疮等有治疗或辅助治疗效果。 【周林频谱仪WS-301使用指南】 1 依据使用要求,参照本手册中《使用参考表及穴区图》进行照射,穴区可依序选择。 2 使用时照射头应直接面对患部,该部位应完全裸露,但要避免风吹受凉;对非照射部位注意保暖,照射后立即穿好衣服。 3 照射距离一般为10~20厘米,以患部感觉温和、舒适为宜(皮肤表面处可为38~46℃) 4 通常一日照射一次(也可多次),每次照射时间一般不少于30分钟,深部病灶可适当延长时间。通常七天为一疗程,

频谱能量屋(简称频谱屋)

频谱能量屋(简称频谱屋)是一种采用生物频谱技术(BST)新型桑拿保健治疗设备,是适合人类健康生活需要的高科技产品。 频谱能量屋(频谱屋)概述 频谱能量屋的设计集频谱仪和传统桑拿优点,屋内的大面积频谱发生器具有宽频带电磁波特性,主能量区在远红外频谱段并延伸至毫米波(微弱),在有限的空间内提供立体的模拟人体生物谱的安全照射,通过其对人体组织的作用,双向调节人体生理功能,促进血液循环,改善微循环,促进新陈代谢,改善神经系统功能,提高机体免疫力,使人体在排汗的同时,排出体内有害物质,从而达到康复保健、治疗疾病、美肤养颜目的。 频谱保健治疗屋(简称频谱屋)具有促进血液循环,改善血液流变性,促进新陈代谢,改善神经系统功能,提高机体免疫能力的作用。老年人:改善微循环,提高机体免疫能力,调节神经和内分泌功能,具有防病和抗衰老作用;妇女:促进女性激素的分泌,改善皮肤微循环,具有美容美体的效果;儿童:提高儿童对疾病的免疫能力,增强营养的吸收和消化;青壮年:促进代谢,促使精力充沛,减轻疲劳。 大量信息表明,现代人亚健康已经理我们越来越近,生活的压力,工作的压力,环境因素,都在无时不刻影响着我们的身心健康,大量科学研究证明,红外线是在所有太阳光中最能够深入皮肤和皮下组织的一种射线。由于远红外线与人体内细胞分子的振动频率接近,“生命光波”渗入体内之后,便会引起人体细胞的原子和分子的共振,透过共鸣吸收,分子之间摩擦生热形成热反应,促使皮下深层温度上升,并使微血管扩张,加速血液循环,有利于清除血管囤积物及体内有害物质,将妨害新陈代谢的障碍清除,重新使组织复活,促进酵素生成,达到活化组织细胞、防止老化、强化免疫系统的目的。所以远红外线对于血液循环和微循环障碍引起的多种疾病均具有改善和防治作用。华经频谱屋正是利用远红外线这一点,精巧的运用在房体内部,另起具有神奇的保健功效。 主要优点 1.大面积平板式频谱发生器,立体照射,集治疗保健于一体。 2. 温度可调节,40-75℃的温度给人轻松感受。 3.非密闭式,不会导致人体缺氧,无气闷感觉。体积小,耗能低,安全可靠。 4.安装方便,操作简单,除医院、宾馆、SPA会所,洗浴中心等专业场所外,也适合家庭使用。辐射率>0.9达到国际水平;可发射出 5.6~15um波长的远红外线. 5.节能显著,可省电30~50%;使用寿命>10000h,绝缘性好,不产生明火,安全可靠。 频谱能量屋的木材选择 铁杉:产自加拿大,木材坚硬,纹路优美,耐腐蚀性强,木材发出的芳香物质可以镇定神经的作用,对治疗鼻膜炎以及支气管炎有一定的功效,还能帮助身体排除多余水分。 红雪松:产地为美国西部及加拿大,是北美等级最高的防腐木材,无需防腐和压力处理,稳定性极佳,不受昆虫及真菌、白蚁的侵袭和腐蚀,使用期限长,不易变形。隔音隔热效果佳。 频谱能量屋的主要加热材料 远红外纯陶瓷加热管:具有高效能、高强度,更安全和超常使用寿命的特点,纯陶瓷管体发出的远红外线生物频谱很接近于人体自身的光波,更易被吸收。 频谱能量屋(频谱屋)的主要功效 1、排毒远红外线能够良好的刺激汗腺,排除毒素和体内有害物质,如酒精,尼古丁和一些致癌性重金属。 2、减压远红外线可以放松肌肉,舒缓肌体 3、美容远红外线加速血液循环,促进新陈代谢,清除坏死细胞,帮你减少由于岁月积累而产生的细纹,使您的肌肤光滑、红润、细嫩 4、减肥瘦身脂肪在42度时水溶性增加,出汗可以消耗皮下多余脂肪,人体通过排汗起到减肥,

相关文档
最新文档