屏蔽暂堵保护油气层钻井液技术1

屏蔽暂堵保护油气层钻井液技术1
屏蔽暂堵保护油气层钻井液技术1

屏蔽暂堵保护油气层钻井液技术(简称屏蔽暂堵技术)主要用来解决裸眼井段多压力层系地层保护油气层技术的难题,其原理是利用钻井液液柱压力与油气层孔隙压力之间的压差和钻井液中的固相处理剂,在油气层被钻开的极短时间内在井筒近井壁附近形成渗透率接近零的屏蔽暂堵带,此屏蔽暂堵带能有效地阻止钻井液、水泥浆中的固相和滤液继续侵入油气层,对油气层造成污染,而形成的屏蔽暂堵带能够通过射孔解堵。该技术已广泛应用于钻井实践中,取得了较好的效果。

屏蔽暂堵理论是针对孔隙型砂岩油气层提出的一种保护油气层理论,它的技术要点是:根据储层岩心压汞实验得到储层孔隙直径分布曲线,从而计算出储层平均孔喉直径,按1/2~2/3孔喉直径选择油气层保护添加剂的粒径。在进入油气层前加入油气层保护添加剂,调整钻井液中的固相粒径分布,从而将钻井液转化为保护油气层钻井完井液,达到保护油气层的目的。传统屏蔽暂堵保护油气层技术在计算储层平均孔喉直径时是将储层所有孔喉都参加了计算,它忽略了两个因素,一是不同的孔喉直径对储层渗透率的贡献是不同的,大的储层孔喉数量少,但它对储层渗透率的贡献大,微小孔喉数量大,但对储层渗透率的贡献小;二是由于储层的非均质性,在储层存在孔喉直径极小的微孔隙,这些孔隙中的流体在目前的开采条件下是不流动的,因此,封堵这些孔隙也是没有意义的。如果将这些孔喉用于计算平均孔喉直径,那么理论计算的平均孔喉直径将大大小于储层实际流动的平均孔喉直径,根据这样的计算结果选择的油气层保护剂其封堵效果较差,起不到堵塞主要流通孔道的作用。

广谱型屏蔽暂堵保护油气层技术是对传统屏蔽暂堵保护油气层技术理论的继承与发展,该技术是依据储层的d流动50和最大流动

孔喉直径来确定不同渗透率段下的暂堵剂粒子的直径,克服了传统屏蔽暂堵技术确定暂堵剂粒径时存在的缺陷,使得屏蔽暂堵理论更具科学性,其主要技术要点如下。

(1)分析研究储层渗透率变化规律,采用所研究区块储层(取心井)岩心实测的渗透率与孔喉特性数据,计算出渗透率贡献值达到97%(±1%)时储层孔喉的平均直径d流动50,以及储层最大孔喉直径d max。渗透率贡献值3%的微小孔喉没有考虑的主要原因:由于孔喉直径极小,在储层中常被不流动的流体所占据,容易造成永久伤害,在目前开采条件下不可能开采出该孔隙中的油和气,封堵这部分孔喉没有实际意义;如果把它的孔喉直径累计到求d50的值中去,会使该值大幅度降低,起不到堵塞主要流通孔道的作用。

(2)依据储层的d流动50和最大流动孔喉直径来确定不同渗透率段下的暂堵剂粒子的直径,按1/2~2/3储层的d流动50来选择架桥粒子的出,。充分考虑砂岩油藏的非均质性,根据目标区块油气层渗透率的分布规律确定各种粒径暂堵剂的比例,并使其在钻井液中的含量大于4%;按1/4储层孔喉的平均直径d流动50选择充填粒子直径d50,其加量大于1.5%。在选择架桥粒子时,还必须考虑架桥粒子的d90等于1/2~2/3储层最大孔喉直径。

(3)选用沥青类产品作为可变形粒子添加剂,加量为2%,但其软化点应高于油气层温度10~50。C。如地质录井要求使用低荧光钻井液,则可使用乳化石蜡、聚合醇类产品作为可变形粒子添加剂。与传统屏蔽暂堵保护油气层技术相比,广谱型屏蔽暂堵技术对储层

