一款靓音的2×25W电子管功放的制作

一款靓音的2×25W电子管功放的制作
一款靓音的2×25W电子管功放的制作

一款靓音的2×25W电子管功放的制作

https://www.360docs.net/doc/0d242306.html, 2003-3-6 动网先锋

电源猫推荐

时下“胆机”这个字眼,恐怕发烧友没有不知道的,然而对胆机的认识却是褒贬不一。有的爱

之若狂,无胆不欢。有的则认为胆机指标远远达不到高保真的要求,不能算Hi-Fi音响。的

确,胆机的音色甜美,柔顺自然,高频细腻,低频柔和,很符合人耳的听音需要,尤其是中

高频很丰满,很耐听------其实说白了,这就是一种失真,与Hi-Fi背道而驰,但却被音响发

烧友所接受。

世界上越是发达的国家,胆机则越流行。日本是胆机“苏醒”最早、最流行的国家。那么无法

以Hi-Fi标准来衡量的胆机为何受宠呢?港台朋友很幽默的这样说:“因为晶粒(晶体管)是‘半’

导体,而电子管是‘全’导体”?!“胆管放大信号是靠空间来传输电子流的,而晶体管则是靠“半

导体”来传导的,胆管的传输特性更接近与我们自然界的声音传播规律------人耳听到的声音是靠空

间传播的”?!这些话虽然很荒谬,但胆机的流行却是“爱你没商量”。音响用电子管的分类我国

在世界上可以讲是“产胆”大国,起初大多数电子管都是仿制前苏联的,比如早期的常用胆还都使用

前苏联的型号,6H8C、6H3n、6H13C、6H1n等。后来才使用了统一的国标型号,6H8C改用了6N8P。

音响用电子管的管脚,一般有小七脚(如6J1等)、小九脚(如6N3等)、大八脚(如6P3P等)、平板四脚(如2A3、300B等)、平板五脚(如807)等,211、845等则为专用四脚管座。近来一些发射胆也常见于音响电路,其声音的表现也相当不错,但管脚一般都很特殊,如FU-50、FU-46(6146)、FU-33、FU-29等。电子管如下几个参数我们需要了解:跨导(S)、放大系数(μ)、内阻(Ri)。跨导(S):即电子管栅偏压对屏极电流的控制能力,S=⊿Ia/⊿Ug;三极管的S与直流工作点有关,工作点处的电流大则S也大,反之S也小;放大系数(μ):即放大量,μ=S·Ri;三极管的μ值基本上不随工作点的变化而变化,这是因为μ主要取决于电子管的结构;内阻(Ri):它是这样定义的,即让栅极电压固定不变,屏极电压的变化量⊿Ua与屏极电流的变化量⊿Ia之比,即Ri=⊿Ua/⊿Ia。三极管的内阻Ri也与直流工作点有关,工作点的电流小时,Ri增大,工作点的电流大时,Ri减小。另外还有个值得考虑的参数,就是栅极电压输入范围,栅极电压输入范围(对于常用电子管可以理解为栅偏压值的大小)直接影响着信号的动态范围,此值跟管子的放大系数μ成反比,μ值高的,输入范围也

就小,一般用于前级小信号放大,其S比较低,Ri较大。μ值低的,输入范围也大,可用于功率输出级,其S较高,Ri较小。从电子管的屏极特性曲线看,其输入范围跟屏极电压有关,屏极电压较高时,输入范围也会增加。

小信号电压放大胆

国产常用的有6N1~6N4(12AX7)、6N9P、6N10、6N11、6N8P等。我们知道“N”代表的是双三极管,通常双三极管内部的两个三极管的参数一致性较好,用于双声道放大对称性较理想。当然也常见用五极管如6J1等作前级放大的,三--五极复合管如6F2的用量也不小,可以取五极管的高放大量,三极管的线性好的优点于一身。也有用遥截止管如6K4等作放大的。6C系列胆内部多为单三极管,性能指标也很不错,用于音频放大也是较好的选择。只因为是“单”三极管,一级要用一个甚至两个管子,对减小整机体积不利,加之管子的离散性等原因,用者较少。(早期的收音机讲究灯/胆的数量越多越好,而国外偏将两个管子复合在一起,以减少灯的数量,将功率胆与小信号放大胆复合,就可用一只胆完成音频放大。同样,现在的发烧友追求简洁至上,当然用胆越少越好)。

如今国外的一些电子管流入国内,给胆机发烧友增加了换胆的乐趣,常见的有12AX7、12AT7、12AU7、12BH7、6DJ8、6922、ECC81、ECC82、ECC83等等型号繁多,增加了选择的余地。一般五极管的放大倍数较高,内阻较大,失真也较大(但有人却认为用五极管作前置放大的声音好听)。倒相/推动级胆倒相/推动级既有电压放大,又有功率放大,还应有一定的输入电压范围,所以不能用高μ管。一般选用中μ的6N8P、6N6T等,国外型号有12BH7、12AU7等,当然如果需要较大的推动功率、较高的信号摆动,也可用低μ功率胆做推动级,如6V6/6P6P、6P9P、6P3P等。功放级用电子管国产的音频功率放大常用胆是6P3P/6L6G(束射四极管,单端输出6.5W,AB1类输出约30W左右)、EL34/6CA7(五极管,单端输出约7W,AB1类输出约40W)、807(束射四极管,单端输出约7W,AB1类输出约50W)、KT88(束射四极管,单端输出约8W,AB1类输出约50W)、300B(直热三极管,单端输出约8W)、211(直热三极管,单端输出约15W)、845(直热三极管,单端输出约20W)、2A3/6B4G、6C4C(直热三极管,单端输出约3.5W,AB1类输出约15W)、FD-422(直热五极管,单端输出约9W,AB1类输出约50W)、6N5P/6N13P(双三极管,单端输出约4W,AB1类输出约15W)、6P1(束射四极管,单端输出约3W,AB1类输出约10W)。一般直热胆的音色表现较好,不过国产较少见小功率直热胆。一般认为,束射管的声音较粗犷有点似北方的汉子,五极管的声音较艳丽。就目前常用国产功率胆来讲,五极管EL34之类表现较清丽,KT88之类较粗壮,还有些慢吞吞之感,相比之下6P3P的表现就显得柔顺自然,音色细腻、收缩自如,是笔者较喜欢的国产功率胆之一。而且好声的要属“云光”79年的6P3P,还有南京60年的6Π3。6P3P的声音好听的原因,主要是国产6P3P的产量极大,材料、工艺方面当然很稳定。另外葫芦型胆或球型胆的声音要好于棒型胆,也是不争的事实。另外,经过本人长时间的测量发现,束射四极管产生的失真偶次谐波站主要分量,而五极管则是奇次谐波占主要,所以对于音响来讲,功放级使用束射四极管还是有好处的(大家可以从束射四极管的6P3P与五级管的EL34的声音的对比也可以看到这一点。[page]

