多元时间序列建模分析

多元时间序列建模分析
多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4

1968 57.6 50.9

1969 59.8 47.2

1970 56.8 56.1

1971 68.5 52.4

1972 82.9 64.0

1973 116.9 103.6

1974 139.4 152.8

1975 143.0 147.4

1976 134.8 129.3

1977 139.7 132.8

1978 167.6 187.4

1979 211.7 242.9

1980 271.2 298.8

1981 367.6 367.7

1982 413.8 357.5

1983 438.3 421.8

1984 580.5 620.5

1985 808.9 1257.8

1986 1082.1 1498.3

1987 1470.0 1614.2

1988 1766.7 2055.1

1989 1956.0 2199.9

1990 2985.8 2574.3

1991 3827.1 3398.7

1992 4676.3 4443.3

1993 5284.8 5986.2

1994 10421.8 9960.1

1995 12451.8 11048.1

1996 12576.4 11557.4

1997 15160.7 11806.5

1998 15223.6 11626.1

1999 16159.8 13736.5

2000 20634.4 18638.8

2001 22024.4 20159.2

2002 26947.9 24430.3

2003 36287.9 34195.6

2004 49103.3 46435.8

2005 62648.1 54273.7

2006 77594.6 63376.9

2007 93455.6 73284.6

2008 100394.9 79526.5

run;

proc gplot;

plot x*t=1 y*t=2/overlay;

symbol1c=black i=join v=none;

symbol2c=red i=join v=none w=2l=2;

run;

proc arima data=example6_4;

identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1);

run;

proc arima;

identify var=y crrosscorr=x;

estimate methed=ml input=x plot;

forecast lead=0id=t out=out;

proc aima data=out;

identify varresidual stationarity=(adf=2); run;

注:实验报告电子版命名方式为:学号+实验名称,实验结束后发至:443723360@https://www.360docs.net/doc/002147596.html,邮箱。

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析与建模简介

第五章时间序列分析与建模简介 时间序列建模( Modelling viatime series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box和Jenkins。本章扼要介绍吴宪民和Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型ARMA (n,m) 为Φ(z-1)xk= θ(z-1)a k式

(5-1-1) 其中:Φ (z -1) = 1- φ1 z -1-…- φn z-n θ (z -1) = 1- θ1 z -1-…- θm z-m 离散传函 式(5-1-2) 为与参考书符号一致,以下用B表示时间后移算子 即: B xk = x k -1 B即z -1,B 2即z -2… Φ (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;θ(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数Gi 格林函数G i 用以把x t 表示成a t 及at 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.A R(1): xt - φ1x t-1 = a t x B B B a B B a a t t t j t j j ==-=+++=-=∞∑θφφφφφ()()()1111112210 )()()(111---=z z z G φθ∑∞=-=0j j t j t a G x

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

时间序列建模案例VAR模型分析报告与协整检验

传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构性方法来建立各个变量之间关系的模型。本章所要介绍的向量自回归模型(vector autoregression ,VAR)和向量误差修正模型(vector error correction model ,VEC)就是非结构化的多方程模型。 向量自回归(VAR)是基于数据的统计性质建立模型,VAR 模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。VAR 模型是处理多个相关经济指标的分析与预测最容易操作的模型之一,并且在一定的条件下,多元MA 和ARMA 模型也可转化成VAR 模型,因此近年来VAR 模型受到越来越多的经济工作者的重视。 VAR(p ) 模型的数学表达式是 t=1,2,…..,T 其中:yt 是 k 维内生变量列向量,xt 是d 维外生变量列向量,p 是滞后阶数,T 是样本个数。k ?k 维矩阵Φ1,…, Φp 和k ?d 维矩阵H 是待估计的系数矩阵。εt 是 k 维扰动列向量,它们相互之间可以同期相关,但不与自己的滞后值相关且不与等式右边的变量相关,假设 ∑ 是εt 的协方差矩阵,是一个(k ?k )的正定矩阵。 11t t p t p t t --=+???+++y Φy Φy Hx ε

注意,由于任何序列相关都可以通过增加更多的yt 的滞后而被消除,所以扰动项序列不相关的假设并不要求非常严格。 以1952一1991年对数的中国进、出口贸易总额序列为例介绍VAR 模型分析,其中包括;① VAR 模型估计;②VAR 模型滞后期的选择;③ VAR 模型平隐性检验;④VAR 模型预侧;⑤协整性检验 VAR 模型佑计 数据 εε εε

