混合气体平均式量的几种计算方法

混合气体平均式量的几种计算方法
混合气体平均式量的几种计算方法

混合气体平均式量的几种计算方法

⑴标准状态密度法:M=22.4(L·mol-1)×p(g·L-1);

⑵相对密度法:D=ρ1/ρ2= M1/M2;

⑶摩尔质量定义法:M=m(总)/n(总)

⑷物质的量或体积含量法M=MA·a%+Mb·b%+……(a%、b%等为各组分气体的体积分数或物质的量分数)。

二、2007年高考试题评析

【例1】(07年广东化学卷,第3题)下列叙述正确的是()

A.48 g O3气体含有6.02×1023个O3分子

B.常温常压下,4.6g NO2气体含有1.81×1023个NO2分子

C.0.5mol/LCuCl2溶液中含有3.01×1023个Cu2+

D.标准状况下,33.6L 水含有9.03×1023个H2O分子

【解析】48 g O3的物质的量为1 mol,含O3分子6.02×1023个,A正确;由于存在2NO2N2O4这一隐含条件,故4.6g NO2气体中含有的NO2分子数应界于0.1NA 和0.05NA之间,B错误;由于不知道CuCl2溶液的体积,故无法确定Cu2+离子的数目,C错误;标准状况下,水为固态,不能用22.4L/mol进行计算。故本题应选A。

【例2】(07年四川理综卷,第7题)用NA代表阿伏加德罗常数,下列说法正确的是

A.标准状况下,22.4LCHCl3中含有的氯原子数目为3NA

B.7gCnH2n中含有的氢原子数目为NA

C.18gD2O中含有的质子数目为10NA

D.1L 0.5 mol/L Na2CO3溶液中含有的CO32-数目为0.5NA

【解析】标准状况下,CHCl3为液态,不能用22.4L/mol进行计算,A项错误;B项中CnH2n 的最简式为CH2,其最简式的物质的量为7g/14g·mol-1=0.5mol,故其氢原子数为NA,B 正确;由于D2O的摩尔质量为20g/mol,则18gD2O的物质的量小于1 mol,C错误;由于在水溶液中CO32-要水解,故CO32-数目应小于0.5NA,D错误。故本题应选B。

【例3】(07年上海化学卷,第20题)设NA为阿伏加德罗常数,下列叙述中正确的是A.常温下,11.2L甲烷气体含有甲烷分子数为0.5NA

B.14g乙烯和丙烯的混合物中总原子数为3NA

C.0.1mol/L的氢氧化钠溶液含钠离子数为0.1NA个

D.5.6g 铁与足量稀硫酸失去电子数为0.3NA

【解析】A项中所给的条件并不是标准状况下,故甲烷的物质的量不是0.5 mol,故A项错误;B项中乙烯和丙烯的最简式为CH2,其最简式的物质的量为14g/14g·mol-1=1mol,故其总原子数为3NA,B项正确;由于不知道氢氧化钠溶液的体积,故无法确定钠离子的数目,C项错误;Fe与稀硫酸反应生成的是Fe2+,D项错误。故本题应选B。

【例8】(07年全国理综卷I,第9题)在三个密闭容器中分别充入Ne、H2、O2三种气体,当它们的温度和密度都相同时,这三种气体的压强(p)从大到小的顺序是()

A.P(Ne)>P(H2)>P(O2) B.P(O2)>P(Ne)>P(H2)

C.P(H2) >P(O2)>P(Ne) D.P(H2)>P(Ne)>P(O2)

【解析】根据上述阿伏加德罗定律推论“三反比”结论③“在相同温度下,同密度的任何气体的压强与其摩尔质量成反比”,得摩尔质量越小压强越大。由于三种气体的摩尔质量从小到大顺序为M(H2)<M(Ne)<M(O2),故其气体压强从大到小的顺序为P(H2)>P(Ne)>P(O2)。【综合点评】以上是考查阿伏加德罗常数及阿伏加德罗定律命题时的一些常见角度。阿伏加德罗常数试题是高考常见题型之一,尽管题型不变,但考查的知识却都千变万化。主要考查了对阿伏加德罗常数、物质的量、气体摩尔体积等概念的理解及简单计算,还经常涉及弱电

