反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法及详细答案
反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法

确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法. 一、 定义型:

例1、已知函数10

2

)3(--=m

x m y 是反比函数,求其解析式?

分析:由反比例函数可知???-=-≠-1

100

32m m

∴?

??±=≠33m m

∴3-=m 即可写出函数解析式

利用定义求反比例x

k

y =解析式时,要保证k ≠0。如例1中应保证03≠-m 的条件。

二、 过点型:

例2、(浙江金华)已知图象经过点(1,1),的反比例函数解析式是 。

分析:函数图象过某一点,则该点坐标满足函数解析式。即可设函数解析式为x

k

y =

然后将该点坐标代入解析式求出K 值即可

(变式问法:已知反比例函数x

k

y =,当x=1时,y =1,求这个函数的解析式。) 三、 图象型:

例3、已知某个反比例函数的图像如图所示,则该函数的解析式为__________。

分析:如图将点P (1,2)代入反比例函数解析式x

k y =中求出K 的值的即可。

四、面积型:

例4、(山东枣庄)反比例函数x

k

y =

的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则反比例函数解析式? 分析:由反比例函数)0(≠=

k x

k

y 的图象上任一点P 与过这点作X 轴(或Y 轴)的垂线的垂足与坐标

原点三点间的三角形的面积“S=K 21

”可知

1

2 P

K 2

1

=2 故可求出K 值,即写出解析式。 例5、如图所示,设A 为反比例函数x

k

y =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 分析:由上面知识可知S 矩形ABOC =K

∴ K =3 即 K=±3

又∵ 反比例函数图象在第二象限 ∴K=-3 即可写出解析式。

五、应用型:

例6、某空调厂的装配车间原计划用2个月时间(每月以30天计算),组装1500台空

调.

(1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)

之间有怎样的函数关系?

(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调? 分析:这一道工程问题,即“工作总量=工作时间×工作效率”要时确 ∴ 1500=mt 即 t

m 1500

=

(0<t ≤60) 之后的问题就可以用第一小问来解决了。 (注意:求实际应用型问题的函数关系式要写出自变量的取值范围)

例7、(福建福州)如图,已知直线x y 21=与双曲线)0(>=k x

k

y 交于两

点,且点

的横坐标为.

(1)求k 的值; (2)若双曲线)0(>=k x

k

y 上一点的纵坐标为8,求△AOC 的面

积;

分析:这是反比例函数与正比例函数的综合应用,只要明确交点A 的坐标既满足

正比例函数也满足反比例函数,即可以把A 点的横坐标4代入x y 2

1

=中求出点A

点坐标。然后代入)0(>=k x

k

y 中求出K 值即可。

六、开放型:

例8、写出一个反比例函数,使得这个反比例函数的图像在第一、三象限,且写出这个函数上一个点的坐标?

分析:这是一开放性问题,答案不唯一。只要满足“反比例函数的图像在第一、

三象限”这个条件就可以,即是满足x

k

y =中K>0这个条件就行;点的坐标也是

不唯一。

(变式问法:写出一个反比例函数,使得这个反比例函数满足当x>0时y 随x 的增大而减小?)

一、利用反比例函数图象上的点的坐标来确定 例1 已知反比例函数的图象经过点(-3,1),则此函数的解析式为________.

析解:设此反比例函数的解析式为k

y x

=(k 为常数,k ≠0).因为点(-3,1)在

反比例函数的图象上,所以直接将这个点的坐标代入反比例函数的解析式k

y x

=,得k =-

3,由此可得这个反比例函数的解析式为3

y x

=-.

二、借助定义来确定 例2. 已知函数43m y mx +=是反比例函数,试求出m 的值,并写出函数关系式.

解析:此类问题,一般采用反比例函数的另一种表达方式)0(1≠=-k kx y 来列式求解. 由题意得:m+4=-1,解得m =-5.将m 值代入得函数关系式15

y x

=-

. 三、利用反比例函数的性质确定

例3 写出一个图象位于第一、三象限内的反比例函数解析式________.