音频功放电路的结构形式

由于电子管的内阻较高,一般都需用变压器与负载来匹配(无论单端或推挽)。线路形式一般都比较简单,仅有2~3级放大即可。即电压放大级、推动级(或倒相级)、功率输出级。每一级按放大形式分,三极管有共阴极放大(具有高输入阻抗、大的电压增益、输出电压与输入电压反相等特点,是最常用的一种)、共阳极放大(即阴极输出器,电压增益小于1,一般用做缓冲放大,连接于低阻抗负载与高阻抗信号源之间)、SRPP放大(兼具前两种放大器之优点,尤其是中高频表现良好,是近来小信号应用最多的一种)几种基本形式。小信号电压放大级:一般常用三极管共阴极放大、SRPP 放大、五极管放大。当然也有少数采用差分放大(用于推挽功放,类似“自平衡倒相电路”)。个人认为,三极管共阴极放大的中低频较丰满,但高频欠佳;SRPP放大的中高频非常理想,唯低频不及三极管共阴极放大;五极管放大多见于古老的胆机电路,失真略大;差分放大指标较高,但胆味较淡。

推动/倒相级

对于单端功放来讲,这一级应该叫推动级,单端功放甚至可以不用这一级,直接由一级共阴极放大来推动,为了保证足够的增益,常用五极管来担任。对于推挽功放,这一级是倒相级(当然也有第一级兼具倒相作用,这一级就是推动级,也有单独再加一级推动级的)。倒相级又可有如下几种形式:长尾倒相、P-K分相式倒相、变压器倒相,还有负载分压式倒相电路(如Quad II)、自平衡式倒相电路(差分放大电路)等。一般电路常用长尾倒相,其信号的对称性等指标较理想,阴极电阻(就是

那个尾巴)越大,信号的对称性越好,故有的电路将这个尾巴接到一个负压点上。P-K分相式倒相电路,是过去使用最多的一种电路,许多经典名机都是这种电路。不过由于电子管的屏极和阴极特性不同,在其屏、阴极上取出的信号就不可能完全对称,尤其是高频信号,对于追求hi-fi的现代发烧友

采用较少,但有人认为这种电路的韵味非常好,故追求韵味的发烧友也常采用这种电路;用变压器倒相,倒相后的参数一致性较好,但好的变压器不宜搞到,且频响宽度等指标完全取决于变压器的质量。

对于单端功放来讲,这一级应该叫推动级,单端功放甚至可以不用这一级,直接由一级共阴极放大来推动,为了保证足够的增益,常用五极管来担任。对于推挽功放,这一级是倒相级(当然也有第一级兼具倒相作用,这一级就是推动级,也有单独再加一级推动级的)。倒相级又可有如下几种形式:长尾倒相、P-K分相式倒相、变压器倒相,还有负载分压式倒相电路(如Quad II)、自平衡式倒相电路(差分放大电路)等。一般电路常用长尾倒相,其信号的对称性等指标较理想,阴极电阻(就是那个尾巴)越大,信号的对称性越好,故有的电路将这个尾巴接到一个负压点上。P-K分相式倒相电路,是过去使用最多的一种电路,许多经典名机都是这种电路。不过由于电子管的屏极和阴极特性不同,在其屏、阴极上取出的信号就不可能完全对称,尤其是高频信号,对于追求hi-fi的现代发烧友采用较少,但有人认为这种电路的韵味非常好,故追求韵味的发烧友也常采用这种电路;用变压器倒相,倒相后的参数一致性较好,但好的变压器不宜搞到,且频响宽度等指标完全取决于变压器的质量。

功率放大级

单端功放一般采用三极管共阴极放大电路(也有少数采用阴极输出的),对于束射四极管及五极管也多被接成三极管放大形式(当然也有为提高输出功率,工作在五极管或超线性放大状态的)。为提高电路的稳定性、可靠性,电路一般采用阴极自给偏压,即利用阴极电阻上的压降作为栅偏压。此种形式由于存在很深的直流负反馈,可保护娇贵的放大胆。另外这种电路的音色较柔和,尤其是中频较丰满。若采用固定偏压,虽可提高效率,瞬变、动态及解析力方面表现也要好些,但声音的柔顺程度要略逊一筹(真是鱼与熊掌不可兼得)。有人采用半固定、半自给偏压的形式,笔者没有亲自听过,也不知效果如何。

推挽功放一般工作于甲乙类(也可工作于甲类,但效率较低)。大功率三极管一般不多见,且价格很高。常用的功放胆有束射四极管或五极管。五极管放大状态的效率较高,失真略大;超线性放大则介于三极--五极管放大之间,通过输出变压器反馈部分信号至帘栅极。输出功率要比三极管放大高出许多,失真要比五极管放大低很多。可谓两全其美,是应用最多的一种推挽放大形式。不过由于是从变压器的抽头取得反馈信号,我们知道,变压器线圈对频响很宽的音频信号的反应是不一致的,其相移等会随频率的变化而变化,使得反馈回来的信号发生改变,尤其是高频信号,再若输出变压器设计不合理,极易造成高频自激。甚至许多名机也都加有消自激电容,消除自激,这同时也破坏了高频的表现。有的电路则减小输出牛一次侧总的电感量,使得自激频率移至音频范围以外,但这同时对低频不利。另外经查看电子管手册给出数据,一般功率胆帘栅极电压要低于其屏极电压(管内部结构所致),比如6P3P 的最高屏极电压为400V,最高帘栅极电压为330V,屏耗最大20.5W,并且最后注明使用中不允许有超过一项的参数超标。当我们按超线性放大时,帘栅极电压已经是大于屏极电压了(并且峰值电压将超出很多),对管子肯定不利(这并非讲超线性放大不好)。发烧友可能要质问我,超线性放大电路风靡全世界,属一代名机电路,我为何要背道而驰,偏偏讲超线性的坏话呢?其实超线性放大电路对于使用高素质的国外功率胆,以及专用变压器,效果毋庸质疑当然是很好的。事情本来就是这样,国外一些名机电路看似简单,其实很难仿制成功达到原设计指标,关键在于元器件。有的电路栅偏压调节4只胆共用一只可调电位器来调节,若用国产胆怎么样?麦景图的效果谁都知道,想要仿制成功希望很小。所以我们发烧友不要一味的去“仿”,要分析透彻电路原理。名机电路虽有一定的影响,但若只知皮毛就讲我仿某某,效果怎样,也许只有他自己知道。(也许有读者要问,照你以上的理论,胆机不就没法听了吗?那你还“吹”什么胆机好听?其实个人的观点不同,我对于所喜欢的东西会去认真细心的分析它,琢磨它,看它是否十全十美。)推挽功放对电源的纹波要求较低,由于输出变压器一次侧两个绕组的圈数相等、方向相反,交流纹波被相互抵消(假如两个管子的放大量不相等,则不能完全抵消,要换用配好对的管子),交流声可降至最低。正因为如此,放大器的偶次谐波失真也被全部抵消,输出端得到的几乎都是奇次谐波失真。失真度指标虽然好于单端功放,但我们知道,偶次谐波对听感有利,起修饰美化作用,可使音色丰满柔和。而奇次谐波会破坏听感,使声音显得干涩。日本《无线与实验》主笔胆机大师浅昭哲也曾经这样说过:“交流完全平衡的,其声音反而不好听”,就是这个道理。单端胆机失真系数较大,但多数是偶次谐波失真,声音比较耐听。[page]

