直线电机资料20110302

直线电机资料20110302
直线电机资料20110302

直线电机基础

编辑本段直线电机也称线性电机,线性马达,直线马达

在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同.

最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流.

该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。

直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。

直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。

直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。

相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。

编辑本段圆柱形动磁体直线电机

圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

的,使用霍尔装置实现无刷换相。推力线圈是圆柱形的,沿磁棒上下运动。这种结构不适合对磁通泄漏敏感的应用。必须小心操作保证手指不卡在磁棒和有吸引力的侧面之间。

管状直线电机设计的一个潜在的问题出现在,当行程增加,由于电机是完全圆柱的而且沿着磁棒上下运动,唯一的支撑点在两端。保证磁棒的径向偏差不至于导致磁体接触推力线圈的长度总会有限制。

编辑本段U 型槽式直线电机

U 型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害。

这种设计的磁轨允许组合以增加行程长度,只局限于线缆管理系统可操作的长度,编码器的长度,和机械构造的大而平的结构的能力。

编辑本段平板直线电机

有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选择时需要根据对应用要求的理解。

无槽无铁芯平板电机是一系列coils安装在一个铝板上。由于FOCER 没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨具有高的磁通泄露。所以需要谨慎操作以防操作者受他们之间和其他被吸材料之间的磁力吸引而受到伤害。

无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸力和电机产生的推力成正比,迭片结构导致接头力产生。把动子安装到磁轨上时必须小心以免他们之间的吸力造成伤害。无槽有铁芯比无槽无铁芯电机有更大的推力。

有槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。

编辑本段小结

在实用的的和买的起的直线电机出现以前,所有直线运动不得不从旋转机械通过使用滚珠或滚柱丝杠或带或滑轮转换而来。对许多应用,如遇到大负载而且驱动轴是竖直面的。这些方法仍然是最好的。然而,直线电机比机械系统比有很多独特的优势,如非常高速和非常低速,高加速度,几乎零维护(无接触零件),高精度,无空回。完成直线运动只需电机无需齿轮,联轴器或滑轮,对很多应用来说很有意义的,把那些不必要的,减低性能和缩短机械寿命的零件去掉了。

编辑本段优点

(1)结构简单。管型直线电机不需要经过中间转换机构而直接产生直线运动,使结构大大简化,运动惯量减少,动态响应性能和定位精度大大提高;同时也提高了可靠性,节约了成本,使制造和维护更加简便。它的初次级可以直接成为机构的一部分,这种独特的结合使得这种优势进一步体现出来。

(2)适合高速直线运动。因为不存在离心力的约束,普通材料亦可以达到较高的速度。而且如果初、次级间用气垫或磁垫保存间隙,运动时无机械接触,因而运动部分也就无摩擦和噪声。这样,传动零部件没有磨损,可大大减小机械损耗,避免拖缆、钢索、齿轮与皮带轮等所造成的噪声,从而提高整体效率。

(3)初级绕组利用率高。在管型直线感应电机中,初级绕组是饼式的,没有端部绕组,因而绕组利用率高。

(4)无横向边缘效应。横向效应是指由于横向开断造成的边界处磁场的削弱,而圆筒型直线电机横向无开断,所以磁场沿周向均匀分布。

(5)容易克服单边磁拉力问题。径向拉力互相抵消,基本不存在单边磁拉力的问题。

(6)易于调节和控制。通过调节电压或频率,或更换次级材料,可以得到不同的速度、电磁推力,适用于低速往复运行场合。

(7)适应性强。直线电机的初级铁芯可以用环氧树脂封成整体,具有较好的防腐、防潮性能,便于在潮湿、粉尘和有害气体的环境中使用;而且可以设计成多种结构形式,满足不同情况的需要。

编辑本段工作原理

直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成。

由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。对直线电机控制技术的研究基本上可以分为三个方面:一是传统控制技术,二是现代控制技术,三是智能控制技术。传统的控制技术如PID反馈控制、解耦控制等在交流伺服系统中得到了广泛的应用。其中PID控制蕴涵动态控制过程中的过去、现在和未来的信息,而且配置几乎为最优,具有较强的鲁棒性,是交流伺服电机驱动系统中最基本的控制方式。为了提高控制效果,往往采用解耦控制和矢量控制技术。在对象模型确定、不变化且是线性的以及操作条件、运行环境是确定不变的条件下,采用传统控制技术是简单有效的。但是在高精度微进给的高性能场合,就必须考虑对象结构与参数的变化。各种非线性的影响,运行环境的改变及环境干扰等时变和不确定因数,才能得到满意的控制效果。因此,现代控制技术在直线伺服电机控制的研究中引起了很大的重视。常用控制方法有:自适应控制、滑模变结构控制、鲁棒控制及智能控制。近年来模糊逻辑控制、神经网络控制等智能控制方法也被引入直线电动机驱动系统的控制中。目前主要是将模糊逻辑、神经网络与PID、H∞控制等现有的成熟的控制方法相结合,取长补短,以获得更好的控制性能。