析解:这是一道关于求反比例函数解析式的开放型试题,因该函数的图象经过第一、三象限,由反比例函数的性质可知其解析式中的k >0,因此,k 的取值可以为所有正数.如,

可随意取k =4,由此可得对应的函数解析式为4

y x

=.

四、根据图形的面积确定

例4 如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________. 析解:设点A 的坐标为(x ,y ),又根据矩形ABOC 的面积和点A (x ,y )的关系可得: S 矩形ABOC =|xy |=|k |=8,解得k =±8,又因该函数的图象在第一、三象限,故根

据反比例函数的性质可得k =8,由此得这个反比例函数的解析式为8

y x

=.

五、根据反比例函数和一次函数图象的交点坐标确定

例5 直线y =k 1x +b 与双曲线2k

y x

=只有一个交点A (1,2),且与x 轴、y 轴分

别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式.

析解:因点A (1,2)在2

k y x

=上,将点A (1,2)代入该式可得k 2=2,则所求双曲线的解析式为2

y x

=

,又由AD 垂直平分OB 可得OD =1,OB =2,则B 点坐标为(2,0),又因点A 、B 都在直线y =k 1x +b 上,故将其坐标代入直线y =k 1x +b 得11220.k b k b +=??+=?,.解得124.k b =-??=?,

故所求过A 、B 两点的直线的解析式为y =-2x +4.

反比例函数单元测试题

一. 选择题

1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( ) A. m =4或m =-2 B. m =4 C. m =-2 D. m =-1

2. 下列函数中,是反比例函数的是( ) A. y x =-2

B. y x =-12

C. y x =-11

D. y x =12

3. 函数y kx =-与y k x

=(k ≠0)的图象的交点个数是( )

A. 0

B. 1

C. 2

D. 不确定

4. 函数y kx b =+与y k x

kb =≠()0的图象可能是( )

A B C D

5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( ) A. 正比例函数 B. 反比例函数 C. 二次函数 D. z 随x 增大而增大

6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )

A. y x =-19

B. 105=-x y :

C. y x =412

D. 15

2xy =- 二. 填空题

7. 一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支

在__________象限内。

8. 已知反比例函数y x

=2,当y =6时,x =_________。

9. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。 10. 反比例函数的图象过点(-3,5),则它的解析式为_________

11. 若函数y x =4与y x

=1的图象有一个交点是(12,2),则另一个交点坐标是_________。

三. 解答题

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

人教版初中数学反比例函数经典测试题含答案

人教版初中数学反比例函数经典测试题含答案 一、选择题 1.已知反比例函数k y x =的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ?的面积为 3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命 题个数是( ) A .0 B .1 C .2 D .3 【答案】D 【解析】 【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ?? ?∈-≤???? ,y 2=2k x , 然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0, ∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k , ①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1 OC?AC 2=11x ?y k =322 =, ∴6k =-,故①正确; ②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()12121212 0k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.

人教版九年级下《26.1反比例函数解析式》测试题(含答案解析)

反比例函数解析式测试题 时间:100分钟总分:100 一、选择题(本大题共10小题,共30.0分) 1.如图,第四象限的角平分线OM与反比例函数y=k x (k≠0)的图象交于点A,已知OA=32,则该函数的解析式为() A. y=3 x B. y=?3 x C. y=9 x D. y=?9 x 2.某反比例函数的图象过点(1,?4),则此反比例函数解析式为() A. y=4 x B. y=1 4x C. y=?4 x D. y=?1 4x 3.在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P 的纵坐标是3,OP=5,那么该函数的表达式为() A. y=12 x B. y=?12 x C. y=15 x D. y=?15 x 4.已知双曲线y=k x (k≠0)上有一点P(m,n),m,n是关于t的一元二次方程t2?3t+k=0的两根,且P点到原点的距离为13,则双曲线的表达式为() A. y=2 x B. y=?2 x C. y=4 x D. y=?4 x 5.如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比 例函数的解析式是()

