计算机图形学实验报告—正文

计算机图形学实验报告—正文
计算机图形学实验报告—正文

设计1 环境设置 (实验环境 microsoft visual studio 2010) 一、实验目的

1.掌握图形驱动程序及图形模式的基本概念,掌握图形初始化方法;

2.掌握进行图形程序设计的基本方法;

3.了解的图形功能,了解常见的图形库函数;

二、实验要求

1.图形系统初始化;

2.综合应用图形库函数,进行图形设计与绘制;

3.熟悉开发环境,要求会对程序进行编辑,编译,调试

三、设计说明

图形系统初始化以及主要代码:

#include "stdafx.h"

#include

#include

using namespace std;

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)//回调函数

{

HDC hdc ; //设备句柄

PAINTSTRUCT ps ; //绘图结构

RECT rect,rc ; //矩形结构

HBRUSH hBrush; //刷子

HPEN hpen; //笔

SYSTEMTIME tm; //定义时间结构体变量

switch (message) //从回调函数的参数据中传入的值,是系统执行回调函数之后的结果体现

{

case WM_PAINT: //画矩形

hdc = BeginPaint (hwnd, &ps) ;//准备指定的窗口来重绘并将绘画相关的信息放到一个

PAINTSTRUCT结构中

SetTextColor(hdc,RGB(0,255,255));//设置指定设备环境(HDC)的字体颜色

TextOut(hdc,10,160, TEXT("画出直线!"),16);//该函数用当前选择的字体、背景颜色和正文颜色将一个字符串写到指定位置

MoveToEx(hdc,200,100,NULL);//将当前绘图位置移动到某个具体的点,同时也可获得之前位置的坐标。开始画线,从100,100开始

LineTo(hdc,300,400);//用当前画笔画一条线,从当前位置连到一个指定的点。这个函数调用完毕,当前位置变成x,y

/*以下是画笔的用法,函数原型是BOOL CreatePen(int nPenStyle, int nWidth, COLORREF crColor); 功能是:用指定的样式、宽度和颜色创建一个画笔

参数(1)nPenStyle指定画笔样式,可以是下述常数之一,PS_SOLID画笔画出的是实线;PS_DASH 画笔画出的是虚线(nWidth必须是1);PS_DOT画笔画出的是点线(nWidth必须是1);

PS_DASHDOT画笔画出的是点划线(nWidth必须是1);PS_DASHDOTDOT画笔画出的是点-点-划线(nWidth必须是1);PS_NULL画笔不能画图;PS_INSIDEFRAME画笔在由椭圆、矩形、圆

角矩形、饼图以及弦等生成的封闭对象框中画图。如指定的准确RGB颜色不存在,就进行抖动处理。

参数(2)nWidth 以逻辑单位表示的画笔的宽度

参数(3)crColor画笔的RGB颜色

返回值:如函数执行成功,就返回指向新画笔的一个句柄;否则返回零。一旦不再需要画笔,记得用DeleteObject函数将其删除。*/

hpen=CreatePen(PS_SOLID,5,RGB(0,255,0));//获得刷子

SelectObject(hdc,hpen);//选择你获得的刷子。该函数选择一对象到指定的设备上下文环境中,该新对象替换先前的相同类型的对象。原型:HGDIOBJ SelectObject(HDC hdc, HGDIOBJ hgdiobj)

MoveToEx(hdc,200,200,NULL);//刷子的起点

LineTo(hdc,500,500);//刷子的结束点

/*下面的函数取得客户端的矩形,rect和rc为用户定义的矩形结构变量。该函数获取窗口客户区的坐标。客户区坐标指定客户区的左上角和右下角。由于客户区坐标是相对窗口客户区的左上角而言的,因此左上角坐标为(0,0),函数原型BOOL GetClientRect(HWND hWnd,LPRECT lpRect );第一个参数为窗口句柄,第二个参数为客户区坐标*/

GetClientRect (hwnd, &rect);

rc.left=rect.left+300;//客户端矩形的左上方点加400像素

rc.top=rect.top+300;

rc.right=rect.right-50;

rc.bottom=rect.bottom-20;

/*下面的函数创建一个具有指定颜色的逻辑刷子。函数原理:HBRUSH CreateSolidBrush(COLORREF crColor);参数crColor:指定刷子的颜色。返回值:如果该函数执行成功,那么返回值标识一个逻辑实心刷子;如果函数失败,那么返回值为NULL。实心刷子实际上就是指系统用来绘制要填充图形的内部区域的位图。在应用程序调用CreateSolidBrush创建刷子以后,可以通过调

用SelectObject函数把该刷子选入设备环境。*/

hBrush=CreateSolidBrush(RGB(0,255,255));//创建刷子,并变化矩形中的颜色

FillRect(hdc,&rc,hBrush);//用指定的画刷填充矩形,此函数包括矩形的左上边界,但不包括矩形的右下边界。原型:int FillRect(HDC hdc, CONST RECT *lprc, HBRUSH hbr)

/*以下函数用来设置背景色,hDC是当前设备的句柄,mode是要设置的模式,其值可以为OPAQUE 和TRANSPARENT。比如按钮的文字颜色是黑色的,而背景是灰色的,这就需要使用SetBkMode函数来设置DrawText函数的输出方式,OPAQUE的方式是用当前背景的画刷的颜色输出显示文字的背景,而TRANSPARENT是使用透明的输出,也就是文字的背景是不改变的。*/