直线电机在数控机床中的应用

一、引言

数控机床正在向精密、高速、复合、智能、环保的方向发展。精密和高速加工对传动及其控制提出了更高的要求,更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。问题的症结在传统的传动链从作为动力源的电动机到工作部件要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节,在些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直

接传动”概念变为现实,并日益显示其巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机床性能有了新的飞跃。

二、直线电机进给驱动的主要优点

进给速度范围宽。可从1(1)m/s到20m/min以上,目前加工中心的快进速度已达208m/min,而传统机床快进速度<60m/min,一般为20~

30m/min。

速度特性好。速度偏差可达(1)0.01%以下。

加速度大。直线电机最大加速度可达30g,目前加工中心的进给加速度已达3.24g,激光加工机的进给加速度已达5g,而传统机床进给加速度在1g以下,一般为0.3g。

定位精度高。采用光栅闭环控制,定位精度可达0.1~0.01(1)m。应用前馈控制的直线电机驱动系统可减少跟踪误差200倍以上。由于运动部件的动态特性好,响应灵敏,加上插补控制的精细化,可实现纳米级控制。

行程不受限制。传统的丝杠传动受丝杠制造工艺限制,一般4~6m,更的行程需要接长丝杠,无论从制造工艺还是在性能上都不理想。而采用直线电机驱动,定子可无限加长,且制造工艺简单,已有大型高速加工中心X 轴长达40m以上。

结构简单、运动平稳、噪声小,运动部件摩擦小、磨损小、使用寿命长、安全可靠。

三、直线电机及其驱动控制技术的进展

直线电机与普通电机在原理上类似,它只是电机圆柱面的展开,其种类与传统电机相同,例如:直流直线电机,交流永磁同步直线电机,交流感应异步直线电机,步进直线电机等。

作为可控制运动精度的直线伺服电机在上世纪80年代末出现后,随着材料(如永磁材料)、功率器件、控制技术及传感技术的发展,直线伺服电机的性能不断提高,成本日益下降,为其广泛的应用创造了条件。

近年来,直线电机及其驱动控制技术的进展表现在以下方面:(1)性能不断提高(如推力、速度、加速度、分辨率等);(2)体积减小,温升降低;(3)品种复盖面广,可满足不同类型机床的要求;(4)成本大幅度下降;(5)安装和防护简便;(6)可靠性好;(7)包括数控系统在内的配套技术日趋完善;(8)商品化程度高。

目前世界上直线伺服电机及其驱动系统的知名供应商主要有:德Siemens公司,Indramat公司;日本FANUC,三菱公司;美国Anorad,科尔摩根公司;瑞士ETEL公司等。

具有代表性的直线电机产品的技术指标:

FANUC L17000C3/2is;最大推力17000N;连续推力3400N(自然冷)/4080N(气冷)/6800(水冷);最大速度240m/min(4m/s);最大加速度30g;分辨率0.01(1)m。

Siemens 1FN3:最大推力20700N;连续推力8100N(水冷);最大速度253m/min。

在控制系统方面,Siemens、FANUC等系统供应商都可提供与直线电机控制相对应的控制软件和接口。由于欧洲机床上应用直线电机较多,因此采用Siemens系统(如8l0D,840D)最多。

中国科学院电工所、浙江大学、沈阳工业大学等对直线电机开展了多年研究,江苏、哈尔滨、广东等一些公司已有小功率直线电机产品。

清华大学在“十五”攻关项目中研制成功交流永磁同步直线电机及其伺服系统,其最大运动速度60m/min,最大加速度5g,最大推力5000N,目前已与江苏瑞安特公司开始合作生产。

四、直线电机进给驱动在机床上的应用情况

表1 直线电机驱动的国产机床部分典型产品机床类型型号厂商主要特点

电火花成形机床 GV754L 北京机床研究所快进速度24m/min

加速度1.5g

立式加工中心 VS1250 北京机电院高技术

股份公司 X/Y轴直线电机,

快进80/120m/min

加速度0.8/1.5g

立式加工中心 XH716/5X-SM 江苏多棱数控机床有限责任公司 X轴直

线电机

车铣中心沈阳机床集团 X轴直线电机,

快进60m/min

活塞车床 G-CNCP200 清华大学 X轴直线电机

凸轮磨床北京航空航天大学头架驱动用直线电机,

精度提高,无振纹

自1993年德国Ex-Cell-O公司研发出世界上第一台直线电机驱动工作台的加工中心以来,直线电机已在不同种类的机床上得到应用。2001年、2003年欧洲机床展,2002年、2004年日本机床展及美国机床展上每次都有几十家公司的展品采用直线电机驱动系统。以2002年日本机床展JIMTOF

为例,在展的524台数控机床中,有25家公司41台机床采用直线电机进给驱动[3>,其中,加工中心11台(立式8台,卧式3台),电加工机床7台(线切割4台,成形机2台,小孔机1台),磨床6台(一般磨床4台,齿轮磨床1台,坐标磨床1台),非球面加工机和微型微细加工机5台,