物性特征的研究更细致,暂堵剂优选时针对性更强。

广谱型屏蔽暂堵保护油气层技术和理想充填油气层保护技术是根据储层孔喉分布特点,选择适当粒径的油气层保护添加剂,调整钻井液的固相粒度分布,使之与油气层孔喉直径分布相符,最大限度地保证了钻井液中的大颗粒的含量,实现了有效暂堵,确保了封堵效果。在每口水平井现场施工工程中,严格按照室内研究成果调整钻井液性能,足量加入复配暂堵剂等油气层保护材料,钻井过程中根据消耗量及时补充,保证其有效含量相对稳定。为了检验室内研究成果在现场的试验效果,从部分水平井现场取回井浆进行室内评价实验,以评价其有效性。

广谱型屏蔽暂堵和理想充填保护油气层技术是根据储层孔喉分布特点选择适当粒径的油气层保护添加剂,调整钻井液的固相粒度分布,使之与油气层孔喉直径分布相符,实现了有效暂堵,确保

了封堵效果,非常适用于非均质砂岩油藏的油气层保护。其中理想充填保护油气层技术是借助计算机软件工作,操作更方便,它更适用于高孔高渗的砂岩油藏。

超低渗透钻井液形成的封堵层(膜)承压能力强,能提高漏失或弱胶结地层的承压能力,相当于扩大了安全密度窗口,能较好地解决钻长裸眼多套压力层系或压力衰竭地层的井眼复杂问题。

超低渗透钻井液滤饼薄而韧, 阻隔井眼和地层的压力传递, 能有效避免压差卡钻发生。迅速形成封堵,侵入浅, 滤饼酸溶率高, 通过返排或酸化易解除,有利于油层保护。

有机正电胶双聚钻井液克服了常规正电胶钻井液的缺点,兼有正电胶钻井液和聚合醇钻井液的优点,具有独特的流变性、优良的润滑性、抑制岩屑分散和稳定井壁作用,以及显著的保护储层特性。现场应用证明, 该钻井液综合性能优良, 完全能够满足定向井、水平井井眼稳定、井眼净化、润滑防卡和储层保护的需要,具有良好的推广应用价值。

屏蔽暂堵保护油气层钻井液技术1

屏蔽暂堵保护油气层钻井液技术(简称屏蔽暂堵技术)主要用来解决裸眼井段多压力层系地层保护油气层技术的难题,其原理是利用钻井液液柱压力与油气层孔隙压力之间的压差和钻井液中的固相处理剂,在油气层被钻开的极短时间内在井筒近井壁附近形成渗透率接近零的屏蔽暂堵带,此屏蔽暂堵带能有效地阻止钻井液、水泥浆中的固相和滤液继续侵入油气层,对油气层造成污染,而形成的屏蔽暂堵带能够通过射孔解堵。该技术已广泛应用于钻井实践中,取得了较好的效果。 屏蔽暂堵理论是针对孔隙型砂岩油气层提出的一种保护油气层理论,它的技术要点是:根据储层岩心压汞实验得到储层孔隙直径分布曲线,从而计算出储层平均孔喉直径,按1/2~2/3孔喉直径选择油气层保护添加剂的粒径。在进入油气层前加入油气层保护添加剂,调整钻井液中的固相粒径分布,从而将钻井液转化为保护油气层钻井完井液,达到保护油气层的目的。传统屏蔽暂堵保护油气层技术在计算储层平均孔喉直径时是将储层所有孔喉都参加了计算,它忽略了两个因素,一是不同的孔喉直径对储层渗透率的贡献是不同的,大的储层孔喉数量少,但它对储层渗透率的贡献大,微小孔喉数量大,但对储层渗透率的贡献小;二是由于储层的非均质性,在储层存在孔喉直径极小的微孔隙,这些孔隙中的流体在目前的开采条件下是不流动的,因此,封堵这些孔隙也是没有意义的。如果将这些孔喉用于计算平均孔喉直径,那么理论计算的平均孔喉直径将大大小于储层实际流动的平均孔喉直径,根据这样的计算结果选择的油气层保护剂其封堵效果较差,起不到堵塞主要流通孔道的作用。 广谱型屏蔽暂堵保护油气层技术是对传统屏蔽暂堵保护油气层技术理论的继承与发展,该技术是依据储层的d流动50和最大流动