SetBkMode(hdc,TRANSPARENT);//设置背景为透明色

/*以下函数用来设置指定设备环境(HDC)的字体颜色,原型为DWORD SetTextColor (HDC, DWORD),其中DWORD是关于颜色的参数,常用RGB()获取。当然设备环境(HDC)要通过

BeginPaint(HWND,&PAINTSTRUCTURE)或GetDC(HWND)获得。*/

SetTextColor(hdc,RGB(255,255,0));//设置文本的颜色

/*以下函数在指定的矩形里写入格式化的正文,根据指定的方法对正文格式化(扩展的制表符,字符对齐、折行等)。 */

DrawText(hdc, TEXT ("画出矩形!"), -1, &rc,DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;//单行模式|中心对齐|垂直对齐

//Rectangle(hdc,0,0,50,50);//矩形

//FillRect(hdc,50,50,300,300);//填充矩形

EndPaint (hwnd, &ps) ;//结束画

return 0;

case WM_DESTROY://关闭窗口时的操作

PostQuitMessage (0) ;//弹出一个退出消息框

return 0 ;

}

return DefWindowProc (hwnd, message, wParam, lParam) ;

}

四、运行结果及分析

五、总结

通过实验一,了解了如用使用基本函数绘制简单的图形,如在指定的位置输出基本图

形线,方形的绘制。

设计2 直线生成算法

一、实验目的

1. 通过实现中点直线生成算法,对算法原理加深理解。

2. 对程序以及函数的细节有了更深入的把握。

二、实验要求

实现一个直线的中点生成算法的程序

三、设计说明

1.算法主要思想:

讨论斜率k ∈[1,+∞)上的直线段的中点算法。

对直线01p p ,左下方的端点为0p (x0,y0),右上方的端点为1p (x1,y1)。直线段的方程为: y m x B =+?y

y x B x y y x x B x

?=

+??=?+?? (,)0F x y xy yx xB ?=?-?-?= 现在假定已求得像素(,,i r i x y ),则如图得 ,,11

(,]22

i i r i r x x x ∈-

+ 由于直线的斜率k ∈[1,+∞),故m=1/k ∈(0,1],则

1,,13(,]22i i r i r x x x +∈-+ 在直线1i y y =+上,区间,,13

(,]22

i r i r x x -+内存在两个像素NE 和E 。根据取整原则,当11(,)i i x y ++在

中点M 11

(,)2

i i x y ++右方时,取像素NE ,否则取像素E ,即

,11,,1()()01()()0

i r i i r i r i x E F M x x x NE F M x +++?

?≤=?

+?>?i i 点当(,y +1)在左方时点当(,y +1)在右方时

若取2()i d F M =,则上式变为 ,1,,()01(0

i r i i r i r i x E d x x NE d +?

≤=?

+>?点当点)当

计算i d 的递推公式如下:

,1

1,12[(2)()]012

2(,2)0

122[(2)(1)]

2

i i r i i i i i i i r

x y y x xB d d F x y d x y y x xB ++?

?+-?+-??≤?=++=?

>??+-?++-???

=202()

i i i i d x d d x y d +?≤?

?

+?-?>?

算法的初始条件为:

00,00,0(,)(0,0)1

2(,1)22

r r x y x y d F x y x y =?

?

?=++=?-???

2.主要程序代码: 建立成员函数:

void MidPointLine4(CDC*pDC,int x0,int y0,int x1,int y1,int color) { /*假定x01*/

int dx,dy,incrE,incrNE,d,x,y; dx=x1-x0; dy=y1-y0; d=2*dx-dy; incrE=2*dx;

incrNE=2*(dx-dy); x=x0;y=y0;

pDC->SetPixel(x,y,color); while (x

{ d+=incrNE; x++; } y++;

p->SetPixel(x,y,color);

} }

编写OnDraw 函数:

void CMy1_1View::OnDraw(CDC* pDC) { CMy1_1Doc* pDoc = GetDocument(); ASSERT_V ALID(pDoc); // TODO: add draw code for native data here MidPointLine4(pDC,200,200,300,300,RGB(0,0,0));

MidPointLine4(pDC,300,200,400,300,RGB(0,0,0));

MidPointLine4(pDC,400,200,500,300,RGB(0,0,0));

}

四、运行结果及分析

编译运行程序得到如下结果:

五、总结

通过实验二,更透彻的理解了课本上的中点画线函数,学习了一些相关的内容,进一步的了解图形学的结构和思想。

设计3 圆的生成算法

一、实验目的

1、通过实现圆的中点生成算法,深入理解图形学算法的实现

2、通过实现,可以更加清楚的理解算法的流程

二、实验要求

实现一个圆的中点生成算法的程序

三、设计说明

1.算法思想

生成圆弧的中点算法和上面讲到的生成直线段的中点算法类似,考虑第一象限

内[0,]

x R ∈的八分之一圆弧段。经过计算,得出判别式的递推公式为: 123

02()50

i i i i i i d x d d d x y d +++≤?=?

+-+>?