解质的电离、盐类水解、氧化还原反应、晶体中化学键及微粒数(电子数、中子数、分子数、离子数等)等多个知识点,能力考查细致而广阔,备受命题专家的青睐。而有关阿伏加德罗定律试题也是高考中常考的题型,主要考查阿伏加德罗定律以及推论,常结合物质的量、摩尔质量、质量之间的关系以及物质的质量、体积、密度等变化量的关系进行综合考查,要特别注意的是阿伏加德罗定律以及推论不描述非气态物质,学习时要防止进入误区。

三、强化训练

1.设NA表示阿伏加德罗常数,下列说法中正确的是()

A.在常温常压下,1mol羟基(-OH)含有的电子数为10NA

B.46 g NO2 和N2O4混合气体中含有原子数为3NA

C.1mol C10H22分子中共价键总数为31NA

D.100mL 2.0mol/L的盐酸与醋酸溶液中氢离子数均为0.2NA

2.设NA表示阿伏加德罗常数,下列说法中不正确的是()

A.标准状况下,22.4 LCl2和HCl的混合气体中含分子总数为2NA

B.1molMg与足量O2或N2反应生成MgO或Mg3N2均失去2NA个电子

C.30 g甲醛分子中含共用电子对总数为4NA

D.46g NO2和N2O4的混合物含有的分子数为NA

3.阿伏加德罗常数约为6.02×1023,下列叙述中正确的是()

A.0.1mol8135Br原子中含中子数为3.5×6.02×1023

B.25℃时,1 L pH=13的氢氧化钠溶液中约含有6.02×l023个OH-离子

C.标准状况下,11.2L四氯化碳所含分子数约为0.5×l023个

D.室温下,32.0gO3和O2的混合气体中含有的原子数约为2×6.02×1023

4.NA表示阿伏加德罗常数,下列说法中不正确的是()

A.53g碳酸钠晶体中含0.5NA个CO32-离子

B.标准状况下的22.4L辛烷完全燃烧,生成二氧化碳分子数为8NA

C.1molOH-放电被氧化时失去NA的电子

D.在2.8g晶体硅中含有0.2NA个Si-Si键

5.设NA表示阿伏加德罗常数,下列说法中不正确的是()

A.25℃时,纯水中含有的H+数为1×10-7NA

B.常温常压下,31g白磷与红磷的混合物中含有磷原子数为NA

C.35.5gCl2参加氧化还原反应,转移的电子数可能为NA

D.7.8gNa2O2晶体中所含离子的总数为0.3NA

6.NA代表阿伏加德罗常数,下列说法正确的是()

A.如果5.6LN2含有n个氮分子,则阿伏加德罗常数一定约为4n

B.15.6gNa2O2与过量CO2反应时,转移的电子数为0.4NA

C.1L1mol/L的FeCl3溶液中,含有铁离子的数目为NA

D.T℃时,1LPH=6纯水中,含10-6NA个OH-

7.下列关于阿伏加德罗常数(NA),的说法正确的是()

A.3.2g铜与足量稀硝酸反应过程中转移电子0.1NA

B.35.5g超氧化钾(KO2)所含的阴离子的数目为NA

C.标准状况下将0.5molSO2气体与0.5molH2S气体混合后,气体的分子总数为NA

D.6g二氧化硅中含Si-O键数为0.2NA

8.下列条件下,两瓶气体所含原子数一定相等的是()

A.同质量、不同密度的N2和CO B.同温度、同体积的H2和N2

C.同体积、同密度的C2H4和C3H6 D.同压强、同体积的N2O和CO2

9.下列叙述正确的是()

A.同温同压下,相同体积的物质,它们的物质的量必相等

B.任何条件下,等物质的量的乙烯和一氧化碳所含的分子数必相等

C.1L一氧化碳气体一定比1L氧气的质量小

D.等体积、等物质的量浓度的强酸中所含的H+数一定相等

10.由CO2、H2和CO组成的混合气体在同温同压下与N2的密度相同,则该混合气体中CO2、H2和CO的体积比为()

A.29:8:13 B.22:1:14 C.13:8:29 D.26:16:57

11.在体积相同的两个密闭容器中分别充满O2、O3气体,当这两个容器内温度和气体密度相等时,下列说法正确的是()

A.两种气体的压强相等B.O2比O3质量小

C.两种气体的分子数目相等D.两种气体的氧原子数目相等

12.某物质A在一定条件下加热完全分解,产物都是气体。分解方程式为2A==B+2C+2D。测得生成物的混合气体对氢气的相对密度为d,则A的式量为()