钻井对油气层的损害

钻井对油气层的损害 钻井过程中,针对钻井工艺技术措施中影响储层损害因素,可以采取降低压差,实现近平衡压力钻井,减少钻井液浸泡时间,优选环空返速,防止井喷井漏等措施来减少对储层的损害。 1.建立四个压力剖面,为井身结构和钻井液密度设计提供科学依据地层孔隙压力、破裂压力、地应力和坍塌压力是钻井工程设计和施工的基础参数,依据上述四个压力才有可能进行合理的井身结构设计,确定出合理的钻井液密度,实现近平衡压力钻井,从而减少压差对储层所产生的损害。 2.确定合理井身结构是实现近平衡压力钻井的基本保证井身结构设计原则有许多条,其中最重要的一条是满足保护储层实现近平衡压力钻井的需要,因为我国大部分油气田均属于多压力层系地层,只有将储层上部的不同孔隙压力或破裂压力地层用套管封隔,才有可能采用近平衡压力钻进储层。如果不采用技术套管封隔,裸眼井段仍处于多压力层系。当下部储层压力大大低于上部地层孔隙压力或坍塌压力时,如果用依据下部储层压力系数确定的钻井液密度来钻进上部地层,则钻井中可能出现井喷、坍塌、卡钻等井下复杂情况,使钻井作业无法继续进行;如果依据上部裸眼段最高孔隙压力或坍塌压力来确定钻井液密度,尽管上部地层钻井工作进展顺利,但钻至下部低压储层时,就可能因压差过高而发生卡钻、井漏等事故,并且因高压差而给储层造成严重损害。综上所述,选用合理的井身结构是实现近平衡钻进储层的前提。 3.实现近平衡压力钻井,控制储层的压差处于安全的最低值平衡压力钻井是指钻井时井内钻井液柱有效压力pd等于所钻地层孔隙压力pp,即压差 p=pd-pp=0。此时,钻井液对油层损害程度最小。为了尽可能将压差降至安全的最低限,对一般井来说,钻进时努力改善钻井液流变性和优选环空返速,降低环空流动阻力与钻屑浓度;起下钻时,调整钻井液触变性,控制起钻速度,降低抽吸压力。对于地层孔隙压力系数小于0.8的低压储层,可依据实际的地层孔隙压力,分别选用充气钻井、泡沫流体钻井、雾流体或空气钻井,降低压差,甚至可采用负压差钻井,减少对储层的损害。 4.降低浸泡时间钻井过程中,储层浸泡时间从钻开储层开始直至固井结束,包括纯钻进时间、起下钻接单根时间、处理事故与井下复杂情况时间、辅助工作与非生产时间、完井电测、下套管及固井时间。为了缩短浸泡时间,减少对储层的损害,可从以下几方面着手。 (1)采用优选参数钻井,并依据地层岩石可钻性选用合适类型的牙轮钻头或PDC 钻头及喷咀,提高机械钻速。 (2)采用与地层特性相匹配的钻井液,加强钻井工艺技术措施及井控工作,防止井喷、井漏、卡钻、坍塌等井下复杂情况或事故的发生。 (3)提高测井一次成功率,缩短完井时间。 (4)加强管理,降低机修、组停、辅助工作和其它非生产时间。 5.搞好中途测试为了早期及时发现储层,准确认识储层的特性,正确评价储层产能。中途测试是一项最有效打开新区勘探局面,指导下一步勘探工作部署的技术手段。大量事实表明,只要在钻井中采用与储层特性相匹配的优质钻井液,中途测试就有可能获得储层真实的自然产能。表9-10列举某油田部分探井中途测试结果,除26井因钻井液选配不妥,油层受到损害外,其它各井储层基本上没有受到损害。1988~1994年,塔里木盆地29口重大油气发现井中,有20口井