车床4台,专用机床3台,激光加工机2台,车磨复合机床1台,铣削加工单元(FMC)l台。

目前,世界上最知名的机床厂家几乎无一例外地都推出了直线电机驱动的机床产品,品种覆盖了绝大多数机床类型。此外,在压力机、坐标测量机、水切割机、等离子切割机、快速原型机及半导体设备的X-Y工作台上直线电机都有应用。

此外,浙江大学直线电机与现代驱动研究所开发了直线电机驱动的压力机、锯床、雕刻机、线切割机床。

北京机电院高技术股份有限公司承担的“十五”攻关项目《直线电机驱动的高速立式加工中心》,于2003年研制成功国内第一台直线电机驱动的加工中心,并在2003年北京国际机床展览会展出。该机床X/Y轴采用直线电机驱动,行程分别为1250/630mm,最大快移速度80/120m/min,最大加速度O.8/1.5g。机床在设计中对减轻运动部件质量、加强机床刚性、解决高速高加速运动下的抗冲击性、直线电机的防护,以及控制系统、伺服系统与直线电机的匹配和优化调试等方面做了有益的探索并取得了成功。为解决处于工作台下方的Y轴直线电机的防护问题,设计了密封的直线驱动轴部件,并获得了国家专利。经测定,该机床精度达到精密级加工中心标准,并有充分裕量。一年多来该机床工作稳定可靠。课题组还对直线电机初级线圈与次级磁铁(定子)的温升进行了试验。以X轴为例:X轴运动部件质量>1000kg,加速度设定为O.8g,快移速度设定为70m/min,连续往复运动1小时以上。试验结果:10分钟后初级线圈(水冷)温升趋于平衡,工作温度稳定在69℃左右,远远低于允许工作温度(12℃)。电机次级磁铁温升约2℃。可见直线电机初级线圈与次级磁铁(定子)的温升对机床的热影响有限,可通过补偿消除。

五、发展趋势

技术日益成熟

直线电机及其驱动控制系统在技术上已日趋成熟,已具有传统传动装置无法比拟的优越性能。过去们所担心的直线电机推力小、体积大、温升高、可靠性差、不安全、难安装、难防护等问题,随着电机制造技术的改进,已不再是大问题。而驱动与控制技术的发展又为其性能拓展和安全性提供了保证。选择合适的直线电机及驱动控制系统,配以合理的机床设计,完全可以生产出高性能、高可靠性的机床。现在直线电机驱动进给速度

100m/min,加速度1~2g的机床已很普遍,已有机床达到快进240m/min,加速度5g的指标(日本AMADA激光切割机)。日本Mazak公司宣称,该公司将在近期推出快移速度500m/min,加速度6g,主轴速度80000r/min切削速度8马赫的超音速加工中心。高速度高加速度的传动已在加工中心、数控铣床、车床、磨床、复合加工机床、激光加工机床及重型机床上得到广泛应用,这类机床在航空、汽车、模具、能源、通用机械等领域发挥着

特殊的作用。在电加工机床上采用直线电机驱动可实现0.1(1)m的精密平稳移动。在微细加工及精密磨削中,可实现10um进给分辨率及20m/min 的快移速度,加工表面粗糙度<1nm。在重型机床上采用直线电机驱数吨重的运动部件已不成问题。同步双驱动控制技术已成熟应用。这些都说明直线电机及其驱动控制技术在机床上的应用已经成熟,并在不断向前发展,会给人们带来更多的惊喜。此外,在国际上已有不同类型、不同规格的直线电机商品可提供,配套的驱动控制系统、检测装置及高速导轨、高速防护也都有相应产品供货。

成本不断下降,性能价格比更好

近年来,直线电机系统成本不断下降,在机床成本中的比重明显下降。DMG公司的DMC64V linear加工中心(X轴采用直线电机驱动),国内报价仅61.4万元人民币。但目前采用直线电机驱动仍比传统的传动装置价格要高。因此,直线电机的应用应着眼于高性能机床,特别是精密高速加工机床、特种加工机床、大型机床,解决传统传动方法不能解决的问题。另外,提高加工精度和加工效率也会提升机床的价值。例如,美国Gincin-nati公司的HYPCR MACH高速加工中心,X轴长达46m,采用直线电机驱动后,加工大型薄壁飞机零件,用传统方法加工一件要8小时,而用该机床只需30分钟。DMG公司介绍其采用直线电机驱动的DMC、CTX、GMC、GMX系列产品生产效率可提高20%。据意大利JOBS公司介绍,该公司生产的LinX 系列产品保证了龙门加工中心在长距离移动上的超高性能[4>,最大程度减少轴转换操作的无效时间,其德国用户采用LinX龙门加工中心(三轴均为直线电机驱动)加工模具,由于无效时间大为缩短等因素,加工效率比未采用直线电机的同类机床效率提高40%,而且由于传动部件无磨损,使用更可靠,运行费用更低。JOBS在生产LinX产品时采用直线电机的成本只增加百分之几,但由于性能提高,售价可增加15%~20%,机床利润率明显增加。