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

多元时间序列建模分析

多元时间序列建模分析 应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析与实验结果等): 时序图如下: 单位根检验输出结果如下: 序列x的单位根检验结果: 序列y的单位根检验结果: 序列y与序列x之间的相关图如下:

1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64、0 1973 116、9 103、6 1974 139、4 152、8 1975 143、0 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8 1981 367、6 367、7 1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 808、9 1257、8 1986 1082、1 1498、3 1987 1470、0 1614、2 1988 1766、7 2055、1 1989 1956、0 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2);

时间序列分析-降水量预测模型

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 87 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日

1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下: 1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画; 3、(,)ARMA p q 混和模型: 11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别

数学建模spss-时间预测-心得总结及实例

《一周总结,底稿供参考》 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。 当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!

这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH 和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝??此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在? 这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。

此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 spss提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA ?指数平滑法 指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。

实验三 SPSS 多元时间序列分析方法

实验三多元时间序列分析方法 1.实验目的 了解协整理论及协整检验方法;掌握协整的两种检验方法:E-G两步法与Johansen方法;熟悉向量自回归模型VAR的应用;掌握误差修正模型ECM的含义及检验方法;掌握Granger因果关系检验方法。 2.实验仪器 装有EViews7.0软件的微机一台。 3.实验内容 【例6-2】 时间与M2之间的关系首先用单位根检验是否为平稳序列。原假设为H0:非平稳序列H1:平稳序列。用Eviews软件解决该问题,得到如下结果:Null Hypothesis: M2 has a unit root Exogenous: None Lag Length: 3 (Automatic - based on SIC, maxlag=13) t-Statistic Prob.* Augmented Dickey-Fuller test statistic 5.681169 1.0000 Test critical values: 1% level -2.579052 5% level -1.942768 10% level -1.615423

*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(M2) Method: Least Squares Date: 04/16/13 Time: 10:36 Sample (adjusted): 1991M05 2005M01 Included observations: 165 after adjustments Variable Coefficien t Std. Error t-Statistic Prob. M2(-1) 0.013514 0.002379 5.681169 0.0000 D(M2(-1)) -0.490280 0.074458 -6.584611 0.0000 D(M2(-2)) 0.070618 0.083790 0.842797 0.4006 D(M2(-3)) 0.387086 0.073788 5.245935 0.0000 R-squared 0.480147 Mean dependent var 1440.03 7 Adjusted R-squared 0.470461 S.D. dependent var 1509.48 9 S.E. of regression 1098.447 Akaike info criterion 16.8651 3

时间序列分析实例分析上机报告

《时间序列分析》期末上机实践报告 课程名称:时间序列分析 学期: 学院: 专业: 姓名: 学号: 日期:

《时间序列分析》期末课程上机报告 一、ARMA模型 1.数据来源及其背景: 澳门整体建筑工人平均日薪的同期变动率,1988第一季度至2003第二季度,并利用ARMA模型建模及预测未来5个季度的同期变动率。 2.时序图: 如图所示:该序列没有明显的不平稳性 3.白噪声: P值小于0.05属于非白噪声序列 4.样本自相关图 自相关系数基本0值附近波动,可以认为有短期相关性。序列平稳。

5.样本偏自相关图 此图为截尾 6.预测 可得出之后5个季度的同期变动率:14.22 10.82 13 16.35 17.59 7.模型检验 P值小于0.05 建模成功拟合模型为AR(2)模型

8.拟合预测图 图形拟合得十分不错 9.程序 data nicole1_1; input cjj@@; time=_n_; cards; 20.71 25 23.23 3.3 18 14.94 12.19 46.13 84.03 124.32 -7.1 -77 -48.26 25.01 24.92 47.81 23.78 4.25 3.92 10.09 31.39 36.09 24.78 7.56 17.95 20.54 8.97 7.42 5.31 0.1 -2.52 -2.69 6.61 9.46 14 20.15 11 4.1 1.78 -3.54 11.76 5 9.67 16.68 5.82 15.84 26 33.91 50 16.16 16.08 20.75 4.69 25.99 11.5 15.45 2.51 28.42 22.99 ; proc gplot data=nicole1_1; plot cjj*time=1; symbol1c=red I=join v=star; proc arima data= nicole1_1; identify var=cjj nlag=14; estimate p=2; forecast lead=5id=time out=results; proc gplot data=results; plot cjj*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;