这两个递推公式的初值条件为:

00,0(,)(0,)

5/4r

x y R d R =??=-?

2.主要代码:

void CMy2_9View::MidPointEllipse(CDC *pDC, double a, double b, int color) {

double x,y,d,xP,yP,squarea,squareb; squarea=a*a; squareb=b*b;

xP=(int)(0.5+(double)squarea/sqrt((double)(squarea+squareb))); yP=(int)(0.5+(double)squareb/sqrt((double)(squarea+squareb))); x=0; y=b;

d=4*(squareb-squarea*b)+squarea; pDC->SetPixel(x,y,color); while(x<=xP)

{

if(d<=0) d+=4*squareb*(2*x+3);

else

{d+=4*squareb*(2*x+3)-8*squarea*(y-1);

y--;}

x++;

pDC->SetPixel(x,y,color);

}

x=a;

y=0;

d=4*(squarea-a*squareb)+squareb;

pDC->SetPixel(x,y,color) ;

while(y

{

if(d<=0) d+=4*squarea*(2*y+3);

else

{d+=4*squarea*(2*y+3)-8*squareb*(x-1);

x--; }

y++;

pDC->SetPixel(x,y,color);

}

}

编写OnDraw函数如下:

void CMy2_9View::OnDraw(CDC* pDC)

{

CMy2_9Doc* pDoc = GetDocument();

ASSERT_V ALID(pDoc);

// TODO: add draw code for native data here

MidPointEllipse(pDC,500,300,RGB(0,0,0));

}

四、运行结果及分析

编译运行程序得到如下结果:

五、总结

通过完成中点生成圆的实验,理解了中点生成算法的过程和思想,对图形学中所用算法也有了更深的认识,并且通过从八分圆构造完整圆的过程,学会了图形学算法设计的一种思想。

设计4 扫描线填充算法

一、实验目的

1、通过实现扫描线填充算法,深入理解图形学算法的实现

2、通过实现,可以更加清楚的理解算法的细节

二、实验要求

实现一个扫描线填充算法。

三、设计说明

1、算法原理

扫描线算法的基本思想是将扫描转换多边形的问题分解到一条条扫描线上来考虑。其填充过程为求扫描线与多边形各边的交点,所求的交点按横坐标从小到大排序,将交点两两配对,并填充每一区段(其原理参见教材4.2.2)。

扫描线算法描述如下:

(1)建立边的分类表ET;

(2)将扫描线纵坐标y的初值为ET中非空元素的最小序号;

(3)置活化边表AEL为空;

(4)执行下列步骤直至ET和AEL都为空;

A、如果ET中的第y类非空,则将其中的所有边取出并插入AEL中,在插入过程忠进行排

序;

B、对AEL中的边两两配对,将每对边中x坐标按规则取整,获得有效的填充区段,再填充;

C、将当前扫描线纵坐标y值递增1,即y=1;

D、将AEL中满足y=ymax边删去;

E、对AEL中剩下的每一条边的x递增deltax,即x=x+deltax;

2、主要程序代码

struct point {

int x, y;

};

point ps[110] = {{200, 40}, {440, 120}, {440, 320}, {200, 200}, {80, 280}, {80, 80}};

int n = 6;

//活动边类型

struct AET {

double x;

double dx;

int y;

};

//存储活动边链表类型

struct link {

int L[110];

int R[110];

AET key[110];

int tot;

//初始化链表

void init()

{

memset(L, 0, sizeof(L));

memset(R, 0, sizeof(R));

tot = 0;

}

//插入一个活动边到最后

void add(double x, double y, int z) {

++tot;

key[tot].x = x;

key[tot].dx = y;

key[tot].y = z;

R[L[0]] = tot;

R[tot] = 0;

L[tot] = L[0];

L[0] = tot;

}

//在pi位置后插入一个活动边

void insert(int pi, AET info)

{

++tot;

key[tot] = info;

R[tot] = R[pi];

L[tot] = pi;

L[R[pi]] = tot;

R[pi] = tot;

}

//删除活动边pi

void dlink(int pi)

{

R[L[pi]] = R[pi];

L[R[pi]] = L[pi];

}

void print()

{

char str[110];

for (int i = R[0]; i != 0; i = R[i]) {

sprintf(str, "%.2f %.2f %d\n", key[i].x, key[i].dx, key[i].y);

MessageBox(NULL, str, "", MB_OK);

}

}

};

link aet, net[510];

bool cmp(const AET &cmp1, const AET &cmp2)

{

return cmp1.x < cmp2.x;

}

void solve(HDC hdc)

{

//清空当前边链表

memset(net, 0, sizeof(net));

//遍历多边形的边,将边存入相应的边链表中

for (int i = 0; i < n; i++) {

point p1 = ps[i], p2 = ps[(i + 1) % n];

if (p1.y > p2.y) {

point tmp = p1;

p1 = p2;

p2 = tmp;

}

double y;

if (p2.y == p1.y) {

y = 0;

} else {

y = (double)(p1.x - p2.x) / (p1.y - p2.y);

}

net[p1.y].add(p1.x, y, p2.y);

}

aet.init();

AET tmp[210];