产业化趋势明显

直线电机在机床上的应用已不是样品,不是个例。近几年已在几十家著名企业的几十类产品上推广应用。据有关资料介绍,1997年直线电机驱动的机床销售量已达300台。2001年,德国DMG公司已在28种机型上采用直线电机,年产量达1500台(约3000多根直线电机驱动轴),占其总产量的1/3。意大利JOBS公司自1999年开发出LinX直线电机驱动的龙门加工中心后,2003年该公司LinX系列产品已占全公司总产量的60%(年产50台大型龙门加工中心和龙门铣床),并成为公司的主要利润来源。有专家预测,2005年直线电机驱动的机床将达到3000台,到2010年世界上将有20%的数控机床采用直线电机进给驱动,而这些机床都是高档机床,因此其产业化前景是不言而喻的。

六、建议

我国在直线电机及驱动控制技术的研发、应用与世界水平相差甚远,至少有十年的差距。无论产品的性能、品种,还是在机床上的应用仅处于起步阶段,甚至大量是空白。如果我们不能抓住当前宏观经济形势大好,市场需求旺盛的机遇,在“十一五”期间加大投入,在直线电机及其驱动控制技术的开发与应用上奋起直追,我国的高档数控机床会更加落后,这将不利于我国的国家安全和产业安全。为此,建议在“十一五”规划中对直线电机及其驱动控制技术的开发与应用予以充分考虑。

在机床基础技术和关键技术研究中,研究直接传动技术应用

1)直线电机驱动的直线运动部件和力矩电机驱动的旋转部件的设计研究;2)高速、高加速度运动下机床刚性及抗冲击结构设计;3)吸振、抗振、隔热材料的应用(如聚合物混凝土);4)轻型材料(如碳素纤维)在运动部件中的应用;5)直线电机的安装工艺及防护;6)控制系统、直线电机驱动系统与机械部件的匹配及合理配置,运动部件的加速度、速度调整及运动特性的优化。

开发应用直线电机驱动的高档数控机床

在基础技术和关键技术研究基础上,开发应用直线电机驱动控制的高档数控机床及工艺装备,以满足高速精密复合加工的需求。鼓励机床企业将这类机床做为自己的工作母机,在实际应用中不断改进设计,探索加工工艺,向用户提供展示和服务,并推向市场,逐步实现产业化。

以上工作为少走弯路,可完全选购国际上先进、成熟的直线电机功能部件及其控制系统,以使整机尽快达到国际同类产品水平。

开发直线电机产品及相关技术

在数控技术及关键功能部件中,开发直线电机产品(包括相应的驱动系统)。数控技术中应开发与直线电机驱动控制相匹配的软件技术,例如高速及高加速条件下的伺服控制及其调整,高速、高精度的插补技术,复杂加工程序的前瞻控制能力,机床动态特性参数优化模型,故障诊断与保证功能等。同时,相应开发与高速高加速运动相配套的高速导轨、高速防护、高速位置检测装置等。

七、结束语

2006年即将开始“十一五”规划,从企业到行业,从地方到中央都在制定新的规划。就机床的发展而言,直线电机无论作为功能部件还是其相关技术在机床中的应用,都应该得到足够重视。企业和研究部门应根据自己的客观条件选择相关课题开展研究,从战略高度考虑发展直线电机及其驱动控制的机床产品,并逐步形成产业,占领高档数控机床的重要制高点。建议行业和政府相关规划中予以大力支持。

直线电机发展应用综述 (1)(1).

直线电机在数控机床上的应用综述 所在学院:机械工程学院 学科专业:机械工程 学生:解瑞建 学号:12847920 指导教师:董颖怀 天津科技大学机械工程学院 二零一二年十二月二十七日

摘要 简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。 关键词:直线电机数控机床驱动控制高速机床 0 引言 数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。 图0 SUPT Motion公司生产的一种直线电机

线性马达(直线电机)的工作原理

所谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初 级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子。 我们常说的磁悬浮,往往和直线电机(线性马达)驱动有着很大联系。磁浮运输系统通常采用“线性马达”也就是直线电机作为推进系统的。 线性马达的构成原理 设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(Short-stator Motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又 由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马 达”(Long-stator Motor)。 传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加, 行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突 破地面运输系统理论上最高速度每小时375公里的瓶颈。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等 国之高铁商业营运时速均不超过300公里。

因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬 浮”(Magnetic Levitation,简称“磁浮”Maglev) 的方式,使列车浮离车道行驶,以减少摩 擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进 能源使用之效率。另外采用“线性马达”(Linear Motor) 亦可加快该磁浮运输系统的速度, 因此使用线性马达的磁浮运输系统应运而生。 所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分 为“常电导磁石”(Permanent Magnets) 或“超导磁石”(Super Conducting Magnets, SCM)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由 于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用 通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。 因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬 浮”(Electrodynamic Suspension, EDS) 与“电磁悬浮”(Electromagnetic Suspension, EMS) 两种型态。电动悬浮 (EDS) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场 方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠 两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相 当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车 辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (EDS) 的系统,只能以“线性同步马达”(Linear Synchronous Motor, LSM) 作为推进系统,且其速度相对较慢 (约300kph)。 电动悬浮系统 (EDS) 与线性同步马达 (LSM) 的组合 电磁悬浮 (EMS) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之 电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两