A. y=?3 x B. y=?x 3 C. y=x 3 D. y=3 x 6.已知函数y=k x (k≠0),当x=?1 2 时,y=8,则此函数的解析式为() A. y=?4 x B. y=4 x C. y=?2 x D. y=?8 x 7.反比例函数的图象经过点(2,3),则它的表达式为() A. y=?x 6B. y=6 x C. y=?6 x D. y=x 6 8.若反比例函数的图象经过(4,?2),(m,1),则m=() A. 1 B. ?1 C. 8 D. ?8 9.如图,已知点A在反比例函数y=k x 上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为() A. y=4 x B. y=2 x C. y=8 x D. y=?8 x 10.如图,正方形OABC的面积是4,点B在反比例函数 y=k x (x<0)的图象上.则反比例函数的解析式是() A. y=4 x B. y=2 x C. y=?2 x D. y=?4 x

函数解析式的七种求法(讲解)之令狐文艳创作

函数解析式的七种求法 令狐文艳 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)()0(≠a ,则 二、配凑法:已知复合函数 [()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时, 常用配凑法。但要注意所求函数 ()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 三、换元法:已知复合函数 [()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。

例3已知 x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一 般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点 )3,2(-的对称点 则?????=+'-=+'322 2y y x x ,解得:???-='--='y y x x 64, 点),(y x M '''在)(x g y =上 把???-='--='y y x x 64代入得: 整理得 672---=x x y 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例5设,)1(2)()(x x f x f x f =-满足求 )(x f 解 x x f x f =-)1(2)(① 显然,0≠x 将x 换成x 1 ,得:

反比例函数基础练习题

反比例函数基础训练题 一、填空题: 1、形如)0(≠= k x k y 的函数称为反比例函数,基中自变量x 的取值范围是 ; 2、反比例函数x y 23-=中,相应的k= ; 3、三角形面积为6,它的底边a 与这条底边上的高h 的函数关系式是 ; 4、反比例函数经过点(2,-3),则这个反比例函数关系式是 ; 5、下列函数中:①x y 2=,②11+=x y ,③2x y =④x y 23-=⑤11+=x y 其中是y 关于x 的反比例函数有: ;(填写序号) 6、已知变量y 、x 成反比例,且当x =2时y=6,则这个函数关系式是 ; 7、反比例函数x y 3- =的图像在第 象限,在它的图像上y 随x 的减小而 ; 反比例函数x y 2=的图像在第 象限,在它的图像上y 随x 的增大而 ; 8、写出一个反比例函数,使得这个反比例函数的图像在第一、三象限,这个函数是 ; 且写出这个函数上一个点的坐标是 ; 9、已知反比例函数经过点A (2,1)和B (m ,-1),则m = ; 10、正比例函数x y 3=与反比例函数x y 2=有 个交点; 11、如图(1):则这个函数的表达式是 ; 如图(2):则这个函数的表达式是 ; 12、若反比例函数x k y = 图像的一支在第二象限,则k 的取值范围是 ; 13、若反比例函数x k y 1-=图像的一支在第三象限,则k 的取值范围是 ; 14、若反比例函数x k y -=2的图像在第一、三象限,则k 的取值范围是 ; 15、对于函数x y 1=的图像关于 对称; 16、对于函数x y 3=,当x >0时y 0,这部分图像在第 象限; 17、对于函数x y 3-=,当x <0时y 0,这部分图像在第 象限; 18、正比例函数与反比例函数经过点(1,2),则这个正比例函数是 ,反比例函数是 ; 19、若函数12)1(-+=m x m y 是反比例函数,则m = ,它的图像在第 象限;