//遍历扫描线

for (int y = 0; y < 500; y++) {

//将新边插入到活动边表中

for (int i = net[y].R[0]; i != 0; i = net[y].R[i]) { /*int j = aet.R[0];

while (j != 0 && aet.key[j].x < net[y].key[i].x) { j = aet.R[j];

}*/

aet.insert(aet.L[0], net[y].key[i]);

}

//将活动边表中的边取出,按x值从小到大排序

int cc = 0;

for (int i = aet.R[0]; i != 0; i = i = aet.R[i]) { tmp[cc++] = aet.key[i];

}

sort(tmp, tmp + cc, cmp);

//将两个一组的点之间填入像素

for (int i = 0; i < cc; i += 2) {

for (int j = tmp[i].x; j <= tmp[i + 1].x; j++) {

SetPixel(hdc, j + 100, 400 - y, RGB(0, 0, 0));

}

}

//删去以到达最终点的边,并且更新未到达最终点边的x值

for (int i = aet.R[0]; i != 0; i = aet.R[i]) {

if (aet.key[i].y == y) {

aet.dlink(i);

} else if (aet.key[i].y > y) {

aet.key[i].x += aet.key[i].dx;

}

}

}

}

四、运行结果及分析

五、总结

扫描线算法是多边形扫描转换的常用算法。扫描线算法充分利用了相邻象素之间的连贯性,避免了对象素的逐点判断和反复求交的运算,达到了减少了计算量和提高速度的目的。

通过完成扫描线算法的实验,我深入理解了扫描线算法的过程和思想,对图形学中所用算法也有了更深的认识。

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学上机实验报告

计算机图形学实验报告 姓名: 学号: 班级:

目录 实验一OpenGL程序结构练习 (3) 实验二基本图形生成 (6) 实验三交互式控制 (9) 实验四图形基本变换 (12) 实验五三维图形生成及显示 (15) 实验六三维图形生成及显示 (19)

实验一OpenGL程序结构练习 【实验目的】 1.熟悉C语言环境下OpenGL的使用方法; 2.了解OpenGL程序的基本结构。 【实验原理】 绝大多数OpenGL程序具有类似的结构,包含下述函数 main(): 定义回调函数,打开一个或多个具有指定属性的窗口,进入事件循环(最后一条可执行语句) init(): 设置状态变量、视图、属性、回调、显示函数、输入和窗口函数#include // glut.h includes gl.h and glu.h void display() { ……} void init() { ……} int main( intargc, char **argv) { ……}

【实验内容】 1.了解程序中各个结构的功能; 2.用OpenGL生成三角形。 【实验步骤及结果】 1.导入OpenGL的glut3 2.lib和glut.h文件:将.lib文件存放到C 语言程序文件夹的Library下,.h文件放到Include下;导入应用程序扩展文件glut32.dll,存放到system文件夹下。 2.打开VC 6.0,新建工程,并命名为text1,如图1. 图 1 3.在工程text1下新建源文件,并命名为text1.cpp。 4.编写代码并编译链接,如图2所示。

计算机图形学实验一

实验一二维基本图元的生成与填充 实验目的 1.了解并掌握二维基本图元的生成算法与填充算法。 2.实现直线生成的DDA算法、中点算法和Bresenham算法。 3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。 二.实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VC++6.0。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现生成直线的DDA算法、中点算法和Bresenham算法。 4.实现圆弧生成的中点算法。 5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。 6.实现一般连通区域的基于扫描线的种子填充算法。 7.将生成算法以菜单或按钮形式集成到用户界面上。 8.直线与圆的坐标参数可以用鼠标或键盘输入。 6. 可以实现任何情形的直线和圆的生成。 实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 直线生成程序设计的步骤如下: 为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。 图1-1 基本图形生成的程序运行界面 2.创建工程名称为“基本图形的生成”单文档应用程序框架

(1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。 (5)在Step 6对话框中单击“完成”按钮,即完成“基本图形的生成”应用程序的所有选项,随后出现工程信息对话框(记录以上步骤各选项选择情况),如图1-2所示,单击“确定”按钮,完成应用程序框架的创建。 图1-2 信息程序基本 3.编辑菜单资源 设计如图1-1所示的菜单项。在工作区的ResourceView标签中,单击Menu项左边“+”,然后双击其子项IDR_MAINFRAME,并根据表1-1中的定义编辑菜单资源。此时VC已自动建好程序框架,如图1-2所示。 表1-1菜单资源表 菜单标题菜单项标题标示符ID 直线DDA算法生成直线ID_DDALINE Bresenham算法生成直线ID_BRESENHAMLINE 中点算法生成直线ID_MIDPOINTLINE 4.添加消息处理函数 利用ClassWizard(建立类向导)为应用程序添加与菜单项相关的消息处理函数,ClassName栏中选择CMyView,根据表1-2建立如下的消息映射函数,ClassWizard会自动完成有关的函数声明。 表1-2菜单项的消息处理函数 菜单项ID消息消息处理函数ID_DDALINE CONMMAN OnDdaline