以上谈了一些常用电路常识,目的是想让大家简单了解一下各种电路形式的特点,自己DIY胆机时要选用何种电路、何种胆管,用两级放大还是用多级放大形式。下面我给大家推荐一套发烧初哥实用的、性价比较高的胆机放大电路。市售胆机价格高昂,工薪阶层并非能轻易拥有,另外,有些成品胆机的声音的确也不敢恭维,性价比显得较低。自己土炮DIY,又找不到好的电路,尤其是好的器件更难搞到。

电路介绍:点击浏览电路

这个电路采用6P3P推挽放大,输出功率2×25W(这是自给偏压放大,若改为固定偏压,可输出

2×30W),有人说这是胆机的黄金功率段,能满足一般家庭的听音需要。输入级用6N3作SRPP放大,

然后6N8P作长尾倒相,功率放大级可有多种形式的接法,三极、五极及超线性放大。为了适应电路的多状态工作,输出牛的初级阻抗用的是5.5K(功放管可以使用EL34),我这里推荐你采用五极管放大状态。有关电路包括电源部分用的都是经典的典型电路,这里不做过多介绍。下面我重点谈一下装机注意事项。

准备工作

首先对照电路查看元件,检查一边所有元器件,有必要用万用表逐一测量,整流二极管、电阻可以直观测试,电容先要看外观有无破损,有电容表的最好测试一下容量,没有也无妨,因为多数元器件均经过筛选,一般不会有问题的。对于电子管也要看外观有无裂痕,有否漏气现象(一般胆管内都有看似水银似的吸气剂,6N3、6N8P一般都在上部有,6P3P则是在下部),然后用万用表测一下灯丝是否通,大多数小九脚胆的4、5脚为灯丝,而6N3则不同,它的1、9是灯丝,6N8P的7、8脚是灯丝,6P3P 的2、7脚是灯丝,各胆引脚排列详见附图。这里的电子管选配的是早期“曙光”胆,或前苏联的“OTK”胆,性能指标是有保证的。对于变压器除了看外观有无破损外,还要具体测量一下参数如何。电源变压器首先找到一次侧的220v输入端,然后通入市电,具体测量一下市电220的精确度,如相差较多,可用调压器调节后获得。然后对照变压器标签上的电压值,以及电路图中绕组电压分别测量各引出端子的电压是否正确,由于是在空载情况下测得,其值可能偏高些,属正常。然后测量一下输出牛,若你手头有电感表,可以大致测量一下具体电感、漏感的大小,由于测试频率不同,其结果仅有一定的参考价值(有关输出牛的测试将另文细说)。这里我们可以测量一下输出牛的直流电阻、抽头的对称性、阻抗比、及功率是否足够。对于常用的5.5KΩ推挽输出牛,其一次侧的直流电阻一般多在150Ω左右,关于对称性的测量,可以将5.5KΩ端(即P-P端)输入市电220V,然后测量P1~B+、B+~P2端的电压值是否相等,超线性抽头G1~B+、B+~G2端的电压值是否相等,然后测量一下二次侧的电压值,计算一下阻抗是否正确(注意效率一般取0.86左右)。然后再测量一下输出牛的功率,一般厂家给出的输出牛的功率是在30Hz或40Hz时确定的,所以体积都比较大。我们可以用50Hz交流市电简单测试一下,方法是:首先根据阻抗比确定在满功率输出时一次侧的交流电压值,本电路所供输出牛的功率为留有余量,选用LD35即35W的,这样若在8Ω端获得35W的功率输出,其一次侧5.5KΩ端需有408V的输入。这时可以用套件所提供的电源牛改接一下得到400多伏电压,电源变压器为方便烧友日后磨机,一般多配有70V/0.1A负压整流绕组,将这个电压串联在330V高压绕组上即可获得。然后将这个高压输入到输出牛的5.5KΩ端,在8Ω端接上一颗8Ω/50W的假负载(可用多只电阻串并联获得),然后通电工作一小时,看输出牛有无明显温升。(一般发烧友可能认为,输出牛很少连续工作在满功率输出状态,输出牛的功率也就没有必要要求那么严格。其实不然,输出牛的功率如果较小,内阻肯定会大(或一次侧电感量不足),其他的参数指标也会随之降低很多。正规厂家一般都会在30Hz或40Hz时达到额定输出功率的,有的还予以标出。当然也不能仅凭功率这一方面看输出牛的好坏)点击查看输出牛照片。点击查看电源牛照片。

给元件镀锡

接下来,对所有元器件可焊接的地方予以完全镀锡处理。镀锡时建议发烧友多准备些松香,很多地方仅用含松香的焊锡是镀不好的。并且为保证焊接点的美观,所镀锡之处尽量少留焊锡,对于粗铜接地线的镀锡更应注意,表面要均匀,以利美观。然后就是根据电源部分原理图,对照电路板上的元件位置,将电路图中电源部分全部元件逐一插入焊牢备用。这里的高压滤波电解采用的是正规大厂的产品,性能稳定。大体积的电解平放在电路板上,并用线扎捆牢,小体积的电解直插在电路板上焊牢即可,这部分的电路很简单,元件较少,很容易完成。由于电路板设计成通用型,负压整流部分暂时不用。

组装整机

元器件安装顺序,首先将RCA座(注意与底盘绝缘)、喇叭接线柱、保险座、电源插座、开关、电位器、小九脚管座、大八脚管座之类安装好,然后安装电源变压器、输出变压器。注意紧固两只输出牛的螺丝中,分别各有两只较长的(4×30)螺丝,用以悬空支撑电路板,悬空高度一般在12mm即可。并且将拧螺丝处底盘上的喷塑层去掉,以保证整个变压器与底盘可靠的接触。将电源变压器除220V绕组外的其余几个绕组引线分别引至电路板的相应接点处。注意灯丝线可用较粗的塑胶线轻轻绞合后接至电路板的连接点,所有引线均从悬空电路板的底下走线,外面一般看不到走线,以利美观。然后将220V绕组引线接至开关、保险座及电源插座的适当位置,应注意将塑胶线尽量绞合紧密,并套上黄蜡管,有条件的可套上热缩管,并紧帖底盘边缘走线,以免造成干扰。焊好后,装上保险丝,短时通电测量一下高压是否正常(由于前级未接负载,通电时间不宜过长,并且除B1电压正常外,其余各点电压都偏高,属正常)。上述一切如无异常,装机也就成功了一半以上!将电源变压器除220V绕组外的其余几个绕组引线分别引至电路板的相应接点处。注意灯丝线可用较粗的塑胶线轻轻绞合后接至电路板的连接点,所有引线均从悬空电路板的底下走线,外面一般看不到走线,以利美观。然后将220V绕组引线接至开关、保险座及电源插座的适当位置,应注意将塑胶线尽量绞合紧密,并套上黄蜡管,有条件的可套上热缩管,并紧帖底盘边缘走线,以免造成干扰。焊好后,装上保险丝,短时通电测量一下高压是否正常(由于前级未接负载,通电时间不宜过长,并且除B1电压正常外,其余各点电压都偏高,属正常)。上述一切如无异常,装机也就成功了一半以上!接下来开始布灯丝线,我希望发烧友们按我的灯丝接线法连接灯丝线。就是采用QZ-2 Ф0.80~Ф1.0 高强度漆包线双股绞合,取代传统的用较粗的塑胶线绞合连接。有些发烧友可能会怀疑安全问题,其实是多余的。稍有电工常识的人都知道,QZ高强度漆包线的表皮耐压很高,笔者曾做过实验,将新买来的QZ-2(双漆层)Ф0.80的漆包线,双股绞合后放进盐水里,然后通入220市电,一点问题都没有。经查手册规定的QZ-2 Ф0.8漆包线的击穿电压值在2700~4500V!耐热等级是B级,用来连接区区几伏的灯丝电压绰绰有余(笔者就曾见某维修电机的师傅家里的电灯线是用较粗的漆包线连接,当初感到很危险,现在看来是我多虑了)。所以你的担心是不必要的。用漆包线绞合的好处很多,可以绞合得很紧、可以紧帖底盘走线、布出线来很是整齐美观,该怎么走就怎么走、可以将杂散干扰降至最低。(这么多优点为何不用!)当然由于漆包线的漆皮很薄,不能用利器划伤,只要你不损坏漆皮,尽可放心大胆的去用。[page]接下来开始布接地线,将粗铜线按图示弯出相应的形状,并按要求将该镀锡的地方镀上锡,然后分别予以固定、焊接好,电路的地线与底盘保持绝对的绝缘,然后再一点接地。电位器的外壳与底盘应保持良好的接触,不与地线相连。至此整体框架出来了,最后对照电路焊接放大电路部分的几个元件,信号输入线、反馈连线推荐使用屏蔽线,因为胆机的干扰较严重,加上这些部分的信号幅值较小,用屏蔽线无须担心自身电容带来的影响。