A.7d B.5d C.2.5d D.2d

13.标准状况下,mg气体A与ng气体B分子数相同,下列说法中不正确的是()

A.气体A与B的相对分子质量比为m:n

B.同质量气体A与B的分子个数比为n:m

C.同温同压下,同体积A气体与B气体的密度比为n:m

D.相同状况下,同体积A气体与B气体质量比为m:n

14.100mL气体A2跟50mL气体B2恰好完全反应生成100mL气体C(体积均在相同状况下测定),则C的化学式为,其推断理由是。

15.在一定条件下,有aLO2和O3的混合气,当其中的O3全部转化为O2时,体积变为1.2aL,则原混合气中O3和O2的质量百分比分别为。

强化训练参考答案:

1.答案:B、C

解析:A项中的羟基呈电中性,1mol羟基中应含有9mol电子,A错;B项中原子总物质的量为3×46 g/46 g·mol-1=3mol,B正确;C项中碳原子最外层有4个电子,氢原子最外层有1个电子,故1mol C10H22分子中共价键总数为(4×10+1×22)/2NA=31NA,C正确;D项中醋酸是弱酸,故电离出来的氢离子数应小于0.2NA,D错。

2.答案:A、D

解析:选项A中混合气体为1mol,应含的分子总数为NA,A说法错误;选项B中1molMg 参与反应失去2mol电子,B说法正确;C项中1个HCHO分子中含4个共用电子对,30 g 甲醛(即1mol)中含4NA个共用电子对,C说法正确;若只有NO2,则46g NO2含有的分子数为1NA,混有N2O4后,相同质量NO2和N2O4的混合物含有的分子数会小于1NA,D 错误。

3.答案:D

解析:A项中1个8135Br原子含中子数为81—35=46,0.1mol8135Br原子中含中子数为4.6×6.02×1023,A项错误;B项中n(OH-)为0.1mol,B错;在标准状况下,四氯化碳不是气体,C错误;32.0gO3和O2的混合气体中氧原子物质的量为2mol,D正确。

4.答案:B

解析:53g碳酸钠晶体中CO32-的物质的量为0.5mol,A说法正确;在标准状况下,辛烷不是气体,B说法错误;根据4OH--4e-=2H2O+O2↑知,1molOH-放电时应失去1mol电子,C 说法正确;由于1mol晶体硅中含有2mol Si-Si键,故D说法正确。

5.答案:A

解析:因不知纯水的体积,故水所电离出的H+数无法确定,A说法错误;31g白磷与红磷的混合物中含有磷原子的物质的量1mol,B说法正确;0.5mol Cl2若只作氧化剂生成Cl-时应转移电子1mol,C说法正确;因1mol Na2O2晶体是由2molNa+与1 molO22-构成的,D说法正确。

6.答案:D

解析:N2所处的条件不清,A错;2mol Na2O2与过量CO2反应转移2mol电子,故0.2mol Na2O2参与此反应转移0.2mol电子,B错误;Fe3+要发生水解,C错误;D正确。

7.答案:A

解析:因硝酸足量,可将铜单质氧化为Cu2+,A正确;KO2固体是由K+和O2-组成的,35.5g KO2所含的阴离子为0.5mol,B错误;因SO2与H2S混合要发生反应,C错误;1mol氧化硅含4molSi-O键,故6g二氧化硅中含0.4molSi-O键,D错误。

8.答案:A、C

解析:同质量、不同密度的N2和CO的所含原子数一定相同,A正确;同温度、同体积的H2和N2物质的量与压强成正比,B错误;C2H4和C3H6的最简式相同,质量相等的两种气体含有相同的原子数,C正确;同压强、同体积的N2O和CO2物质的量与温度成正比,D 错误。故本题应选A、C。

9.答案:B

解析:选项A不清楚物质的状态,错误;选项B中乙烯和一氧化碳的物质的量相等,故其分子数相等,与其外界条件无关,正确;选项C不清楚CO和O2的外界条件,错误;选项D中不清楚强酸的元数,错误。

10.答案:C、D

解析:根据相对密度定义得CO2、H2和CO混合气体的平均相对分子质量为28,因CO的相对分子质量为28,故CO2和H2的平均相对分子质量为28,根据十字交叉法可得CO2和H2的体积比为13:8,CO为任意比。