直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二 1.综述 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。 2.工作原理 直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。 行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。因此直线电动机可实现往返直线运动。 3.直线电机的特点 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。 4.直线电机的应用

直线电机的发展及其在电梯行业的应用详细版

文件编号:GD/FS-7710 (安全管理范本系列) 直线电机的发展及其在电梯行业的应用详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

直线电机的发展及其在电梯行业的 应用详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机

蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成

直线电机原理

,提高系统精确度,所以得到广泛的应用。直线电动机的种类按结构形式可分为;单边扁平型、双边扁平型、圆盘型、圆筒型(或称为管型)等;按工作原理可分为:直流、异步、同步和步进等。下面仅对结构简单,使用方便,运行可靠的直线异步电动机做简要介绍。 直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。直线异步电动机的动子有三种形式: (1)磁性动子动子是由导磁材料制成(钢板),既起磁路作用,又作为笼型动子起导电作用。 (2)非磁性动子,动子是由非磁性材料(铜)制成,主要起导电作用,这种形式电动机的气隙较大,励磁电流及损耗大。 (3)动子导磁材料表面覆盖一层导电材料,导磁材料只作为磁路导磁作用;覆盖导电材料作笼型绕组。 因磁性动子的直线异步电动机结构简单,动子不仅作为导磁、导电体,甚至可以作为结构部件,其应用前景广阔。 直线异步电动机的工作原理和旋转式异步电动机一样,定子绕组与交流电源相连接,通以多相交流电流后,则在气隙中产生一个平稳的行波磁场(当旋转磁场半径很大时,就成了直线运动的行波磁场)。该磁场沿气隙作直线运动,同时,在动子导体中感应出电动势,并产生电流,这个电流与行波磁场相互作用产生异步推动 直线异步电动机主要用于功率较大场合的直线运动机构,如门自动开闭装置,起吊、传递和升降的机械设备,驱动车辆,尤其是用于高速和超速运输等。由于牵引力或推动力可直接产生,不需要中间连动部分,没有摩擦,无噪声,无转子发热,不受离心力影响等问题。因此,其应用将越来越广。直线同步电动机由于性能优越,应用场合与直线异步电动机相同,有取代趋势。直线步进电动机应用于数控绘图仪、记录仪、数控制图机、数控裁剪机、磁盘存储器、精密定位机构等设备中。

直线电机的发展及其在电梯行业的应用(正式版)

文件编号:TP-AR-L8349 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 直线电机的发展及其在电梯行业的应用(正式版)

直线电机的发展及其在电梯行业的 应用(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 直线电机可以不用借助任何中间转换结构把电能 转变成直线运动,与传统的方式相比,具有噪音低、 无磨损、无接触、结构简单、速度快、精度高等方面 的优点。基于此本文对直线电机的发展及其在电梯行 业的应用进行探讨,阐述了直线电机在电梯中驱动系 统、门机系统的应用前景,为工程技术人员对直线电 机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电 机进行工作,为了实现电梯门的开和关,需要借助一 些比较复杂的转动机构来把旋转运动的电机转变成直

线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在开发阶段

直线电机工艺的研究

直线电机装配工艺的研究与应用

摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。机床进给系统形成了直线电机直接驱动为主的发展方向。本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。 1.引言 近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。高速度、高加速度和高精度是现代伺服的要求及发展趋势。直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。 2.直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机

驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。由于该项技术为我厂首次试制,直线电机的装配应处在探索中。 CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。其结构如图1: 图1 1FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

直线电机的发展及其在电梯行业的应用通用范本

内部编号:AN-QP-HT103 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 直线电机的发展及其在电梯行业的应 用通用范本