反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法 确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法. 一、 定义型: 例1、已知函数10 2 )3(--=m x m y 是反比函数,求其解析式? 分析:由反比例函数可知???-=-≠-1 100 32m m ∴? ??±=≠33m m ∴3-=m 即可写出函数解析式 利用定义求反比例x k y =解析式时,要保证k ≠0。如例1中应保证03≠-m 的条件。 二、 过点型: 例2、(浙江金华)已知图象经过点(1,1),的反比例函数解析式是 。 分析:函数图象过某一点,则该点坐标满足函数解析式。即可设函数解析式为x k y = 然后将该点坐标代入解析式求出K 值即可 (变式问法:已知反比例函数x k y =,当x=1时,y =1,求这个函数的解析式。) 三、 图象型: 例3、已知某个反比例函数的图像如图所示,则该函数的解析式为__________。 分析:如图将点P (1,2)代入反比例函数解析式x k y =中求出K 的值的即可。 四、面积型: 例4、(山东枣庄)反比例函数x k y = 的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则反比例函数解析式? 分析:由反比例函数)0(≠= k x k y 的图象上任一点P 与过这点作X 轴(或Y 轴)的垂线的垂足与坐标 原点三点间的三角形的面积“S=K 21 ”可知 1 2 P

∴ K 2 1 =2 故可求出K 值,即写出解析式。 例5、如图所示,设A 为反比例函数x k y =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为 分析:由上面知识可知S 矩形ABOC =K ∴ K =3 即 K=±3 又∵ 反比例函数图象在第二象限 ∴K=-3 即可写出解析式。 五、应用型: 例6、某空调厂的装配车间原计划用2个月时间(每月以30天计算),组装1500台空 调. (1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天) 之间有怎样的函数关系? (2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调? 分析:这一道工程问题,即“工作总量=工作时间×工作效率”要时确 ∴ 1500=mt 即 t m 1500 = (0<t ≤60) 之后的问题就可以用第一小问来解决了。 (注意:求实际应用型问题的函数关系式要写出自变量的取值范围) 例7、(福建福州)如图,已知直线x y 21=与双曲线)0(>=k x k y 交于两 点,且点 的横坐标为. (1)求k 的值; (2)若双曲线)0(>=k x k y 上一点的纵坐标为8,求△AOC 的面 积; 分析:这是反比例函数与正比例函数的综合应用,只要明确交点A 的坐标既满足 正比例函数也满足反比例函数,即可以把A 点的横坐标4代入x y 2 1 =中求出点A 点坐标。然后代入)0(>=k x k y 中求出K 值即可。

一元二次函数解析式的8种求法

二次函数解析式的8 种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0;2、x 的最 高次数为 2 次. 例1、若y =( m2+ m )x m2 –2m 1是二次函数,则m = . 2 解:由m + m≠0得:m ≠0,且m ≠-1 2 由m2–2m –1 = 2 得m =-1 或m =3 ∴ m = 3 . 二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不 唯一. 例2、(1)经过点A(0,3)的抛物线的解析式是. 分析:根据给出的条件,点 A 在y 轴上,所以这道题只需满足y a 2b c中的C=3,且a≠0即可∴ y 2 3 (注:答案不唯一) 三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a( x –h)2 + k,当图像向左(右)平移n 个单位时,就在x –h 上加上(减去)n;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m.其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以 a 得值不变. 1 2 5 1 2 例3、二次函数y 23 的图像是由y 2的图像先向平移 2 2 2 个单位,再向平移个单位得到的. 1 5 1 2

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

初中数学反比例函数经典测试题及答案

初中数学反比例函数经典测试题及答案 一、选择题 1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数 b y x = 在同平面直角坐标系中的图象大致是( ) A . B . C . D . 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】 ∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0, ∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0, ∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0, ∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=b x 图象分布在第二、四象限, 故选D . 【点睛】 此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键. 2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB

垂直于x 轴,顶点A 在函数y 1 =1 k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象 上,∠ABO=30°,则 2 1 k k =( ) A .-3 B .3 C . 1 3 D .- 13 【答案】A 【解析】 【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值. 【详解】 如图,设AB 交x 轴于点C ,又设AC=a. ∵AB ⊥x 轴 ∴∠ACO=90° 在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3 ∴点A 3a ,a ) 同理可得 点B 3,-3a ) ∴k 1332 , k 23a×(-3a )3a ∴ 213333k a k a ==-. 故选A. 【点睛】