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

计算机图形学实验报告

计算机图形学 实验报告 姓名:谢云飞 学号:20112497 班级:计算机科学与技术11-2班实验地点:逸夫楼507 实验时间:2014.03

实验1直线的生成 1实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析 实验数据的能力; 编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的 直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记 录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编 制成表格,并绘制折线图比较两种算法的性能。 2实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One(自制平台)。 本实验提供名为 Experiment_Frame_One的平台,该平台提供基本 绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham 算法,并进行分析。 ?平台界面:如错误!未找到引用源。所示 ?设置:通过view->setting菜单进入,如错误!未找到引 用源。所示 ?输入:通过view->input…菜单进入.如错误!未找到引用 源。所示 ?实现算法: ◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)

3实验结果 3.1程序流程图 1)DDA算法流程图:开始 定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增 量xIncre,y增量yIncre ↓ 输入两点坐标x1,y1,x0,y0 ↓ dx=x1-x0,dy=y1-y0; _________↓_________ ↓↓ 若|dx|>|dy| 反之 epsl=|dx| epsl=|dy| ↓________...________↓ ↓ xIncre=dx/epsl; yIncre=dy/epsl ↓ 填充(强制整形)(x+0.5,y+0.5); ↓←←←← 横坐标x+xIncre; 纵坐标y+yIncre; ↓↑ 若k<=epsl →→→k++ ↓ 结束 2)Mid_Bresenham算法流程图开始 ↓ 定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y ↓ 输入x0,y0,x1,y1 ______↓______ ↓↓ 若x0>x1 反之 x=x1;x1=x0;x0=x; x=x0;

计算机图形学上机实验4_实现Bezier曲线和Bezier曲面的绘制

昆明理工大学理学院 信息与计算科学专业操作性实验报告 年级: 10级姓名:刘陈学号: 201011101128 指导教师: 胡杰 实验课程名称:计算机图形学程序设计开课实验室:理学院机房216 实验内容: 1.实验/作业题目:用计算机高级语言VC++6.0实现计算机的基本图元绘制2.实验/作业课时:2学时 3.实验过程(包括实验环境、实验内容的描述、完成实验要求的知识或技能):实验环境:(1)硬件:每人一台PC机 (2)软件:windows OS,VC++6.0或以上版本。 试验内容及步骤: (1)在VC++环境下创建MFC应用程序工程(单文档) (2)编辑菜单资源 (3)添加菜单命令消息处理函数 (4)添加成员函数 (5)编写函数内容 试验要求: (1)掌握Bezier曲线、Bezier曲面、及另一个曲面的算法。 (2)实现对Bezier曲线、Bezier曲面、及另一个曲面。 (3)试验中调试、完善所编程序,能正确运行出设计要求结果。 (4)书写试验报告上交。 4.程序结构(程序中的函数调用关系图)

5.算法描述、流程图或操作步骤: 在lab4iew.cpp文件中添加如下头文件及变量 int flag_2=0; int n_change; #define M 30 #define PI 3.14159 //圆周率 #include "math.h" //数学头文件 在lab4iew.h文件中的public内添加变量: int move; int graflag; void Tiso(float p0[3],float x0, float y0, float p[3]); void OnBezierface(); 在lab4iew.h文件中的protected内添加变量: int n;//控制点数 const int N;//控制点数的上限 CPoint* a;//控制点存放的数组 double result[4][2]; 在lab4iew.cpp文件中的函数Clab4iew::OnDraw(CDC* pDC)下添加如下代码: int i,j; for(i=0;iFillSolidRect(a[i].x-2,a[i].y-2,4,4,RGB(255,55,255)); } pDC->MoveTo(a[0]);

《计算机图形学实验报告》

一、实验目的 1、掌握中点Bresenham直线扫描转换算法的思想。 2掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。 3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。 4掌握三维形体在计算机中的构造及表示方法 二、实验环境 Windows系统, VC6.0。 三、实验步骤 1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点Bresenham直线扫描转换算法画出连接两点的直线。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、使用中点Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下: void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y); 在函数中,可通过调用CDC成员函数SetPixel来画出扫描转换过程中的每个点。 COLORREF SetPixel(int x, int y, COLORREF crColor ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用DrawLine 函数画出不同斜率情况的直线,如下图:

最后、调试程序直至正确画出直线。 2、给定多边形的顶点的坐标P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)…使用边标志算法或有效边表算法进行多边形填充。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、实现边标志算法或有效边表算法函数,如下: void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb); px:该数组用来表示每个顶点的x坐标 py :该数组用来表示每个顶点的y坐标 ptnumb:表示顶点个数 注意实现函数FillPolygon可以直接通过窗口的DC(设备描述符)来进行多边形填充,不需要使用帧缓冲存储。(边标志算法)首先用画线函数勾画出多边形,再针对每条扫描线,从左至右依次判断当前像素的颜色是否勾画的边界色,是就开始填充后面的像素直至再碰到边界像素。注意对顶点要做特殊处理。 通过调用GDI画点函数SetPixel来画出填充过程中的每个点。需要画线可以使用CDC的画线函数MoveTo和LineTo进行绘制,也可以使用实验一实现的画直线函数。 CPoint MoveTo(int x, int y ); BOOL LineTo(int x, int y ); 实现边标志算法算法需要获取某个点的当前颜色值,可以使用CDC的成员函数 COLORREF GetPixel(int x, int y ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用FillPolygon 函数画出填充的多边形,如下: void CTestView::OnDraw(CDC* pDC) { CTestcoodtransDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