11.答案:D

解析:根据理想气体状态方程PV=nRT可推出ρ=PM/RT。在ρ、T相同时,压强与摩尔质量成反比,故A错误;再根据ρ=m/V知,O2比O3质量相等,B错误;再结合公式:n=m/M 知,两种气体的物质的量不相等,C错误;由于T、V相等,故O2比O3质量相等,则所含氧原子数目相等,D正确。故应选D。

12.答案:B

解析:根据题给出的方程式知,完全分解后生成的混合气体中B、C、D的物质的量之比为1:2:2,则该混合气体的平均式量=(MB+2MC+2MD)/5。根据阿佛加德罗定律,相同条件下,气体的密度之比等于气体的摩尔质量之比,就有/=d,所以=2d,即MB+2MC+2MD=5=10d。又据质量守恒定律:2MA=MB+2MC+2MD=10d,∴MA=5d。

13.答案:C

解析:根据摩尔质量的定义式知,A、B、D说法都正确。根据阿佛加德罗定律,同温同压下,气体的密度与其摩尔质量成正比,C说法错误。

14.答案:A2B

理由是:根据阿伏加德罗定律推知,在相同状况下,参加反应的气体和生成的气体体积比等

于其分子数之比,VA2: VB2: VC=100:50:100=2:1:2,可以写出化学方程式为2A2+B2=2C,根据质量守恒定律可知C的化学式A2B 。

15.答案:50% 50%

四、有关阿伏加德罗常数及阿伏加德罗定律试题的解题方法

要正确解答有关阿伏加德罗常数方面的题目,首先要认真审题,审题的过程中要注意分析题目中概念的层次,要特别注意试题中一些关键性的字、词,要边阅读边思索。其次要留心“陷阱”,对常见的一些陷阱要千万警惕,例如物质状态、电离情况、组成结构等。考生要在认真审题的基础上利用自己掌握的概念仔细分析、比较,抓住要害,逐项排除,即可正确解答。要正确解答有关阿伏加德罗定律方面的题目,必须准确理解阿伏加德罗定律及其推论中的“一连比、三正比、三反比”的结论,或利用理想气体状态方程PV=nRT及其导出公式PV=mRT/M、ρ=PM/RT进行分析,把握各物理量之间的关系,从而正确解答。

此类试题在注重对有关计算关系考查的同时,又隐含对某些概念理解的考查。试题虽然难度不大,但考查知识点无处不在,概念性强、区分度好。解题时特别注意选项所给的条件,紧扣基本概念、基本理论和有关规律,仔细审题,剖析陷阱,准确理解,灵活解答。估计有关阿伏加德罗常数和阿伏加德罗定律的试题仍是今后高考化学命题的一大亮点。

常见气体的爆炸极限

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限(体积分数) / % 下限(V/V) 上限(V/V) 乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2 苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0

空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。可可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。爆炸极限是一个气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可燃气体等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。(将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产警等。 空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的全燃烧时在混合物中该可燃物质的含量。根据化学反应计算可燃气体或蒸2C0+02+3.76N2=2C02+3.76N2 根据反应式得知,参加反应0%=29.6%(三)爆炸极限的影响因素爆炸极限通常是在常含氧量、惰性气体含量、火源强度等因素的变化而变化。1.初始温度 爆炸危险性。2.初始压力增加混合气体的初始压力,通常

土方量计算公式

基坑土方量计算公式 公式:V=1/3h(S上+√(S下*S上)+S下) S上=140 S下=60 V=1/3*3*(140+60+√140*60)=291.65m2 基坑下底长10m,下底宽6m 基坑上底长14m ,上底宽10m 开挖深度3m ,开挖坡率1:0.5 求基坑开挖土方量、 圆柱体:体积=底面积×高 长方体:体积=长×宽×高 正方体:体积=棱长×棱长×棱长. 锥体: 底面面积×高÷3 台体: V=[ S上+√(S上S下)+S下]h÷3 球缺体积公式=πh2(3R-h)÷3 球体积公式:V=4πR3/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形名称符号周长C和面积S 正方形a―边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a 边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2?sinα平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4扇形r―扇形半径a―圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360)弓形 l-弧长 S=r2/2?(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2?[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3圆环 R-外圆半径 S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆 D-长轴 S=πDd/4 d-短轴 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积