《油气层保护技术》复习题

《油层保护技术》复习题 (2009.4石工二学位) 一、填空题 1.油气层损害类型中,()损害不仅存在于各个作业环节,而且其损害程度较大;其次是()和(),再其次是润湿反转和结垢损害。 2.油气层损害存在于钻井、完井和采油等各个作业环节,油气层损害的实质包括()和()。 3.当扫描电镜配有()时,能对矿物提供半定量的元素分析,常用于检测铁元素。 4.()、()和()是保护油气层岩相学分析的三大常规技术。 5.砂岩的四种基本孔隙类型是()、()、()及裂隙,储层中常以前三种为主,裂隙可与其它任何孔隙共生。而碳酸盐岩的孔隙主要有()、()和()三种类型。 6.砂岩的四种常见孔隙喉道类型是()、()、()及()。 7.孔隙连通程度通常以最小未饱和孔隙体积百分数S min,退汞效率W e和孔喉配位数来表示,一般情况下,S min越(),W e越(),孔喉配位数越(),孔隙连通程度越差。 8.敏感性矿物的产状有四种类型,即()、()、()和(),不同产状对油气层损害的影响不同。 9.孔喉弯曲程度常用结构系数F来表示,F越大,弯曲程度越(),喉道越易受到伤害。 10.岩石的表面积越大,产生油气层损害的可能性就越()。 11.油田中常见的细菌为()、()和()。 12.按运移方式,微粒运移可分为()和()两种情况。 13.若某储层岩心的Dv=0.2,Dw=0.8,则该储层为()速敏、()水敏储层。 14.细菌主要以()、()和()三种方式损害油气层。 15.针对不同的分析内容,可选用相应的岩心分析方法。一般情况下,()适用于定性鉴定或定量测定各物相组成及其含量,特别是粘土矿物的成分和含量;而

保护油气层技术

保护油气层技术 (徐同台、赵敏、熊友明等编) 目录 第一章绪论……………………………………………………(1) 第一节保护油气层的重要性及主要内容…………………(2) 第二节保护油气层技术的特点与思路……………………(6) 第二章岩心分析……………………………………………(10) 第一节岩心分析概述……………………………………(10) 第二节岩心分析技术及应用……………………………(14) 第三章油气层损害的室内评价……………………………(29) 第一节概述………………………………………………(29) 第二节油气层敏感性评价………………………………(30) 第三节工作液对油气层的损害评价……………………(40) 第四节储层敏感性预测技术……………………………(44) 第四章油气层损害机理……………………………………(49) 第一节油气层潜在损害因素……………………………(50) 第二节外因作用下引起的油气层损害…………………(55) 第五章钻井过程中的保护油气层技术……………………(68) 第一节钻井过程中造成油气层损害原因分析…………(68) 第二节保护油气层的钻井液技术………………………(73) 第三节保护油气层的钻井工艺技术……………………(90) 第四节保护油气层的固井技术……………… ………(100) 第六章完井过程中的保护油气层技术……………………(107) 第一节完井方式概述……………………………………(107) 第二节射孔完井的保护油气层技术……………………(111) 第三节防砂完井的保护油气层技术……………………(125) 第四节试油过程中的保护油气层技术…………………(140) 第七章油气田开发生产中的保护油气层技术……………(143) 第一节概述………………………………………………(143) 第二节采油过程中的保护油气层技术…………………(147) 第三节注水中的保护油气层技术………………………(149) 第四节增产作业中的保护油气层技术…………………(156) 第五节修井作业中保护油气层技术……………………(164) 第六节提高采收率中的保护油气层技术………………(168) 第八章油气层损害的矿场评价技术………………………(175) 第一节油气层损害的矿场评价方法……………………(175) 第二节油气层损害的评价参数…………………………(181) 第三节油气层损害的测井评价…………………………(186) 第九章国外保护油气层技术发展动向……………………(198) 参考文献………………………………………………………(213) 张绍槐,罗平亚.保护储集层技术.北京:石油工业出 钟松定,张人和,樊世忠.油气层保护技术及其矿场管理实例.北京:石油工业出版社,1999