放大部分所有元件仍采用传统的搭棚焊接的形式,元件数量较少,容易连接,且可最大限度的降低干扰。这里应注意的是,该用导线连接的,信号连线应尽可能的短,还要远离灯丝线及高压线,或与

灯丝线成垂直走线,且最好紧帖底盘走线。电压连线可以规规矩矩走线,以利整洁,应尽量远离信号线及灯丝线。耦合电容就近焊在管座附近,并紧帖地盘,最后用胶水粘牢,以仿松动。有些地方可以靠元件本身引线进行连接,如果元件的一端接地或接电源电压,那么就让这一端的引线长些,另一端尽量短些。还有小功率电阻尽量用小体积的,尤其是前级部分,体积越大,自身感应杂音信号的可能性就越大。这里我们使用的电阻有两种,一种是1/4W 五环(精度1%)金属膜小电阻,另一种是早期的2W“大红炮”金属膜电阻。这种电阻过去的产量较大,很好用,噪音较低。由于其体积较大,也许只有我们这些胆机发烧友才能领略其优点(据香港朋友讲,这种“大红炮”在美国也很受欢迎,售价已近1美金/1颗!)。

所有元件焊装完毕后,再仔细对照电路图检查一遍,尤其是管脚的排列要搞清楚,一般大八脚管座上都标有管脚顺序号,从缺口处顺时针数,小九脚也是一样。当确认无误后,即可准备通电试机,先接好喇叭线,断开反馈环路,通电检查,当每个胆都亮起来后,各点电压应基本正常。这时喇叭里可能会有些噪音,不用着急,该找接地点了。请在8Ω输出端并上一块毫伏表,此时喇叭端的电压可能较高。可将电路地与底盘逐点短接,看在那里短接时的噪音最小。我的经验是在输入RCA

座附近接地最好,此

时噪音电压仅有0.1mV左右,喇叭里几乎听不到噪音,并且把音量电位器旋大旋小都无影响。这一步搞定后,即可送入音频信号放音了,从CD或VCD送入信号,音量电位器慢慢旋大,应该有正常的声音放出。先不要惊喜,将音量旋至很小,然后搭接一下反馈线,如果音量更小了,那么相位是正确的。如果音量变大,或产生自激,请将输出变压器初级的两个端子对调一下,然后接上反馈线,应属正常了。一切正常后,将仅有的几根从电路板至前级放大管的电压连线,用线扎捆在地线的框架上走线,以利整洁美观。其他地方多根线在一起的,也用线扎扎牢。所有连线及元件尽量不要有松动现象,以免出现杂音,该捆扎的捆扎,该用胶粘的就用胶水粘牢,连线及元件在不产生干扰的前提下,尽量横平竖直整齐布置。

至此,一台胆机属于你了,你可以褒机、摩机,可以根据自己的听音爱好,适当改变一下反馈量的大小(调节反馈电阻及电容)。OK,然后享受大半天的辛苦换回的喜悦吧。有关声音的表现还希望你能多多感受一下,写在这里,让大家分享你的成果。

原作者:牛师傅

来源:不详

共有10054位读者阅读过此文

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。

#用EL34制作的合并式电子管功放调整

用EL34制作的合并式电子管功放(上) 作者:徐松森文章来源:《无线电和电视》点击数:18122 更新时间:2005-5-16 15:10:53 电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。本机通用性强,制作简便,成功率高,升级换代方便。 电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。 本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压和部分元件参数即可。 常用功率管作A类和AB类推挽功放使用参考数据表: 一、合并式功放电路简析

图1 电子管合并式功放电原理图 图l为电子管合并式功放电原理图。输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流和跨导值大,屏极线性范围宽,输入动态范围大。输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。 倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。本电路由双三极电子管6N1l或6N6来担任。上管为激励管;下管为倒相管。两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两管阴极的互耦作用,使屏极和阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。 值得注意的是:前级输入放大管和倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极和灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝和阴极间的击穿。故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。 此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V以上,不允许有丝毫的漏电,否则将会影。向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。

电子管功放

认真看完这个帖子,相信你就可以做成电子管功放了. 1,图纸可同时用于6P3P(6L6GC)家族和6550家族,这两种管子现在各厂都在生产。其中6P3P,6N8P库存较多,不容易被炒作涨价。 2,采用6P3P输出功率为20W,采用6550输出功率为60W。 3,额定功率失真小于0.4%,功率管已配对。 4,R2参考中心值15K,调节R2使帘栅极供电电压为285V。如有条件,帘栅极请采用稳压供电。 5,采用6P3P时,R1参考中心值75K,调节R1使6P3P屏流为32mA;采用6550时,R1参考中心值51K,调节R1使6550屏流为41mA。

直到今日,我评测一个胆机的最重要指标仍然是失真,尽管在很多主观流派中认为失真并不重要,甚至失真低=没韵味。然而多年的实际测试和听音经验告诉我,越是低失真的胆机,给我带来的主观听感越好,韵味更丰富。 如果你一个无视指标的爱好者,看到这里也可以结束了,本帖并不适合你。 下面开始介绍推挽胆机的一些设计理念和tips,我希望对于自己设计的爱好者能起到帮助作用。 在传统的推挽电路结构中,常见结构为以下几种: 1,电压放大+长尾倒相+功率级。优点是增益高,用管少,开环频响较好;缺点是长尾倒相级对称性一般,需仔细调试。 2,差分放大+(驱动)+功率级。优点是倒相对称性优秀,开环频宽较好;缺点是需要多一组负电源,不增加驱动级开环增益较低。 3,自平衡倒相+(驱动)功率级。优点是用管少,增益适中;缺点是倒相级对称性一般,频响较窄。 4,电压放大+屏阴分割+(驱动)+功率级。优点是用管少,倒相级无需调试;缺点是不加设驱动级增益低,频宽较窄。 由于架构1在用管,增益和稳定性方面都适中,比较适合初学者制作,本帖讨论将以一个电压放大+长尾倒相的推挽胆机架构作为分析对象。 A,输入级:架构1的输入级主要作用是提高电路的开环增益,为长尾倒相级提供合适的直流偏置。 由于长尾倒相级自身有一定增益,并不需要太大的输入电压,输入级可由多种方式组成:共阴,SRPP,叠串,u跟随 为了比较这些放大方式,我做了一次实验来测试比较它们的失真度,见表1

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

电子管功放布局工艺.