最新人教版九年级数学下册 反比例函数(教案)

第二十六章反比例函数 26.1 反比例函数 26.1.1 反比例函数 【知识与技能】 1.理解反比例函数的意义. 2.能够根据已知条件确定反比例函数的解析式. 【过程与方法】 经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式. 【情感态度】 经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力. 【教学重点】 理解反比例函数的意义,确定反比例函数的解析式 【教学难点】 反比例函数解析式的确定. 一、情境导入,初步认识 问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示? 【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导. 二、思考探究,获取新知 问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y与x之间的函数关系式吗? 问题2已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S与n的关系式如何?说说你的理由. 思考观察你列出的三个函数关系式,它们有何特征,不妨说说看看. 【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知. 反比例函数:形如y =k x (k≠0)的函数称为反比例函数,其中x是自变量, y是x的函数,自变量x的取值范围是不等于0的一切实数.

函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法. 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴?? ? =+=3 42b ab a , ∴????? ?=-===3 2 1 2b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 . 二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221 )1(x x x x f + =+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解 析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表 示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x . x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x . 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点. 则 ?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把???-='--='y y x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g . 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

(完整版)反比例函数基础练习题及答案

反比例函数练习一 一.选择题(共22小题) 1.(2015春?泉州校级期中)下列函数中,y是x的反比例函数的为() A.y=2x+1 B.C.D.2y=x 2.(2015春?兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.± 3.(2015春?衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=0 4.(2014?汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定 5.(2014春?常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是() A.m<0 B.C.D.m≥ 6.(2015?贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是() A.B. C.D. 7.(2015?滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为() A.B.C.D.

8.(2015?上海模拟)下列函数的图象中,与坐标轴没有公共点的是() A.B.y=2x+1 C.y=﹣x D.y=﹣x2+1 9.(2015?宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是() A.B.C.D. 10.(2015?鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是() A.1 B.2 C.3 D.6 11.(2012?颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是() 第11题图第12题图 A.πB.2πC.4πD.条件不足,无法求12.(2010?深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为() A.y=B.y=C.y=D.y= 13.(2014?随州)关于反比例函数y=的图象,下列说法正确的是() A.图象经过点(1,1) B.两个分支分布在第二、四象限 C.两个分支关于x轴成轴对称 D.当x<0时,y随x的增大而减小

反比例函数(提高)知识讲解

反比例函数(提高) 【学习目标】 1.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式. 2.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 【要点梳理】 要点一、反比例函数的定义 一般地,形如 k y x =(k为常数,0 k≠)的函数称为反比例函数,其中x是自变量,y 是函数,定义域是不等于零的一切实数. 要点诠释:(1)在 k y x =中,自变量x是分式 k x 的分母,当0 x=时,分式 k x 无意义,所以自变量x的取值范围是,函数y的取值范围是0 y≠.故函数图象与x轴、y轴无交点; (2) k y x =()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件. (3) k y x = ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式. 要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数 k y x =中,只有一个待 定系数k,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式. 用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: k y x = (0 k≠); (2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值; (4)把求得的k值代回所设的函数关系式 k y x =中. 要点三、反比例函数的图象和性质

? 1、 反 比例函数的图象特征: 反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴. 要点诠释:(1)若点(a b ,)在反比例函数k y x =的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ≠) 中,由于 ,所以两个分支都无限接近但永远不能达到x 轴和y 轴. 2、反比例函数的性质 (1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小; (2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大; 要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号. 要点四、反比例函数()中的比例系数k 的几何意义 过双曲线x k y = (0k ≠) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线x k y =(0k ≠) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴??????=-===32 12b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f , 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直 线的对称函数时,一般用代入法。 例4已知:函数 )(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