时间管理-时间序列分析(数学建模)

第二讲 时间序列分析 1

1 时间序列成分分析 1.1 时间序列的构成因素 时间序列中的数据(也称为观测值),总是由各种不同的影响因素共同作用所至;换一句话说,时间序列中的数据,总是包含着不同的影响因素。我们可以将这些影响因素合并归类为几种不同的类型,并对各种类型因素的影响作用加以测定。对时间序列影响因素的归类,最常见的是归为3类: z长期趋势(SPSS的名称为Smoothed Trend-Cycle, 2

缩写stc),长期趋势是一种对事物的发展普遍和长期起作用的基本因素。受长期趋势因素的影响,事物表现出在一段相当长的时期内沿着某一方向的持续发展变化。这种变化最常见的是一种向上的发展,对于经济现象而言,通常由各种经济投入(如技术进步、劳动力、资金等)所引起,因此,长期趋势有时也可视作经济成长的因素。 3

z季节周期因子(SPSS的名称为Season Factors Component), 缩写saf,季节周期也称为季节变动,是一种现象以一定时期(如一年、一月、一周等)为一周期呈现较有规律的上升、下降交替运动的影响因素。 通常表现为现象在一年内随着自然季节的更替而发生的较有规律的增减变化(如某些季节性商品的销售额、旅游客流量、各月的降雨量等)。形成季节周期的原因, 4

除了自然因素,也有人为和社会因素。 z不规则变动因子(SPSS的名称为Irregular Component, 缩写err)。不规则变动是一种偶然性、随机性、突发性因素。受这种因素影响,现象呈现时大时小、时起时伏、方向不定、难以把握的变动。这种变动不同于前三种变动,它完全无规律可循,无法控制和消除,例如战争、自然灾害等。 5

多元时间序列建模分析

应用时间序列分析实验报告 实验目的: 1熟悉单位根检验; 2、掌握ARIMAX模型建模 涉及实验的相关情况介绍(包含使用软件或实验设备等情况): SAS、excel 表格、word。 实验内容: 1 我国1950-2008年进出口总额数据仲位:亿元)如表6-15所示表6-15 年份出口总额进口总额 1950 20 21、3 1951 24、2 35、3 1952 27、1 37、5 1953 34、8 46、1 1954 40 44、7 1955 48、7 61、1 1956 55、7 53 1957 54、5 50 1958 67 61、7 1959 78、1 71、2 1960 63、3 65、1 1961 47、7 43 1962 47、1 33、8 1963 50 35、7 1964 55、4 42、1 1965 63、1 55、3 1966 66 61、1 1967 58、8 53、4 1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64 1973 116、9 103、6 1974 139、4 152、8 1975 143 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8

1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 80& 9 1257、8 1986 1082、1 1498、3 1987 1470 1614、2 1988 1766、7 2055、1 1989 1956 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 (1)使用单位根检验,分别考察进口总额与出口总额序列的平稳。 (2)分别对进口总额序列与出口总额数据拟合模型。 (3)考察这两个序列就是否具有协整关系。 (4)如果这两个序列具有协整关系,请建立适当模型拟合它们之间的相关关系 (5)构造该协整模型的误差修正模型。

时间序列模型分析报告地各种stata命令

时间序列模型 结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。在一些大规模的联立方程中,情况更是如此。而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。 一、基本命令 1.1时间序列数据的处理 1)声明时间序列:tsset 命令 use gnp96.dta, clear list in 1/20 gen Lgnp = L.gnp tsset date list in 1/20 gen Lgnp = L.gnp 2)检查是否有断点:tsreport, report use gnp96.dta, clear tsset date tsreport, report drop in 10/10 list in 1/12 tsreport, report tsreport, report list /*列出存在断点的样本信息*/ 3)填充缺漏值:tsfill tsfill tsreport, report list list in 1/12 4)追加样本:tsappend use gnp96.dta, clear tsset date list in -10/-1 sum tsappend , add(5) /*追加5个观察值*/ list in -10/-1 sum

典型时间序列模型分析..doc

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

相关文档
最新文档