土方量计算方法及误差分析讲解

学校代码: 学号:毕业(设计)论文土方量计算方法及误差分析 姓名: 专业:工程测量技术 班级: 指导教师: 二○一四年六月二十日

土方量计算方法及误差分析 姓名: 指导老师: 摘要 土方量计算是工程施工和设计中一个经常而重要的工作,目前在各种工程建设中,土方量算精度是大家在土方量算中最关心的问题,本文是基于对工程土方量计算中常用的几种方法:方格网法、断面法、等高线法及基于数字地面模型(DEM)法的基本原理比较分析,探讨它们的适用范围及精度分析。 关键词:方格网法;断面法;等高线法; DEM

目录 第一章绪论 (1) 第二章土方量计算的基本方法 (3) 2.1 方格网法 (3) 2.2 等高线法 (5) 2.3 断面法 (7) 2.4 DTM法 (7) 第三章误差分析 (9) 3.1 方格法分析 (9) 3.2 断面法分析 (13) 3.3 等高线法分析 (18) 3.4 DTM 分析 (19) 第四章案例分析及总结 (23) 4.1 案例分析 (23) 4.2 案例总结 (25) 结束语 (26) 致谢 (27) 参考文献 (28)

第一章绪论 随着我国经济的飞速发展,国家根据需要加大对工程建设的投入,无论是公路还是铁路,城市规划中,土方工程是主要项目,土方量计算是工程设计与施工中经常遇到的问题,需要精确计算土方量,土方计算是这些工程的一个重要组成部分,也是最关键的一部分,土方量直接关系到工程造价,同时土方量的计算方法的选取对施工机械,人力的配置起直接影响作用,因此对于土方计算符合实际。在国家经济建设快速发展的今天,不断完善国家基础建设和改善人民水平一样的至关重要,基础建设离不开工程施工,土方量的计算是水土建筑工程施工的一个组成部分,工程施工前得设计阶段必须对土方量进行预算,直接关系到工程的费用概算和方案选优,现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是常遇到的,如何利用现场测出的地形数据或原有的数字地形数据快速而准确计算出土方成了人们日益关心的问题。在 当今社会发展前提下,越来越多未开垦的地区被国家投入大量的建筑施工计划。对于中国西部一直贫穷落后的状况,国家投入大量的金钱进行改善。西部地区“十大工程”,青藏铁路的开工建设;从西气东输,到西电东送工程的稳步实施;从西部地区大规模的机场建设,到铁路、公路建设的全面启动;从大规模的城市基础设施建设,到大面积的退耕还林还草试点。西部开发—这一跨世纪的伟大工程,正在广大西部地区扎扎实实地推进,土方工程是这些项目中的主体部分,每个工程的实施都牵涉到工程费用的概算,对于国家来说,合理安排好各项工程的施工费用是关键,国家每年投入西部开发的费用不计其数,但对于一个发展中的国家来说,经济是发展中的重中之重,对于一个经济赤字的国家来说,发展无从谈起,为了大型施工项目的正常实工,其工程预算是必不可少,这无论对于国家还是个人都同样重要。 研究现状: 自九十年代以来,随着基础建设需求的加大,土方计算越来越受人们的重视,传统的土方计算方法越来越不能满足人们的要求,而伴随着计算机编程技术的飞速发展,通过计算机中的图像处理技术与土方理论的结合已成为现今提高土方量计算精度和效率的新的一个有效途径,与此同时国内的研究学者在提高精度,改进公式方面进行大量探讨。对于传

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

燃气爆炸极限计算方法的研究

燃气爆炸极限计算方法的研究 摘要:分析了影响燃气爆炸极限的因素以及燃气爆炸极限的计算方法和计算误差。指出合理选择可燃气体爆炸极限估算公式应注意的问题,给出了不同使用条件下单一组分燃气和混合燃气的爆炸极限的计算公式。关键词:燃气爆炸极限;影响因素;计算 Study on Calculation Method of Gas Explosion Limits TIAN Guan-san, YU Chang,LI Xing-quan (Institute of Thermal Power Engineering,Shandong University of Architecture and

Engineering,Jinan 250101,China)Abstract:The factors affecting gas explosion limits,the calculation method and the calculation errors of gas explosion limits are analyzed.The problems for attention in reasonably selecting the estimation

for explosion limits of combustible gases are pointed out,and the calculation formulas for explosion limits of single—component gas and multicomponent gas under different utilization conditions are given.Key words:gas