直线电机的发展及其在电梯行业的应用 通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

直线电机与并联机床

直线电机与并联机床:机床技术创新典范 在全球经济陷入金融危机,并尚未摆脱其复杂影响的今天,人们对未来的发展进行了深入思考,我们将以什么样的姿态和面貌来迎接一个全新时代的到来呢?可以想见,危机过后,世界经济环境将发生巨大而深刻的变化,技术和产品的发展模式也将不再简单重复过去,我们必将造就一个以高新技术和创新成果为支撑的,以节能环保和低碳经济为主导的,绿色而高效的现代文明时代。 本届展会的主题是“以科技创新迎接后危机时代”,那么,现今的机床有哪些令人瞩目的共性、关键技术呢?记者注意到直线电机和并联机床。 直线电机:前途远大瓶颈仍存 日前,中国机床工具工业协会有关人士告诉记者:“直驱技术是行业发展的方向,也是国产机床的短板,在这个领域,德国和日本占尽先机。但是,我最近了解到,日本在直驱技术的开发上也遇到了难题,即大功率、大扭矩加工时无法解决散热问题。” 美国Ingersoll公司是知名的机床制造商,克莱斯勒汽车公司购买其6台HVM600卧式加工中心,用来生产高级汽车发动机汽缸盖。该机床主轴转速2万r/min,X/Y/Z三轴由GEFANUC的直线电机驱动。这6台加工中心每天生产300个汽缸盖,相当于11台非直线电机驱动的加工中心的生产量。 目前,世界上最知名的机床厂家几乎无一例外地都推出了直线电机驱动的机床产品,品种覆盖了绝大多数机床类型。 国内自1995年以来也开展了直线电机在机床上的应用研究,如广东工大研发的直线感应电机驱动的GD-3型高速数控机床进给单元,清华研究的长行程永磁直线伺服单元,北京机电院研发的直线电机驱动的加工中心,浙江大学研制的圆筒型直线电机驱动的并联机构坐标测量机和扁平永磁直线电机驱动的磨床,北京机床研究所研发的直线电机驱动的电火花成型机床,国防科大研发的活塞非圆切削中采用直线电机驱动刀具以及北航、南航与有关单位合作研发的机床等。此外,一些企业如杭州机床集团、江苏多棱数控机床股份有限公司、济南捷迈数控公司、深圳市大族激光科技股份有限公司、南京四开公司等也分别在平面磨床、

直线电机调整及参数设定

直线电机安调步骤 技术课:黄辉 一、方向判断 1、直线电机的正向判断: 1)线圈移动型(动力电缆的反方向为正向): 2)磁板移动型(动力电缆的同向为正向): 2、光栅尺的正向判断: 1)观察光栅尺主体标记(heidenhaim字样)的方法 2)通过位置画面观察 准备工作:修改参数2022=111,同时断开直线电机三相动力线 手动推动直线电机,POS画面显示坐标值增大的方向即为光栅尺的正向。 3、调整动力线相序 当上述直线电机的正向和光栅尺的正向不一致时,必须调整直线电机的动力线进行适应,以保证两者方向相同。步骤如下:

二、参数设定: 1、设定平台: 系统:31i+PANEL i 伺服软件版本:90E3 直线电机:Lis15000C2/3HV(磁板宽度60mm,水冷) 光栅尺:海德汉LC193F(分辨率0.01um),绝对光栅尺 系统检测单位:0.1um(1013#1=1:IS-C,可根据实际需要调整设定) 2、参数设定步骤: 设定步骤(1):电机初始化 1)初始化位:P2000#0=1 2)AMR设定:P2001=0 3)移动方向:P2022=111/-111(根据实际需要) 4)电机代码:P2020=391 5)直线电机有效位:P2010#2=1 设定步骤(2):伺服参数设定 1)速度脉冲数设定:P2023=3125/16/分辨率(um)=19531(可近似取整) 2)位置脉冲数设定:P2024=625/分辨率(um)=62500(超出32767) 故可设定P2024=6250,P2185=10 3)忽略a编码器断线报警:P2013#7=1 4)设定AMR变换系数:P2112和P2138 方法一:仅使用P2112的情况(当计算结果为整数时可使用) P2112=磁板长度(mm)/分辨率(um)=6000,P2138=0 方法二:两者均使用的情况(适用于任何情况): 磁板长度(mm)×1000/分辨率(um)=P2112×2P2138 计算得出:P2112=46875(超出32767),P2138=7 故最终设定:P2112=23438(四舍五入),P2138=8 5)设定柔性齿轮比:P2084和P2085 FFG=分辨率(um)/检测单位(um)=0.01/0.1=1/10 设定步骤(3):磁极位置检测(在进行该步骤前,先保证直线电机可以动作):1)磁极位置检测功能有效:P2213#7=1 2)AMR偏执有效:P2229#0=1 3)编写梯形图将G135的对应位强制为1,磁极位置检测开始 4)磁极位置检测完成之后,系统自动将偏置参数写入P2139 设定步骤(4):过热参数设定: 对于水冷型直线电机,需要修改如下参数(自冷型初始化设定即可) 1)OVC报警参数POVC1:P2062=32563 2)OVC报警参数POVC2:P2063=2557 3)OVC报警参数POVCLMT:P2065=7601 4)电流频率参数RTCURR:P2086=2029 5)停止时OVC倍率OVCSTP:P2161=140 设定步骤(5):绝对编码器设定 1)绝对编码器有效:P1815#5=1 2)绝对零点建立:P1815#4=1(需安装具体步骤和实际情况设定)