计算机图形学实验二

实验报告 课程名称:计算机图形学 实验项目:区域填充算法 实验仪器:计算机 系别:计算机学院 专业:计算机科学与技术 班级姓名:计科1602/ 学号:2016011 日期:2018-12-8 成绩: 指导教师:

一.实验目的(Objects) 1.实现多边形的扫描线填充算法。 二.实验内容 (Contents) 实现多边形的扫描线填充算法,通过鼠标,交互的画出一个多边形,然后利用种子填充算法,填充指定的区域。不能使用任何自带的填充区域函数,只能使用画点、画线函数或是直接对图像的某个像素进行赋值操作;

三.实验内容 (Your steps or codes, Results) //widget.cpp //2016CYY Cprogramming #include"widget.h" #include #include #include using namespace std; #define H 1080 #define W 1920 int click = 0; //端点数量 QPoint temp; QPoint first; int result = 1; //判断有没有结束 int sign = 1; //2为画线 int length = 5; struct edge { int ymax; float x; float dx; edge *next; }; edge edge_; QVector edges[H]; QVector points;//填充用 bool fin = false; QPoint *Queue = (QPoint *)malloc(length * sizeof(QPoint)); //存放端点的数组 Widget::Widget(QWidget *parent) : QWidget(parent) { } Widget::~Widget() { } void Widget::mouseMoveEvent(QMouseEvent *event) { setMouseTracking(true); if (click > 0 && result != 0) { startPt = temp; endPt =event->pos(); sign = 2; update(); } } void Widget::mouseReleaseEvent(QMouseEvent *event) { if (event->button() == Qt::LeftButton) { } else if (event->button() == Qt::RightButton) { sign = 2;

计算机图形学上机实验指导

计算机图形学上机实验指导 指导教师:张加万老师 助教:张怡 2009-10-10

目录 1.计算机图形学实验(一) – OPENGL基础 ..................................... - 1 - 1.1综述 (1) 1.2在VC中新建项目 (1) 1.3一个O PEN GL的例子及说明 (1) 2.计算机图形学实验(二) – OPENGL变换 ..................................... - 5 - 2.1变换 (5) 3.计算机图形学实验(三) - 画线、画圆算法的实现....................... - 9 - 3.1MFC简介 (9) 3.2VC6的界面 (10) 3.3示例的说明 (11) 4.计算机图形学实验(四)- 高级OPENGL实验...................... - 14 - 4.1光照效果 (14) 4.2雾化处理 (16) 5.计算机图形学实验(五)- 高级OPENGL实验........................ - 20 - 5.1纹理映射 (20) 5.2反走样 (24) 6.计算机图形学实验(六) – OPENGL IN MS-WINDOWS .......... - 27 - 6.1 实验目标: (27) 6.2分形 (28)

1.计算机图形学实验(一) – OpenGL基础 1.1综述 这次试验的目的主要是使大家初步熟悉OpenGL这一图形系统的用法,编程平台是Visual C++,它对OpenGL提供了完备的支持。 OpenGL提供了一系列的辅助函数,用于简化Windows操作系统的窗口操作,使我们能把注意力集中到图形编程上,这次试验的程序就采用这些辅助函数。 本次实验不涉及面向对象编程,不涉及MFC。 1.2在VC中新建项目 1.2.1新建一个项目 选择菜单File中的New选项,弹出一个分页的对话框,选中页Projects中的Win32 Console Application项,然后填入你自己的Project name,如Test,回车即可。VC为你创建一个工作区(WorkSpace),你的项目Test就放在这个工作区里。 1.2.2为项目添加文件 为了使用OpenGL,我们需要在项目中加入三个相关的Lib文件:glu32.lib、glaux.lib、opengl32.lib,这三个文件位于c:\program files\microsoft visual studio\vc98\lib目录中。 选中菜单Project->Add To Project->Files项(或用鼠标右键),把这三个文件加入项目,在FileView中会有显示。这三个文件请务必加入,否则编译时会出错。或者将这三个文件名添加到Project->Setting->Link->Object/library Modules 即可。 点击工具条中New Text File按钮,新建一个文本文件,存盘为Test.c作为你的源程序文件,再把它加入到项目中,然后就可以开始编程了。 1.3一个OpenGL的例子及说明 1.3.1源程序 请将下面的程序写入源文件Test.c,这个程序很简单,只是在屏幕上画两根线。 #include

研究生计算机图形学课程室内场景OpenGL--实验报告

《高级计算机图形学》实验报告 姓名:学号:班级: 【实验报告要求】 实验名称:高级计算机图形学室内场景 实验目的:掌握使用OpenGL生成真实感复杂对象的方法,进一步熟练掌握构造实体几何表示法、扫描表示法、八叉树法、BSP树法等建模方法。 实验要求:要求利用OpenGL生成一个真实感的复杂对象及其周围场景,并显示观测点变化时的几何变换,要具备在一个纹理复杂的场景中漫游功能。要求使用到光线跟踪算法、 纹理映射技术以及实时绘制技术。 一、实验效果图 图1:正面效果图