用电子管制作的功放,被发烧友称作胆机。电子管自1904年英国工程师菲利明(Fleming)发明,1914年美国通用电器公司开始生产,已经历经一个世纪。到了信息时代的今天,电子管在电子世界的大部分领域已销声匿迹,被体积小、寿命长、重量轻、耗电省的晶体管取而代之。但在一些中短波广播电台、电视台的发射机等特殊领域中,电子管还拥有无法代替的地位,特别是在音响发烧器材的庞大队伍中,电子管还有着晶体管无法体现的引人入胜的独特魅力,用电子管制作的高保真音频功率放大器、激光唱机、Hi-Fi前置放大器和均衡器等音响器材,以其独有的特色、醇厚优美的音质,被一批喜欢胆机的音响发烧友和怀旧的老音乐谜所推崇。 随着电子信息技术的飞速发展,电子管本身及电子管电路的设计和制造也在不断地改进和完善,同时也随着发烧友们自身综合素质的不断提高,计算机CAD技术的引进,为发烧友们自己动手安装高保真的胆机,打下了良好基础。当发烧友们陶醉在自己安装的胆机推动音箱所产生的这种在Hi-Fi历史上崭新的柔美醇厚“原汁原味”音响效果时,一定为这全新的玩法而心旷神怡。 有过装机实践的发烧友一定明白,制作一台胆机,即使使用统一器材,用统一电路,倘若整机的结构装配工艺水平不同,质量性能就可能有很大差异。由于工艺结构不妥,可能人为地千万噪声和其他干扰,甚至引起自激啸叫;整机放大器级数愈多,增益越高,结构工艺的要求就愈严格。高增益和稳定性是一对矛盾,增益越高不稳定的可能性越大,矛盾的解决,除电路上采取各种稳定措施加以控制外,还有赖于整机的结构工艺来实现,何况在胆机的噪声电平中,电路设计原因造成的只占30%,而70%取决于整机工艺结构设计和安装。为此笔者根据自己在装实践过程中经验和体会,对胆机的整机布局结构及装配工艺谈几点意见。 一、元器件的排列布局 1、电子管功放的主要元件是电子管、输出变压器、电源变压器、电位器和电阻、电容等元件。它们都座落在金属底板上,因为金属底板是导体,对隔离电磁场是有效的,但应尽量避免使用磁性金属材料做底板,因为磁性金属材料是顺磁性的,它会使各种变压器的漏磁在底板上传播造成干扰源,一般采用金属铁底板较好。为了防止放大器前后级之间电场和磁场的影响,排线电路布局要合理,电路布局的不合理,易造成高寄生振荡,一般都按电路的前后顺序作一字型排列,不能随意胡乱安排,切不可前后级排成U型。元件的分布要考虑信号传输路径最短,干扰最小,立体声胆机的整体布局要对称,分布均衡,以保证多声道电路的对称性和平衡性。 2、电源变压器与输出变压器都必须是磁感应器件,由于制作工艺、采用材料等原因,难免会产生较大的泄漏磁场,它们之间的摆位应尽量相距远些,并注意它们磁通的方向,使相应位置昼避免电磁感应交连,一般采取远离或垂直放置。周围元件的引线不要距离变压器输入端引线太

电子管功放的安装步骤

第二节电子管功放的安装步骤 现代电子管功放除了声道分立的高档机型外,大都为合并式的立体声功放。下面即以立体声功放为例,介绍其安装程序。 按照事先设计好的地位,先将各种小零部件装上。如电子管管座、开关、电位器、输入与输出接线端子、插口、接线支架、接地焊片等逐一装好。 电子管灯座在安装时必须认清图示的方向,这样可保持走线距离最近。管脚识别,可将电子管管脚朝向自己方。功放管用瓷八脚灯座时,从中心对正缺口开始,按顺时针方向,分别为1→8号接脚;前级放大与推动管为九脚灯座时,从开档较大处开始,按顺时针方向,分别为1→9号接脚。特殊管座的管脚识别 大都是在特定标志下按上述方法识别。 左、右声道输出变压器、电源变压器、阻流圈等因较为笨重,在安装焊接各种零件时,底板要四面翻动,容易损伤外表漆皮,应当在全部阻容元件和接线焊接完毕后,最后再装上。安装电源变压器与输出变压器时,必须在螺丝上加装弹簧垫片,使之不易松动,以防止变压器通电后与底板之间产生振动,从而引起 涡流损耗与交流声。 1 合理的接地方式 电子管功放中的接地走线,对功故机的信噪比与电性能的优劣有重要影响。特别是在增益较高的多级放大器中,其接地走线的布局方式尤为重要。因为功放机中的接地线具有双重作用,既是直流电压与电流供给回路,又是音频信号的通路,其间通过的直流电压电流大小及交流信号的强弱亦不相同。 虽然用万用电表测量功放机内的所有接地回路,其阻值均为0Ω,但对交流信号而言,各接地通路之间仍存在着电位差。如果采用高频微伏表测量时,其

间的电位差可达数微伏以上。在高增益的多级功放机中,如接地走线布局不当,在高增益的输入端如混入数微伏的交流杂波信号,经过多级放大器逐级放大后, 将给功放机的信噪比带来极大的影响。 目前比较流行的接地方式有两种:母线接地方式与单点接地方式。 功放机的母线接地方式是采用直径为左右的粗裸铜丝或镀银铜丝作为接地母线,在功放机的底板上按照放大器的电子管位置就近顺序排列。一般由输入端子至第一级、再至倒相级、推动放大级、功率放大级,最后至电源变压器的接地端。接地走线的次序切不可前级与后级颠倒。立体声功放的接地走线必须左右声道严格分开,并各自按照顺序排列。同时必须注意输出端的大电流接地线切不可与输入端小电流接地线直接相通。图8-10为母线接地方式示意图。 单点接地方式一般使用在高增益放大器的输入级,或者当功放机中部分采用电路板时,其接地走线的原则也必须按照功放级的前后级顺序排列,切不可前 级与后级颠倒。 单点接地方式所强调的是,每一级的通地必须接在同一接地点上(就是我们常说的“一点接地”),其中该级的栅极电阻、阴极栅负压电阻及旁路电容的通地尤为重要,两者之间不允许再有导线存在。因为导线难免存在电阻,它可能存在的电位差,对高灵敏的放大器来说,等于在放大管阴极与栅极之间串接了一个交流电源,经过逐级放大后,即会产生严重的交流声。