钻井液对储层损害

1.钻井液中分散相颗粒堵塞油气层 1)固相颗粒堵塞油气层 钻井液中存在多种固相颗粒,如膨润土、加重剂、堵漏剂、暂堵剂、钻屑和处理剂的不溶物及高聚物鱼眼等。钻井液中小于油气层孔喉直径或裂缝宽度的固相颗粒,在钻井液有效液柱压力与地层孔隙压力之间形成的压差作用下,进入油气层孔喉和裂缝中形成堵塞,造成油气层损害。损害的严重程度随钻井液中固相含量的增加而加剧,特别是分散得十分细的膨润土的含量影响最大。其损害程度与固相颗粒尺寸大小、级配及固相类型有关。固相颗粒侵入油气层的深度随压差增大而加深。 2)乳化液滴堵塞油气层 对于水包油或油包水钻井液,不互溶的油水二相在有效液柱压力与地层孔隙压力之间形成的压差作用下,可进入油气层的孔隙空间形成油-水段塞;连续相中的各种表面活性剂还会导致储层岩心表面的润湿反转,造成油气层损害。 2.钻井液滤液与油气层岩石不配伍引起的损害 钻井液滤液与油气层岩石不配伍诱发以下五方面的油气层在损害因素。 1)水敏 低抑制性钻井液滤液进入水敏油气层,引起粘土矿物水化、膨胀、分散、是产生微粒运移的损害源之一。 2)盐敏 滤液矿化度低于盐敏的低限临界矿化度时,可引起粘上矿物水化、膨胀、分散和运移。当滤液矿化度高于盐敏的高限临界矿化度,亦有可能引起粘土矿物土水化收缩破裂,造成微粒堵塞。 3)碱敏

高pH值滤液进入碱敏油气层, 引起碱敏矿物分散、运移堵塞及溶蚀结垢。 4)涧湿反转 当滤液含有亲油表面活性剂时,这些表面活性剂就有可能被亲水岩石表面吸附,引起油气层孔喉表面润湿反转,造成油气层油相渗透率降低。 5)表面吸附 滤液中所含的部分处理剂被油气层孔隙或裂缝表面吸附;缩小孔喉或孔隙尺寸。 3.钻井液滤液与油气层流体不配伍引起的损害 钻井液滤液与油气层流体不配伍可诱发油气层潜在损害因素,产生以下五种损害:1)无机盐沉淀 滤液中所含无机离子与地层水中无机离子作用形成不溶于水的盐类,例如含有大量碳酸根、碳酸氢根的滤液遇到高含钙离子的地层水时,形成碳酸钙沉淀。 2)形成处理剂不溶物 当地层水的矿化度和钙、镁离子浓度超过滤液中处理剂的抗盐和抗钙镁能力时,处理剂就会盐析而产生沉淀。例如腐植酸钠遇到地层水中钙离子,就会形成腐植酸钙沉淀。 3)发生水锁效应 特别是在低孔低渗气层中最为严重。 4)形成乳化堵塞 特别是使用油基钻井液、油包水钻井液、水包油钻井液时,含有多种乳化剂的滤液与地层中原油或水发生乳化,可造成孔道堵塞。 5)细菌堵塞 滤液中所含的细菌进入油气层,如油气层环境适合其繁殖生长,就有可能造成喉道堵塞。4.相渗透率变化引起的损害

第6章钻井液

第六章钻井液 第一节钻井液的功用和组成(钻井的血液) 一、钻井液的种类和发展 种类:清水、自然造浆、泥浆(细分散、粗分散、不分散、油基、水基)、乳化钻井液、泡沫钻井液、气体钻井液。 1、旋转钻井初期用清水钻进,遇井下粘土层自然造浆,这一时期称为自然造浆阶段。(1901~1920年) 2、在清水中加入粘土和分散剂,使粘土充分分散以提高其稳定性,这一时期称为细分散阶段。(1921~1942年) 3、为提高泥浆的抗钙污染能力,加入一些抗钙处理剂(无机絮凝剂,如石灰、石膏、氯化钙等)使粘土处于适当絮凝状态(初分散),这一时期称为初分散阶段。(1942~1965年) 4、为提高钻速和适应喷射钻井的需要,在泥浆中加入有机絮凝剂,使粘土不分散,这一时期称为不分散阶段。 ★5、八十年代开始重视和研究钻井液对储层的损害问题,因而进入了钻井液的保护储层阶段。 二、钻井液的基本功用 1、清洁井底 2、携带和悬浮清除钻屑 环空返速(0.6~1 m/s)>钻屑沉降速度→钻屑上行 迟到时间(深井0.5~1h):钻屑自井底升到井口所需时间 3、保护井壁(泥饼) 4、冷却、润滑钻头和钻柱 5、控制与平衡地层压力(密度) ★6、提供地层有关资料和信息(泥浆录井提供油、气、水和地层压力资料)。