南方CASS计算土方量方法

田面土地平整 项目区整体地势较为平坦,所以土地平整土方量计算方法采用三角网法,尽量依据自然地形、地势,合理设计高程,使挖填方量最小,同时满足机械作业、灌排、农作物耕作的要求。 本着满足土地平整要求的原则,结合实际情况,确定本项目的土地平整方案:项目区地势相对平坦,局部起伏较大,考虑农作物对田块的要求,需要项目区内耕地进行以田块为单元的局部土地平整。 本次规划采用三角网进行土方计算,借助南方CASS软件进行土地平整工程土方辅助计算。经过与实际工程的对比分析发现,运算结果与实际工程相差不大,能够满足项目需要。 土方计算的具体步骤如下: 1、输入地形图:首先要有数字化的地形图(有三维标高),如果等高线没有三维高程,可以使用【原始数据】→【地形数据】→【无高程等高线转换】功能来输入三维标高,如果离散点只是文字,可以使用【原始数据】→【地形数据】→【数据转换】---【高程点转换】功能将文字转成离散点。然后使用【原始数据】→【地形数据】→【等高线离散】将等高线离散化。 2、确定计算范围:使用【绘制区域】绘制出要计算土方的区域范围,使用【划分区块】功能将区域划分为一个或多个区块。 3、自动布置三角网:使用【自动布置三角网】绘制出三角网。三角网可以按自然离散点来布置,也可以按设计离散点来布置;区块边界插点间距可以自己输入,布置后可通过【内插三角网】、【调整三角网】、【删除三角网】、【调整三角点位置】功能对三角网进行调整。 4、采集自然标高:使用【采集自然标高】功能采集出每一个三角点的自然标高。 5、设计标高:设计标高可以通过【采集设计标高】、【优化设计标高】或【输入设计标高】等功能来获得。 6、绘制土方零线。 7、计算土方量:使用【计算土方量】功能来计算土方量。 按照规划设计规范,项目区应选取不小于项目建设规模5%的田块作为典型

土方开挖工程量计算公式资料讲解

土方开挖工程量计算公式 圆柱体:体积=底面积×高 长方体:体积=长×宽×高 正方体:体积=棱长×棱长×棱长. 锥体: 底面面积×高÷3 台体: V=[ S上+√(S上S下)+S下]h÷3 球缺体积公式=πh²(3R-h)÷3 球体积公式:V=4πR³/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 ------ 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D -对角线长α-对角线夹角S=dD/2?sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sin α梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C =πd=2πr S=πr2=πd2/4 扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S =πr2×(a/360) 弓形l-弧长S=r2/2?(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2?[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环R-外圆半径S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆D-长轴S=πDd/4 d-短轴 土建工程师应掌握的数据2010-03-27 11:05 12墙一个平方需要64块标准砖 18墙一个平方需要96块标准砖 24墙一个平方需要128块标准砖 37墙一个平方需为192块标准砖 49墙一个平方需为256块标准砖 计算公式:

各常见气体爆炸极限

常见可燃性气体爆炸极限 三氯氢硅SiHCl3 1. 别名?英文名

硅氯仿、硅仿、三氯硅烷;Trichlorosilane 、Silicochloroform . 2. 用途 单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。 3. 制法 (1) 在高温下Si 和HCl 反应。 (2) 用氢还原四氯化硅(采用含铝化合物的催化剂) 。 4. 理化性质 分子量:135.43 熔点(101.325kPa) : -134C ;沸点(101.325kPa) : 31.8 C;液体密度(0 C): 13 50kg/m3;相对密度(气体,空气=1): 4.7 ;蒸气压(-16.4 C) : 13.3kPa ; (14. 5C) : 53.3kPa ;燃点:-27.8 C;自燃点:104.4 C;闪点:-14C ;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。在空气中极易燃烧,在-18C以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl 和Cl2: SiHCI3 O2-SiO2 HCI CI2 ;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,在900C时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。 遇潮气时发烟,与水激烈反应:2SiHCI3 3H2O—- (HSiO)2O 6HCI ; 在碱液中分解放出氢气:SiHCl3 3NaOH H2O—-Si (OH)4 3NaCl H2 ; 与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷: SiHCl3 CH三CH一—CH2CHSiCl3、SiHCl3 CH2=CH2-->CH3CH2SiCl3 在氢化铝锂、氢化硼锂存在条件下,SiHCl3 可被还原为硅烷。容器中的液态Si HCl3 当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 5. 毒性 小鼠-吸入LC50 1.5?2mg/L 最高容许浓度:1mg/m3 三氯硅烷的蒸气和液体都能对眼睛和皮肤引起灼伤,吸入后刺激呼吸道粘膜引起各种症状(参见四氯化硅)。 6. 安全防护 液体用玻璃瓶或金属桶盛装,容器要存放在室外阴凉干燥通风良好之处或在易燃液体专用库内,要与氧化剂、碱类、酸类隔开,远离火种、热源,避光,库温不宜超过25 r。可用氨水探漏。 火灾时可用二氧化碳、干石粉、干砂,禁止用水及泡沫。废气可用水或碱液吸收。 三氯硅烷有水分时腐蚀性极强。可用铁、镍、铜镍合金、镍钢、低合金钢,不能用铝、铝合金。可以用聚四氟乙烯、聚三氟氯乙烯聚合体、氟橡胶、聚氯乙烯、聚乙烯、玻璃等。

爆炸极限浓度

爆炸极限浓度2007-08-01 13:29 可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限和高于爆炸上限浓度时,既不爆炸,也不着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m3来表示的,例如铝粉的爆炸极限为40g/m3。 爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:

(1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: CαHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度 X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度 (2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L下——可燃性混合物爆炸下限;

爆炸极限计算

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用C αHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: C αHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在 空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L ——可燃性混合物爆炸下限; 下 L ——可燃性混合物爆炸上限; 上 n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2: 表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

混合气体的爆炸极限怎么计算

爆炸极限的计算 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按%计,c0可用下式确定 c0=( n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4 2O2→CO2 2H2O 此时n0=2 则L下=×( 2)=由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的

体积分数,则: LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%) 此定律一直被证明是有效的。 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1 V2/L2 …… Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。 Lm=100/(80/5 15/ 4/ 1/)= 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:

土方量计算方法及算例

土方量的计算方法 及算例 姓名:冯鹏波 班级:装备0802 学号:200806080923

摘要: 土方量的计算在工程测量中经常遇见,如道路设计,土地平整,矿场开采等,都需要精确地计算出其土方量。土方量计算是这些工程设计的一个重要组成部分,直接关系到工程造价,但它的精度如何,误差有大却很难直接检核出来。本文列述一些常见的计算方法和一些算例。 土方量的计算是建筑工程施工的一个重要步骤。工程施工前的设计阶段必须对土石方量进行预算,它直接关系到工程的费用概算及方案选优。在现实中的一些工程项目中,因土方量计算的精确性而产生的纠纷也是经常遇到的。如何利用测量单位现场测出的地形数据或原有的数字地形数据快速准确的计算出土方量就成了人们日益关心的问题。比较经常的几种计算土方量的方法有:方格网法、等高线法、断面法、DTM法、区域土方量平衡法和平均高程法等。 关键字:土方量的计算方格网法断面法 DTM法

目录 第一章土方外业测量方法及精度比较 (4) 1.1 水准仪法 (4) 1.2 经纬仪法 (4) 1.3 全站仪法 (5) 第二章土方量计算方法 (6) 2.1 断面法 (6) 2.2 方格网法 (6) 2.3 DTM法(不规则三角网法) (10) 第三章土方量计算算例及方法比较 (14) 3.1 实例计算 (14) 3.2 比较分析 (17) 第四章全文总结 (20) 参考文献 (21)