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机的发展及其在电梯行业的应用

直线电机的发展及其在电梯行业的应用 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在

开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成果,发表了一些比较系统的电机类著作和文章,极大的推进了直线电机的发展,同时也引起了广大研究人员对直线电机的重视。从1971年开始对直线电机进行了独立应用,在这个阶段,研究人员选择了出了适合直线电机使用的途径,各种各样的直线电机被广泛的推广,研究出了非常多的具有使用价值的产品,比如冲压机、空压机、煤机等。 1.2.近年来国内外对直线电机的研究情况 近年来,直线电机得到了迅速的发展,很多人都开始对直线电机进行研究。国际上很多公司也逐渐开始研发直线电机类的产品,比如日本的三井精机公司、美国的Koll-morgen公司、各国的Wesitinghouse 公司等等。各种各样质量良好的直线电机产品也出现在了人们的视野中。比如Indramat公司研究出了非常完整的直线电机系列,其中包含了封闭式异步直线电机和无罩壳异步直线电机。在直线电机的控制系统中设置了非常标准的接口,可以更好的保证各种景观改型的程序控制器和数字变换器相兼容。 我国对直线电机的研究发展比较晚,大概是从70年代发展起来的。不过在国外直线电机使用潮流的影响下,我国国内也出现了很多直线电机开发使用的单位,例如浙江大学、沈阳工业大学、浙江大学、西安交通大学等。我国第一个直线电机研究所在浙江大学诞生,并且此研究取得了非常不错的研究成果。目前我国在直线电机方面的研究成

直线电机安装

直线电机的安装目录: 一、直线电机的安装设计 1.1直线电机结构设计,强度与刚度 1.2 直线电机走线 1.3 Z 轴(垂直轴)刹车 1.4 防撞设计 1.5 直线电机防护设 二、安装工艺 2.1 直线电机安装尺寸和公差 2.2 直线电机装配方法 2.3 装配其它注意事项 2.4 光栅尺安装位置及安装座要求 2.5 光栅尺安装精度要求 2.6 光栅尺的防护 2.7 冷却系统

一、直线电机的安装设计 1.1直线电机结构设计,强度与刚度 直线电机、磁板的安装位置,应当尽量设计靠近运动结构的重心位置,以平衡运动时的推力。 直线电机与磁板之间持续存在较大的磁吸力,工作台、鞍座等设计时,必须考虑有足够的强度和刚度。同时,为避免移动部件过于笨重,应尽量考虑采用高强度的材质,以及多筋板结构。其它结构上提高刚度的办法有: 1上拱结构 2导轨等支撑点尽量靠近直线电机线圈 3机床的固定部分刚性尽可能高、移动部分的重量尽可能轻,因为直线电机对刚性和移动部分重量比旋转电机更敏感 1.2 直线电机走线 直线电机相对于旋转伺服电机的系统而言,由于其推进动力在移动部件上,所以走线较旋转伺服电机复杂,许多线缆都需要通过拖链来连接。 主要需要通过拖链的线缆有:线圈的动力线、线圈的冷却管路、光栅尺读数头的数据线(如果读数头设计在移动部件上)、导轨润滑油管路。这些走线均需要通过拖链连接,请务必在设计时详尽考虑。 1.3 Z 轴(垂直轴)刹车 直线电机应用在 Z轴(垂直轴)上时,由于重力的作用,在未通电时,或直线电机无力矩输出时,会发生掉落事故。必须设计 Z轴的刹车装置。为增加安全性,建议设计Z轴平衡装置(如机械配重、氮气平衡缸等)。 1.4 防撞设计

电机的历史与未来发展

电机的历史与未来发展 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

摘要 在现代社会中,电能是现代社会最主要的能源之一。在电能的生产、输送和使用等方面,电机起着重要的作用。从19世纪30年代法拉第发明了世界上第一台真正意义上的电机—法拉第圆盘发电机开始,到现在21世纪10年代,电机的发展已经经过了近200年的历史。从最初的直流电机到现在大热的超声电机,随着科学的进步,生产力的迅猛发展,电机更新换代的速度日益加快,应用范围也越来越广,遍及生产生活的各个领域。我国在电机方面起步比西方国家晚了100年,但研究发展速度很快,很多企业和高校也都有自己新的研究技术,与国外先进国家的差距在逐渐缩短。未来,相信电机的应用和发展将会更加环保,更加智能。 关键词:电机、历史、发展、中国电机发展、未来 1、电机的简介 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机主要包括发电机、变压器和电动机等类型。发电机是将其他形式的能源转换成电能的机械设备,电动机将电能转换成为机械能,用来驱动各种用途的生产机械。 在自然界各种能源中,电能具有大规模集中生产、远距离经济传输、智能化自动控制的突出特点,它不但成为人类生产和活动的主要能源,而且对近代人类文明的产生和发展起到了重要的推动作用。与此相呼应,作为电能生产、传输、使用和电能特性变化的核心装备,电机在现代社会所有行业和部门中也占据着越来越重要的地位。 纵观电机的发展,其应用范围不断扩大,使用要求不断提高,结构类型不断增多,理论研究也不断深入。特别是近30年来,随着电力电子技术和计算机技术的进步,尤其是超导技术的重大突破和新原理;新结构;新材料;新工艺;新方法的不断推动,电机发展更是呈现出勃勃生机,其前景是不可限量的。 2、电机的历史 直流电机发展史 1820年丹麦物理学家奥斯特发现了电流磁效应 随后安培通过总结电流在磁场中所受机械力的情况建立了安培定律