1反比例函数基础练习题及答案

反比例函数基础练习题 1.反比例函数的概念 (1)下列函数中,y是x的反比例函数的是(). A.y=3x B.C.3xy=1 D. (2)下列函数中,y是x的反比例函数的是(). A.B.C.D. 答案:(1)C;(2)A. 2.图象和性质 (1)已知函数是反比例函数, ①若它的图象在第二、四象限内,那么k=___________. ②若y随x的增大而减小,那么k=___________. (2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限. (3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限. (4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是(). A.第一象限B.第二象限C.第三象限D.第四象限 (5)若P(2,2)和Q(m,)是反比例函数图象上的两点, 则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限 (6)已知函数和(k≠0),它们在同一坐标系内的图象大致是(). A.B.C.D. 答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B. 3.函数的增减性 (1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数 (2)在函数(a为常数)的图象上有三个点,,,则函数值、、

的大小关系是(). A.<<B.<<C.<<D.<< (3)下列四个函数中:①;②;③;④. y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个 (4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数 值y随x的增大而(填“增大”或“减小”). 4.解析式的确定 (1)若与成反比例,与成正比例,则y是z的(). A.正比例函数B.反比例函数C.一次函数D.不能确定 (2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________. (3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值. (4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3). ①求x 0的值;②求一次函数和反比例函数的解析式. (5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药 量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题: ①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________. ②研究表明,当空气中每立方米的含药量低于 1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室; ③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 答案:(1)B;(2)4,8,(,); (3)依题意,且,解得. (4)①依题意,解得

最新反比例函数专题复习

精品文档反比例函数经典专题知识点回顾很多中考试题都将反比例函数与面积结合起来由于反比例函数解析式及图象的特殊性,又能充分体现数进行考察。这种考察方式既能考查函数、反比例函数本身的基础知识内容,可以较好地将知识与能力融合在一起。形结合的思想方法,考查的题型广泛,考查方法灵活,下面就反比例函数中与面积有关的问题的四种类型 归纳如下:的几何意义求解与面积有关的问题利用反比例函数中|k|一、 设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线 段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy| ∴xy=k 故S=|k| 从而得 结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k| 对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出 对应的面积的结论为: S= 中,面积:在直角三角形ABO结论2S=2|k| 中,面积为:在直角三角形ACB结论3S=|k| 中,面积为:在三角形AMB结论4

例题讲解 PP、】如右图,已知△P0A,△PAA都是等腰直角三角形,点1【例21111224的坐A、A都在x轴上.则点A都在函数y=的图象上,斜边OA)>(x02121x . 标为 、都是等腰直角三角形,点PPAA…△,△POA,△PAAPA1、如例1A图,已知△1n1122n123n-134轴上.则x都在AAA、0)的图象上,斜边OAA、A…A>y=都在函数…P、PP(x n1n-1122n233x的坐标为点A10精品文档. 精品文档

1 ,6PAB的图像上,如果△的面积为-2A、已知点(0,2)和点B(0,),点P在函数y=2x求P点的坐标。 k轴BC在xABCDy=x(>0)的图像上,矩形的边2【例】如右图,已知点(1,3)在函数xk的横坐标两点,点EA,E)y=是对角线BD的中点,函数>(k0的图象又经过E上,x为m,解答下列各题求k的值1. 2.的横坐标(用C求点m表示) 3.当∠112m°时,求ABD=45的值 精品文档.

重点高中数学:函数解析式的十一种方法

重点高中数学:函数解析式的十一种方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学:函数解析式的十一种方法 一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法 七、利用给定的特性求解析式. 六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法 一、定义法: 【例1】设23)1(2+-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f Θ =6)1(5)1(2++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 【解析】设x x x x x x f f ++=+++=++= 11111 11 21)]([Θ x x f += ∴11)( 【例3】设33221 )1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f . 【解析】2)(2)1(1)1(2222 -=∴-+=+=+x x f x x x x x x f Θ 又x x x g x x x x x x x x g 3)() 1(3)1(1)1(3333 -=∴+-+=+=+Θ 故2962)3()]([24623-+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 【解析】 )2 (17cos )]2[cos()(sin x x f x f -=-=π π

相关文档
最新文档