电子管OTL 功放的制作

电子管OTL 功放的制作 2 2008-03-12 11:12 电路分析(以一个声道为例,另一声道电路相同) 1.输入前置放大级 采用SRPP放大电路: 本前级应选用中放大系数的双三极管为宜,因为这样的三极管内阻较小,屏流和跨导值较大,对降低输出阻抗有利,且屏极特性曲线的线性范围较宽,故输入级的动态范围较大。 本机该前置放大级可采用6N1l、6DJ8、6922、ECC88等双三极电子管。音频信号由下管栅极输入,工作于共阴极方式;上管则工作于共栅极方式,被放大后的音频信号由上管阴极输出。 SRPP前级放大器的特点是输入阻抗高,为200kΩ以上;输出阻抗低,为数百欧姆。因此对前级输入的小信号具有传输损耗小,动态范围大,抗干扰性能好,有利于输入与输出级的阻抗匹配。同时,本电路的频率响应特性极佳,高频瞬态响应也很好。 此外,由于本电路上管阴极电位很高,约为100V左右,所以在选管时其阴极与灯丝问的耐压均应不超过极限值,如果超过极限电压将会导致灯丝与阴极间击穿。 2.倒相兼推动放大器 本机电压放大级为共阴级长尾式放大器。 该电路是一种性能卓越的差分放大电路。在此电路中,为获得尽可能大的共阴极电阻,能使放大管的栅极与前置放大级的屏极直接耦合,以得到较高的栅极电压与阴极电压。电路中的1MΩ电阻为栅漏电阻,0.22uF为旁路电容,以确保放大管栅极电位恒定。因电子管栅极回路的内阻较高,故要求旁路电容的绝缘性能很高,不可有轻微的漏电。 本电路由双三极电子管6N6担任。上管为激励管,下管为倒相管,两管共用阴极电阻(18kΩ),并且有深度的电流负反馈作用,故稳定性好。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两电子管阴极的互耦作用,其屏极与阴极电流均随之变化。由于两管的负载电阻阻值相同,均为36kΩ,两管输出电压幅值相等,方向相反,从而完成倒相兼推动工作。 由于倒相兼推动电子管的阴极电位较高,所以在选管时必须重视。如采用普通双三极管代用时,为了防止电子管的灯丝与阴极间的击穿,可以对该管灯丝采用不接地的独立供电方式。 3.功放级 该OTL功放级的每声道由4只6N5P低内阻中功率双三极电子管担任,采用正负双电源供电。该功放管的栅极负压规定值为-30V,其工作点必须配置在屏流——栅压特性曲线的直线部分,故栅极负压应配在规定值的1/3左右为佳,以使栅极上输入的推动电压在正半周的最大值时,不超过栅极负压的规定值;而在负半周时也不致接近屏流曲线的弯曲部分而引起失真。该电路每声道输出的不失真功率可达20w。 由于大回环的深度负反馈会给功率放大器的瞬态响应带来危害,故本电路从功放输出端至输入级的整机负反馈取得较低(反馈电阻15kΩ),反馈点设置在前置放大管的阴极,对比端仅取1/10阻值,这样既提高了整机的各项电性能指标,又不影响瞬态响应的特性。

自制胆机实践经验谈

自制胆机实践经验谈 本人通过多次实践经验对比强调指出了胆机制作的误区及制作的关键问题,供大家参考和商榷。 兴趣的由来及初步认识: 作为一个电子设备制造维修者我对电子管设备的感觉首先是笨重和高能耗。但随着大家对胆机的热衷我也不由自主的想试试看看到底胆机如何。 首先说音响是用来欣赏音乐的,这跟不同人的听觉感受用很大关系,所以只能说我自己的感受如何。再就是音响是系统并非一个电子管功放就解决了全部问题,音源音宿同样重要,当然功放是很重要的一部分。因此打造一个适合自己的音响最重要。 制作过程及部分经验: 历时两年半共制作了三台功放,第一台:6N11+6P3P(甲乙类推挽),在此期间对许多管子及电路都进行了对比试听(请了许多有音乐细胞的朋友来听,并提出了很多宝贵意见),第二6N4+6P1(甲类)送仓库助理做小书架音响的功放,第三台:自己用的6N11+6P3P+807(甲乙类推挽)。下边谈一下自己制作经验供大家参考。 1、选择电路:在能完成功能的情况下电路应尽量简单,以减少干扰及制作不必要的麻烦。最初定以下实验电路,实验以后根据情况作了调整。 2、材料准备:V1准备用6N11或6N4,从旧电子管设备上拆得6N11数只6N4数只(电子管扫频仪及电子管低频示波器上均有),6P3P仓库找的J

级品,用电子管参数测试仪逐个选拔配对,输出变压器是旧低频信号产生器上拆的两只,粗略估算功率小了点,而且阻抗也不匹配,改变阻抗匹配先凑合实验一下在说,(后谈输出变压器的绕制),电源变压器是示波器上的功率、电流足够,电压有多种输出,实验选择的余地很大,供实验用的各种规格型号电阻、电容、电子管均是从数以千计的旧电子管设备上拆或仓库沉睡数年的库存部分器材选的(唉真说不清是浪费还是废物利用呀)。音箱是惠威扬声器制作的书架音箱。测试仪表有低频信号产生器、毫伏表、电子管测试仪、示波器、低频扫频仪、电阻测试仪、电感、电容测试仪等。 3、自己制作的体会: 1)、噪声产生的原因及抑制: 电子管设备最讨厌的就是静态时的噪声,其产生原因一是电源,二是灯丝,三是输入电路及焊接布线。首先得认识到噪声只能拟制(耳听感觉不到)不可能完全消除,尤其是热噪声。 抑制噪声方法:①各级电压分别供电,以减少功率放大级电压的波动对前级电压放大的影响;②试验结果是电感Π型滤波比电阻Π型滤波交流声要小的多(毫伏表测试结果也如此),滤波电容适当增大;③推挽电子管的对称非常重要,一定要挑选交直流参数一致的,且推挽工作点应仔细调整一致;④灯丝采用直流供电好于交流供电,且电阻平衡后中心点接地而非一端接地,平衡电阻要并接0.1-0.33电容;⑤接地采用单点接地,各级用4M2的包银铜线连接至电源滤波电容;⑥电源变压器用铝板或铜板做屏蔽罩,并加一减震垫圈再固定与底板(底板用厚

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

电子管功放的调整

电子管功放的调整 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。 工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。 胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。 调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。 降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。 一、栅负压电路 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负