第一章 土方外业测量方法及精度比较 在土地平整中通常需要确定地面高程、施工范围和计算土方量等,以便控制施工进度。土地平整测量外业常采用水准仪、经纬仪和全站仪的测量仪器,内业计算有方格网法、断面法、等高线法、DTM 法等方法。采用不同的测量计算方法会有不同的结果,可见选择合适的测量计算方法有利于提高平整结果,提高精度和速度,甚至可以减少纠纷。 土方量的误差主要是在外业中产生,即主要是由高程测量中误差m h 和面积测量中误差m s 造成。在相同观测条件下,4个方格顶点高程测量精度是相同的,则平均高程测量中误差m h 按如下计算: 2 m n m m h h h == (1-1) 此外方格面积测量的中误差(m S )主要是由距离误差(m D )造成,因此按如下公式计算: D D m 2m g ?= (1-2) 根据误差传播定律,土方量的中误差(m v )按如下公式计算: 2h 22222h 22S 2m m h 162 1m S m h m S D D V +± =+±=)()( (1-3) 1.1水准仪法 用5m 塔尺将现场划分成若干个边长是五米的正方形方格,用水准仪测量每个方格定点的高程,按照40m 的设计高程用方格法计算土方量。 S3级微顷水准仪毎站水准测量高差(或高程)的精度为±2.4mm 。另外,水准仪测量的距离通常用皮尺丈量,其精度为±100mm ,因此计算出土方量中误差为±10.0m 3,相对中误差为1/25。 1.2经纬仪法 用经纬仪按照地形测量(比例尺为1:500)的要求,将现场测绘成地形图,在地形图上用方格法(边长为5m )手工计算土方量。 J6经纬仪测量的视距精度约为1/500,距离中误差为±200mm ,测量单点高程的精度为±60mm 3。经纬仪采集点位数据展绘在图纸上画上方格网,根据碎步点高程通过目估内插法确定方格顶点的高程。方格顶点的高程精度取决于碎步点的高程,也与测量员的站尺位置、数量、环境条件有关,其主要误差包括地形点高程测量误差、地面概括误差和平面位移误差。经纬仪测绘1:500 比例尺地形图后,对于坡度为15o的坡地,地面概括误差为±0.23m,平面位移误差为±0.17m 。由误差传播定律得出地形图上方格顶点高程中误差为±0.29m 。因此用土方量的中误差计算公式,可得出经纬仪测量计算土方量的中误差为±20.0m 3,相对中误差约为1/12。

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为12.5%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显着提高。值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。 (6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸,2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。 各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。 火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

土方量计算方法

土方量计算方法 现在说到土方量结算,绝大多数土木行业的人都说某某软件很方便,但是我要问到手算会吗,大多数人都会支支吾吾,虽然手算确实不现实,但是我们做为专业人员,总不能沦为软件使用者吧?其中的原理大家还是需要明白的。 一、土方量计算 方格方法计算场地平整土方量步骤如图1-1所示。

图1-1 方格网法计算场地平整土方量步骤(一)读识方格网图 图1-2 方格方法计算土方工程量图(二)确定场地设计标高 1.确定场地设计标高需要考虑的因素(1)满足生产工艺和运输的要求。(2)尽量利用地形,减少挖填方数量。

(3)争取在场区内挖填平衡,降低运输费。 (4)有一定泄水坡度,满足排水要求。 2.初步计算场地设计标高(按挖填平衡) 计算的场地设计标高: 式中,H1、H2、H3、H4分别为一个方格、两个方格、三个方格、四个方格共用角点的标高(m),如图1-3b所示。 (三)场地各方格角点的施工高度的计算

施工高度为场地各方格角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度。各方格角点的施工高度按下式计算: 式中,hn为各角点的施工高度,即填挖高度(以“+”为填,“-”为挖)(m); n为方格的角点编号(自然数列1,2,3,…,n); Hn为角点的设计标高(m),若无泄水坡时,即为场地的设计标高(m); H为角点原地面标高(m)。 (四)计算“零点”位置,确定“零线” 方格边线一端施工标高为“+”,若另一端为“-”,则沿其边线必然有一处不挖不填的点,即“零点”,如图1-5所示。零点位置按下式计算:

式中,x1、x2为角点至零点的距离(m); h1、h2为相邻两角点的施工高度(均用绝对值)(m);a为方格网的边长(m)。 (五)计算方格土方工程量的计算 1.方格的4个角点全为填方或挖方 方格的4个角点全为填方或挖方,如图1-7所示。

影响气体混合物爆炸极限的因素

影响气体混合物爆炸极 限的因素 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

影响气体混合物爆炸极限的因素 :可燃物质(、蒸气和)与空气(或)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为,或。例如与空气混合的爆炸极限为%~74%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限时不爆炸也不着火;在高于爆炸上限同样不燃不爆。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 影响气体混合物爆炸极限的因素:温度、氧含量、惰性介质、压力、容器或管道直径、着火源(点火能量) 1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显着,因为惰性气体浓度加大,表示氧的浓度相对减小,

相关文档
最新文档