图2:背面效果图 图4:背面效果图

图4:室内场景细节效果图 图5:场景角度转换效果图

二、源文件数据代码: 共6个文件,其实现代码如下: 1、DlgAbout.cpp #include "StdAfx.h" #include "DlgAbout.h" CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) END_MESSAGE_MAP() 2、FormCommandView.cpp #include "stdafx.h" #include "Tool.h" #include "MainFrm.h" #include "FormCommandView.h" #include "ToolDoc.h" #include "RenderView.h" // Download by https://www.360docs.net/doc/00231798.html, #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CFormCommandView IMPLEMENT_DYNCREA TE(CFormCommandView, CFormView) CFormCommandView::CFormCommandView() : CFormView(CFormCommandView::IDD) { //{{AFX_DATA_INIT(CFormCommandView)

计算机图形学实验C++代码

一、bresenham算法画直线 #include #include #include void draw_pixel(int ix,int iy) { glBegin(GL_POINTS); glVertex2i(ix,iy); glEnd(); } void Bresenham(int x1,int y1,int xEnd,int yEnd) { int dx=abs(xEnd-x1),dy=abs(yEnd-y1); int p=2*dy-dx; int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx; int x,y; if (x1>xEnd) { x=xEnd;y=yEnd; xEnd=x1; } else { x=x1; y=y1; } draw_pixel(x,y); while(x

} void myinit() { glClearColor(0.8,1.0,1.0,1.0); glColor3f(0.0,0.0,1.0); glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0,500.0,0.0,500.0); } void main(int argc,char **argv ) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(200.0,200.0); glutCreateWindow("CG_test_Bresenham_Line example"); glutDisplayFunc(display); myinit(); glutMainLoop(); } 二、中点法绘制椭圆 #include #include #include inline int round(const float a){return int (a+0.5);} void setPixel(GLint xCoord,GLint yCoord) { glBegin(GL_POINTS); glVertex2i(xCoord,yCoord); glEnd(); } void ellipseMidpoint(int xCenter,int yCenter,int Rx,int Ry) { int Rx2=Rx*Rx; int Ry2=Ry*Ry; int twoRx2=2*Rx2; int twoRy2=2*Ry2; int p; int x=0; int y=Ry; int px=0; int py=twoRx2*y; void ellipsePlotPoints(int,int,int,int);

计算机图形学实验报告

计算机图形学 实验报告 学号:20072115 姓名: 班级:计算机 2班 指导老师:何太军 2010.6.19

实验一、Windows 图形程序设计基础 1、实验目的 1)学习理解Win32 应用程序设计的基本知识(SDK 编程); 2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。 4)学习MFC 类库的概念与结构; 5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框); 6)学习使用MFC 的图形编程。 2、实验内容 1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。(可选任务) 2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,This is my first SDI Application"。(必选任务) 3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。 3、实验过程

1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档; 2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,This is my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制; 3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。 4、实验结果 正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。成功地完成了实验。 结果截图: 5、实验体会 通过实验一,了解了如用使用基本的SDI编程函数绘制简单的图

计算机图形学实验报告

计算机图形学(computer graphics)的基本含义是使用计算机通过算法和程序在显示设备上构造图形。图形是人们通过计算机设计和构造出来的,不是通过摄像机、扫描仪等设备输入的图像。这里的图形可以是现实中存在的图形,也可以是完全虚拟构造的图形。以矢量图的形式呈现,更强调场景的几何表示,记录图形的形状参数与属性参数。例如,工程图纸(drawing),其最基本的图形单元是点、线、圆/弧等,其信息包含图元的几何信息与属性信息(颜色、线型、线宽等显式属性和层次等隐式属性)。 图像处理(image processing)则是研究图像的分析处理过程,图像处理研究的是图像增加、模式识别、景物分析等,研究对象一般为二维图像。图像以点阵图形式呈现,并记录每个点的灰度或色彩。例如,照片、扫描图片和由计算机产生的真实感和非真实感图·形等,最基本的图像单元(pels,picture elements)是点—像素(pixel),其信息实际上是点与它的属性信息(颜色、灰度、亮度等)。 计算机视觉(computer vision)包括获取、处理、分析和理解图像或者更一般意义的真实世界的高维数据方法,它的目的是产生决策形式的数字或者符号信息。

计算机图形学和计算机视觉是同一过程的两个方向。计算机图形学将抽象的语义信息转化成图形,计算机视觉则从图形中提取抽象的语义信息,图像处理研究的则是一个图像或一组图像之间的相互转化和关系,与语义信息无关。下表从输入和输出的角度对三者的区别进行辨析: 表2 图像处理&计算机视觉&计算机图形学对比 计算机图形学,输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、RGB 颜色等。输出的是图像,即二维像素数组。 计算机视觉,输入的是图像或图像序列,通常来自相机、摄像头或视频文件。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌。图像处理,输入的是图像,输出的也是图像。