一部电子管放大器组装完成

一部电子管放大器组装完成,试音正常,还只是完成了工作量的一部分,要想出好声,还有大量细致的工作要做,那就是调 试和校声,因为只有经过仔细、合理的调整、校验,使放大器各级放大管均工作在最佳的工作点上,并且再经过校声,使放大器 的音色圆润,音乐感丰富,动态凌厉、频响宽阔,才会乐声细致、清澈、悦耳动听。校声工作需要多花精力,需要的时间较长, 甚至几个月才能完成,因此要有毅力,有耐心。下面就谈谈电子管放大器的调试和校声的方法。 发烧友焊机时,一般是根据手中现有的元件,再选择优秀线路或照名机的线路按图索骥,进行焊接,元件的规格、数值虽然 与线路图上的要求相差不大,甚至有的元件档次还要高级一些,但元件的排、走线的长短、焊接的质量,或其他方面的差异,如 B+电压的高低,电流的大小等,都会影响放音的效果,所以焊出胆机不一定开声就靓,需要经过精心的调试,使各放大器工作在 量佳的工作状态,才能充分发挥每只胆管和线路的魅力,达到满意的放音效果。 胆机的调整和校声的内容包括:将噪音、交流声降低到可以接受的水平;调整电子管的屏压、屏流和栅负压,使电子管工作 在较佳的工作点上;更换级间耦合电容的容量和品牌,更换B+滤波电容的容量和品牌,甚至更换机内小信号线、电阻、电子管的 品牌等,使放音系统放出好声。 关于交流声的消除方法,过去已有较多文章介绍,本文不再重复。如果音量电位器开大后有“咝、咝”声,说明电路有自激 的现象,是元件排列、走线不合理引起的交连感应。可拨动某些导线或元件听有无反应,要逐根引线,逐个元件的查找,然后改 换位置消除感应。当音量电位器开度小时放音系统并无噪音,但扭到某一位置时突然有噪音,过了这个位置再开大,噪音反而消 失,这是输入部分的元件排列不合理造成的。消除的办法是输入部分的元件重新排列,改变走线。 三极管的工作点由屏压和栅负压决定。屏压确定后可调整栅负压来调工作点。五极管的屏压升高到一定程度后,帘栅压的变 化会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。当电源的容量较大,内阻较低时,调整屏流的大小,B+ 电压一般不会有变化,若电源的富裕量不大,屏流调得较大时B+电压会有较大的下降。 一、栅负压电路 电子管的栅极一般是接负压,习惯上称“栅负压”或“栅偏压”。栅负压的供给有两种方法:一种是利用电子管屏流(或屏 流加帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,称自给式栅负压,一般用于屏流较稳定的甲类放大器电路上。另 一种是在电源部分设一套负压整流电路(电源来自变压器的单独绕组或者从B+电源的负端抽取)供给栅负

MOSFET与电子管OTL功放的制作

黼蘩缀 鬻i麓“i;:;;{iih壤酾舔j嘶i蝎ishl【l。 日;1.缸日,。m叭jl爨眵攀ii鬻璧!lll豳 。i黪臻l嚣赣藏§ 羹豢纛 由日本山崎浩氏撰写的MOS—FETOTL功放,电路简洁,性能并由该管组成无输出变压器的双管并联推挽卓越,频晌宽阔,其音色可与4HB5电子管OTL功放相媲美。外形图式0TL功率放大电路,0TL功放上边管栅极见题图,电路见图1。 的偏置电压,由高压电源经470kQ电阻对地胆机与石机在音响界有不少共识,以总体上来看,胆机属于柔分压后取得,并经稳压后供给上边管的栅极,性,石机属于刚性。一般人们在欣赏音乐时。绝大多数人对胆韵的同时此稳压管起到强信号抑制,从而达到保温柔均情有独钟。 护功放管的作用。0TL功放级下边管的栅极HOS—FET场效应管的特性与胆管十分相似,故采用HOS—FET场偏置电压,由中点电压通过330kQ电阻对地效应管制作的功率放大器,同样具有浓郁的韵味,深受发烧友们的分压后取得,并同样设置了稳压管,以确保喜爱。 功放管的工作稳定。 赫鬻囊?瓣I麓徽蠹蓑耩i 由Hos—FET场效应管13uz45的oTL功输入级 放级高压为350V,中点电压为高压电源的一输入电压放大级由小功率场效应管BSSl25担任,并由该管组 半,功放级的电流为200mA,由中点经成共漏极电压放大电路,输入的音频信号经放大后由源极输出,并800恤F大电容后输出,输出负载阻抗为16Q,直接耦合至倒相管的栅极。 额定输出功率为40W。 为了提高整机电性能,故在输入管BSSl25的漏极与功放输出MOS—FET场效应管组成的0TL功率放大端之间设置了由56n与1.5kQ组成的整机电压负反馈网络,这样即器,具有体积小,重量轻,放大效率高的特可使功放整机的失真度、频率响应与信号噪声比等各项性能得到较点,0TL功放的频率响应比普通有输出变压大地改善。 器的频晌显著宽阔,高低频端的频率延伸范倒相兼推动级 围加宽,可满足现代数码音源的放音要求;倒相兼推动级仍由小功率场效应管BSSl25担任.并由该管组同日寸由MOS—FET场效应管的特性与电子管功成倒相电影,由于该管的源极与漏极所输出的电压相位差为180。,放机十分相似,故音色温顺柔和,音乐韵味同时,源极与漏极输出端的负载电阻均取值为22kn,因此,在十足。 BSsl25的两个输出端即可取得一对相位相反而幅值相等的推动电=巷辩毯器糕悉篝露耀蝴鬻舔!i 压,从而完成倒相兼推动工作,再分别经过两只O.22“F电容,将6HB5电子管OTL功放与HOS—FET功效应 推动信号电压耦合至0TL功放管的栅极。 管0TL功放的电路结构基本相同,该OTL功OTL功率放大级 放的音质清澄透明,频率响应宽阔,胆韵浓0TL功率放大级由四只大功率HOS—F盯场效应管BUZ45担任, 郁,额定输出功率亦为40W。电路见图2。 2005年第11期<瓷“>

常见的电子管功放设计

常见的电子管功放是由功率放大、电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道 电源供给部分为放大通道工作提供多种量值的电能。 一般而言 电子管功放的工作器件由有源器件 电子管、晶体管 、电阻、电容、电感、变压器等主要器件组成 其中电阻、电容、电感、变压器统称无源器件。以各有源 器件 为核心并结合无源器件组成了各单元级 各单元级为基础组成了整个放大器。功放的设计主 要就是根据整机要求 围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础 最好有一定的实做基础 且对电子管工作原理有一定了解 一、整机及各单元级估算 1、由于功放常根据其输出功率来分类。因此 先根据实际需求确定自己所需要设计功 放的 输出功率。 对于95db的音箱 一般需要8W输出功率 90db的音箱需要20W左右输出功率

84db音箱需要60W左右输出功率 80db音箱需要120W左右输出功率。当然 实际可以根据个人需求调整。 2、根据功率确定功放输出级电路程式。 对于10W以下功率的功放 通常可以选择单管单端输出级 10~20W可以选择单管 单端功放 也可以选择推挽形式 而通常20W以上的功放多使用推挽 甚至并联推挽 如 果选择单管单端或者并联单端 通常代价过高 也没有必要。 3、根据音源和输出功率确定整机电压增益。 一般 现代音源最大输出电压为2Vrms 而平均电压却只有0.5Vrms左右。由输出 功率确定输出电压有效值 Uout √ˉ(P?R) P为输出功率 R为额定负载阻抗 。例如 某8W输出功率的功放 额定负载8欧姆 则其Uout 8V 输入电压Uin记0.5V 则整 机所需增益A Uout/Uin 16倍。