直线电机工作原理及其驱动技 术的 应用

直线电机工作原理及其驱动技术的应用 摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。 引言 随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。机床进给系统是高速机床的主要功能部件。而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。 1 直线电机及其驱动技术 现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。 电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。它们中有旋转的、直线的、磁浮的、电磁发射的等等。除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线电机结构示意图如下图所示。直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时问变化时,使气隙磁场按定向相序沿直线移动,这个气隙磁场称为行波磁场。当次级的感应电流和气隙磁场相互作用便产生了电磁推力,如果初级是固定不动的,次级就能沿着行波磁场运动的方向做直线运动。即可实现高速机床的直线电机直接驱动的进给方式,把直线电机的初级和次级分别直接安装在高速机床的工作台与床身上。由于这种进给传动方式的传动链缩短为0,被称为机床进给系统的“零传动”。 与“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min。(2)高加速度,可高达2g~10g。(3)定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0。最高定位精度可达0.1~0.01m。(4)

直线电机的发展及其在电梯行业的应用优选稿

直线电机的发展及其在电梯行业的应用 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

直线电机的发展及其在电梯行业的应用直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在开发阶段科

学家在直线电动机研究的基础上,取得了非常大的研究成果,发表了一些比较系统的电机类着作和文章,极大的推进了直线电机的发展,同时也引起了广大研究人员对直线电机的重视。从1971年开始对直线电机进行了独立应用,在这个阶段,研究人员选择了出了适合直线电机使用的途径,各种各样的直线电机被广泛的推广,研究出了非常多的具有使用价值的产品,比如冲压机、空压机、煤机等。 1.2.近年来国内外对直线电机的研究情况 近年来,直线电机得到了迅速的发展,很多人都开始对直线电机进行研究。国际上很多公司也逐渐开始研发直线电机类的产品,比如日本的三井精机公司、美国的Koll-morgen公司、各国的Wesitinghouse公司等等。各种各样质量良好的直线电机产品也出现在了人们的视野中。比如Indramat公司研究出了非常完整的直线电机系列,其中包含了封闭式异步直线电机和无罩壳异步直线电机。在直线电机的控制系统中设置了非常标准的接口,可以更好的保证各种景观改型的程序控制器和数字变换器相兼容。 我国对直线电机的研究发展比较晚,大概是从70年代发展起来的。不过在国外直线电机使用潮流的影响下,我国国内也出现了很多直线电机开发使用的单位,例如浙江大学、沈阳工业大学、浙江大学、西安交通大学等。我国第一个直线电机研究所在浙江大学诞生,并且此研究取得了非常不错的研究成果。目前我国在直线电机方面的研究成果主要有摩擦

直线电机的特性、现况及其发展趋势

直线电机的特性、现况及其发展趋势 班级:机械0804班 姓名:何延浩 学号:u200810546

一、直线电机概述 根据当今世界机床制造业的发展趋势和国家中长期科技发展规划,数控机床正在向精密、高速、复合、智能、环保的方向发展。由于直线电机将电能直接转换为直线运动,取消了传统的从旋转电机到工作台之间的一切机械传动环节,具有高速、高精和 “零传动”特性,因此直线电机正在成为高档数控机床的重要功能部件,是高端数控设备未来的发展趋势。 直线电机又称线性马达、推杆马达,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子的新型电机(如图1所示)。 二、直线电机的工作原理 直线电机利用电能直接产生直线运动,其原理与相应的旋转式电动机相似,在结构上可以看作是由相应旋转电机沿径向切开,拉直演变而成。如图2-a 所示为传统旋转式电机,图2-b 为旋转时电机沿径向切开后得到的直线电机。 直线电动机同样包括定子和动子两部分,在电磁力的作用下,动子带动外界负载运动作功。在需要直线运动的地方,采用直线电动机可使装置的总体结构得到简化。直线电动机较多地应用于各种定位系统和自动控制系统。大功率的直线电动机还常用于电气铁路高速列车的牵引、鱼雷的发射等装备中。 直线电动机按原理分为直流直线电动机、交流直线异步电动机、直线步进电动机和交流直线同步电动机,以前三种应用较多。按结构可分为单边型和双边型两种。在单边型结构中,定子和动子之间受有较大的单边磁拉力;双边型结构由于两边磁拉力互相平衡,支承部分摩擦力较小,动作比较灵活。 (1)直流直线电动机 直流供电的直线电动机。由一套磁极和一组绕组构成。绕组中的电流有的通过电刷和换向片结构引入,称刷型;有的不经换向器和电刷,直接用导线引入,称无刷型。直流直线电动机从结构上还可分为动极式和动圈式两种。图2所示为圆柱式直流动圈式直线电动机,由于其结构与扬声器的音圈相似,故又称为音圈式直线电动机,简称音圈电动机。其中图3-a 为短线圈音圈电动机,图3-b 为长线圈音圈电动机。 图2 直线电动机原理结构 图1 SUPT Motion 公司生产的一种直线电机

相关文档
最新文档