计算机图形学上机实验2-交互实现多边形绘画并填充

计算机图形学上机实验2-交互实现多边形绘画并填充

昆明理工大学理学院 信息与计算科学专业操作性实验报告 年级: 10级姓名:刘陈学号: 201011101128 指导教师: 胡杰 实验课程名称:计算机图形学程序设计开课实验室:理学院机房216 实验内容: 1.实验/作业题目:用计算机高级语言VC++6.0实现计算机的基本图元绘制2.实验/作业课时:2学时 3.实验过程(包括实验环境、实验内容的描述、完成实验要求的知识或技能):实验环境:(1)硬件:每人一台PC机 (2)软件:windows OS,VC++6.0或以上版本。 试验内容及步骤: (1)在VC++环境下创建MFC应用程序工程(单文档) (2)编辑菜单资源 (3)添加菜单命令消息处理函数 (4)添加成员函数 (5)编写函数内容 试验要求 (1)试验前自习课本第2章内容,编写相关程序。 建立一VC++单文档工程,在菜单项中建立图形绘图菜单(包 括绘制直线、折线、矩形、(椭)圆、多边形)和区域填充菜单项。 (2)实现对(椭)圆和多边形的填充。 (3)试验中调试、完善所编程序,能正确运行出设计要求结果。 (4)书写试验报告上交。 第2页

4.程序结构(程序中的函数调用关系图) 5.算法描述、流程图或操作步骤: 在lab2View.h文件中的public内添加变量 CPoint v[30]; int index; bool first; bool move; 在lab2View.cpp文件中的函数CLab2View::CLab2View()下添加如下代码: index = 1; //定义工作区 第3页

计算机图形学实验二报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目曲线拟合 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

曲线拟合 1. 实验内容 1. 绘制三次Bezier曲线 (1)给定四个已知点P1—P4,以此作为控制顶点绘制一段三次Bezier曲线。 (2)给定四个已知点P1—P4,以此作为曲线上的点绘制一段三次Bezier曲线。 2. 绘制三次B样条曲线 给定六个已知点P1—P6,以此作为控制顶点绘制一条三次B样条曲线。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析 1. 绘制三次Bezier曲线 Bezier曲线是用N+1个顶点(控制点)所构成的N根折线来定义一根N阶曲线。本次实验中的三次Bezier曲线有4个顶点,设它们分别为P0,P1,P2,P3,那么对于曲线上各个点Pi(x,y)满足下列关系: P(t)=[(-P0+3P1-3P2+3P3)t3+(3P0-6P1+3P2)t2+(-3P0+3P2)t+(P0+4P1+P2)]/6 X(t)=[(-X0+3X1-3X2+3X3)t3+(3X0-6X1+3X2)t2+(-3X0+3X2)t+(X0+4X1+X2)]/6 Y(t)=[(-Y0+3Y1-3Y2+3Y3)t3+(3Y0-6Y1+3Y2)t2+(-3Y0+3Y2)t+(Y0+4Y1+Y2)]/6 其中P0、P1、P2、P3为四个已知的点,坐标分别为(X0、Y0)、(X1、Y1)、(X1、Y2) 、(X3、Y3)。所以只要确定控制点的坐标,该曲线可通过编程即可绘制出来。 2. 绘制三次B样条曲线 三次B样条函数绘制曲线的光滑连接条件为:对于6个顶点,取P1、P2、P3、P4 4个顶点绘制在第一段三次样条曲线,再取P2、P3、P4、P5 这4个顶点绘制在第二段三次样条曲线,总计可绘制3段光滑连接的三次样条曲线。 4. 算法设计 程序框架 //DiamondView.h class CDiamondView : public CView { ……

计算机图形学上机心得2

计算机图形学 上机心得 指导教师:何朝良 姓名:王奎 学号: 10260107

计算机图形学是利用计算机研究图形的表示、生成、处理和显示的科学。简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。从处理技术上来看,图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地图、曲面的线框图等,另一类是明暗图,也就是通常所说的真实感图形。经过30多年的发展,计算机图形学已成为计算机科学中最为活跃的分支之一,并得到广泛的应用。 在科技高度发展的今天,计算机在人们之中的作用越来越突出。而C语言作为一种计算机的语言,我们学习它,有助于我们更好的了解计算机,更好的学习计算机图形学。因此,C语言对我们计算机图形学的学习尤其重要,而我们也需要一定的C语言基础知识。 在这个学期里,我们班级的学生在计算机图形学老师何老师的带领下进行了计算机图形学的上机实践学习。在这之前,我们已经对C语言这门课程学习了一个学期,对其有了一定的了解和掌握,这对我们计算机图形的学习打下了良好的基础。但是,万事开头难,在计算机图形学的上机实践的过程中还是遇到了一些问题。 上机实验是学习计算机图形学必不可少的实践环节,上课学习到的知识都需要通过C语言编程做出程序来真正掌握它。对于计算机图形学的学习目的,可以概括为图形的表示、图形的生成、图形的处理和显示,这些都必须通过充分的实际上机操作才能完成。我们上机实验总共包括七个,每个实验之前老师都会给我们做详细的介绍,具体的操作步骤老师也给了一个参考书,这样的话,我们在上机过程中也省去了很多麻烦,节约了很多时间。因此,我们才有了充裕的时间来理解实验原理,并结合自己的想象力,编写出属于自己的程序。 学习计算机图形学除了课堂讲授以外,必须保证有不少于课堂讲授学时的上机时间。因为学时所限,课程安排在周四晚上统一上机实验,所以我们需要有效地利用上机实验的机会,尽快掌握理解计算机图形学的基础知识,为今后的继续学习打下一个良好的基础。课程上机实验的目的,不仅仅是验证教材和讲课的内

相关文档
最新文档