电子管OTL功放电路及原理

电子管OTL功放电路及原理 OTL 是英文Output Transformer Less Amplifier 的简称,是一种无输出变压器的功率放大器。 一.OTL 电子管功放电路的特点普通电子管功率放大器的输出负载为动圈式扬声器,其阻抗非常低,仅为4~16Ω。而一般功放电子管的内阻均 比较高,在普通推挽功放中屏极至屏极的负载阻抗一般为5~10kΩ,故不能直接驱动低阻抗的扬声器,必须采用输出变压器来进行阻抗变换。由于输 出变压器是一种电感元件,通过变压器的信号频率不同,其电感线圈所呈现的 阻抗也不同。为了延伸低频响应,线圈的电感量应足够大,圈数也就越多,因 此在每层之间的分布电容也相应增大,使高频扩展受到限制,此外还会造成非 线性失真与相位失真。为了消除这些不良影响,各种不同形式的电子管OTL 无输出变压器功率放大器应运而生,许多适用于OTL 功放的新型功率电子管 在国外也不断被设计制造出来。电子管OTL 功率放大器的音质清澄透明,保 真度高,频率响应宽阔,高频段与低频段的频率延伸范围一般可达 10HZ~100kHz,而且其相位失真、非线性失真、瞬态响应等技术性能均有明 显提高。 二电子管OTL 功放电路的形式图1(a)~图1(f)是OTL 无输出功放基本电路。图1(a)和图1(b)为OTL 功放两种供电结构的方式,即正负双电源式和单电源供电方式。在正负双电源式OTL 功放中,中心为地电位。这样可保证推挽 电路的对称性,因此可以省略输出电容,使功放的频率响应特性更佳。单电源 式OTL 电路为了使两只推挽管具有相同的工作电压,必须使中心点的工作电 压等于电源电压的一半。同时,其输出电容C1 的容量必须足够大,不影响输 出阻抗与低频响应的要求。图1(c)和图1(d)为OTL 功放电子管栅极偏置的取

适合业余制作的优质电子管功放

适合业余制作的优质电子管功放王文林用电子管制作的优质功放音色醇美诱人,并且可以更好地消除一般价位的CD机普遍存在的数码味,与CD这种音源搭配正可谓“珠联璧合”,使播放的音乐更耐听,没有一般晶体管功放和IC功放常有的吵耳感。但对于一般的业余爱好者来说,优质胆机中的关键部件之一——输出变压器的自制是较为困难的。虽说时下已有种种高档输出变压器面世,但数百元一只的售价,令一般爱好者只能是望梅止渴。其实我们只要在电路结构上做些选择,就可以避开这一难点,用及普通的变压器制作出优质的电子管功放。本文电路就是采用了价格十分低廉的普通有线广播用的输出变压器,但从实际听音效果来看音色极美。现就该电路简述如下。

该电路采用了类似晶体管OCL电路的电路结构,但仍保留使用输出变压器。由于在电路中采用了对称的正负电源,其中O点的直流电位为零,这样在输出变压器T2的初级绕组中无论有无音频信号送入,始终没有直流电通过。正是由于这一点,我们不仅可以使用普通交迭铁芯的变压器,而且还可以将电子管功放中输出变压器采用的互耦接法改为本机电路中所使用的自耦接法。这种自耦接法带来的好处是极为显著的。对同一只音频变压器来说,自耦接法与互耦接法相比,自耦接法的频响、相移等电器指标都明显优于互耦接法,其效率更是数以倍计的提高。加之本机这种电路结构不像普通电子管机推挽变压器 需两个输入端子,并且要求两绕组对称,这样就给使用普且价廉的变

压器作输出变压器创造了条件。在本机中功放管采用了价格十分低廉且常见易得之电子管6P14(J),该管有较好的频响指标和较小的失真,又有较6P3P、6P6P一类功放管为高的跨异值。也就是说它的功率灵敏度较高,在本机电路中6P14(J)采用了五级管的三极管接法,更进一步降低了该管的失真和输出阻抗。功放管栅极上串入的1kΩ电阻是为了消除6P14(J)并管使用时可能产生的自激。本机的倒相级采用了频响指标较高的长尾式倒相电路,这级由6N8P双三极管组成的倒机电路更优。本机的输入级采用国产发烧电子管6N11(J)作并联调整式推挽放大,以提高输入级的频响,特别是高频的频响,并使输入级有较小的失真和较大的动态输入范围,因而更适应CD机这种具有较高输入电平和大动态音源的要求。 本机的调整和制作都比较简单。先在扬声器端接入一等阻值大功率的电阻作假负载。由于本机功放级与倒相级之间有隔直耦和电容,相互之间没有直流电位的牵连,这样其工作稳定性和调整均比晶体管OCL功放可靠、简单。通过电前将500Ω的可调电阻调到最大端,这样其上产生的各功放管的自生栅偏压都应超出-10V。因此可防止在调试过程中因栅偏压过小而可能对功放管造成的损害。充分预热后,可分别调4只500Ω的可调电阻,使各功放管的栅偏压(即500Ω可调电阻两端的电压)为10v左右。这时再测输出中o点与地之间的电压应在OV。否则应微调上下功放管阴极的500Ω可调电阻使回到OV。若o点电压虽被调至OV,但上下功放管阴极电阻上产生的栅偏压值(正常值为-10V)相当悬殊,则说明功放管的一致性差,应更

用EL34制作的合并式电子管功放(上) 精品

用EL34制作的合并式电子管功放(上)(组图) 电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。本机通用性强,制作简便,成功率高,升级换代方便。 电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。 本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压与部分元件参数即可。 常用功率管作A类与AB类推挽功放应用参考数据表: 图1 一、合并式功放电路简析

图2 图2 电子管合并式功放电原理图 图2为电子管合并式功放电原理图。输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流与跨导值大,屏极线性范围宽,输入动态范围大。输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。 倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。本电路由双三极电子管6N1l 或6N6来担任。上管为激励管;下管为倒相管。两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。对上管来说是串联输入;对下管来说是并联输入。当有音频信号输入时,利用两管阴极的互耦作用,使屏极与阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。 值得注意的是:前级输入放大管与倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极与灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝与阴极间的击穿。故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。 此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V 以上,不允许有丝毫的漏电,否则将会影。向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。

电子管功放简易设计

电子管功放简易设计 电子管功放简易设计,写给初学者! 发烧之路 2009-06-10 12:15:30 阅读202 评论0字号:大中小 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率; 84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10,20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。

一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout,?,(P?R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout,8V,输入电压Uin 记0.5V,则整机所需增益A,Uout/Uin,16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%,25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%,30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右关于电子管特性曲线的知识可以参照 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况等多种因素左右,所以一般由手册给出,供选择。 在决定输出级用管和电路程式之后,根据输出级功率管满功率输出时所需推动电压Up(峰峰值)和输入音源信号电压U'in(这里的U'in需要折算成峰峰值)确定电压放大级增益。Au,Up/U'in。例如2A3单管单端所需推动电压峰峰值为90V,输入信号峰峰值为1.4V,则所需增益Au,90/1.4=64倍,若为开环放大,则取1.1倍余

相关文档
最新文档