在钻井作业过程中,钻井液直接与地层接触,并且不断地从地下循环到地面上来,因而地层的情况总会或多或少地在钻井液中被反映出来。因而我们可以通过钻井液间接和直接的来了解地层的情况。这就是钻井液的录井功能。 比如,正在钻进地层的钻屑是通过钻井液的循环而被带到地面,因而我们便可以从这些钻屑来了解地层的岩性特征和划分地层层位。 钻遇水层时,地层水的侵入会使钻井液的密度降低、粘度降低、含盐量和氯根含量发生变化。 钻遇气层时,钻井液的密度下降、粘度上升、并且可以闻到浓烈的天然气味和见到很多气泡。 钻遇油层时,钻井液的密度、粘度等也会发生变化,钻井液中也会见到原油。气相色谱测井就是在钻井过程中连续测量泥浆中各种烃类含量的变化从而发现油气层。 6、传递水功率(井下动力钻进) 7、直接或辅助破岩(喷射钻井) ★8、保护储层(最新发展)。 三、泥浆的组成 1、组成: 水基泥浆━━水、粘土、各种添加剂(活性固相,惰性固相) 油基泥浆━━油、粘土、各种添加剂。 2、粘土结构 粘土矿物的两种基本构造单元 硅氧四面体:一个硅原子与四个氧原子(或氢氧)以等距相连,硅在四 面体中心,氧在四面体顶点。(片状结构) 铝氧八面体:两层紧密堆叠的氧和氢氧组成,铝(或镁)原子居 于正八面体中心。 氧

油气层保护

第一章绪论 1.如何理解保护油气层技术的系统性、针对性和高效性? 保护油气层技术是一项涉及多学科、多部门的系统工程技术。认识储集层和保护储集层和开发(含改造)储集层要注意以下四个方面:? 认识储集层、保护储集层和开发改造储集层都是一项系统工程? 各个作业环节都存在地层损害,因此保护油气层技术要互相配合,安系统工程进行整体优化;? 储集层损害的诊断、预防和处理、改造也是一项系统工程;? 保护油气层的技术和经济效益也是一项系统工程。针对性:保护油气层技术的针对性很强。? 储层特征不同(储层岩石、矿物组成、物性特征、流体性质等)? 作业特征及其开发方式不同? 储层产能不同高效性:保护油气层技术是一项少投入、多产出的新技术。? 保护储层单井投入相对较低? 实施保护技术后对于一个高产井每提高1%的产量就意味着巨大的经济效益;? 降低生产井改造成本;? 延长油气井生产寿命;? 提高油气田最终采收率;? 提高注水井注水效益,降低其成本。 2.油气层保护的重要性及特点及主要内容。 ⑴重要性 ①勘探过程中,采用油气层保护技术有利于及时发现油气层、准确评价油气层,直接 关系到勘探目标资源潜力的评估和油气储量评估 ②在开发过程中,实施油气层保护技术有利于充分解放油气层生产能力,有利于提高 油气田开发经济效益。 ③在油气田开发生产各项作业中,搞好保护油气层工作有利于油气井生产或注入能力 的长期高位保持和长寿命安全运行。 ⑵特点 ①涉及多科学、多专业和多部门的系统工程 ②具有很强的针对性 ③在研究方法上采用三个结合:微观研究与宏观研究结合,室内研究与现场实践结合, 理论研究与技术应用相结合。 ⑶油气层保护的主要内容 ①基础资料的收集与储层潜在损害分析 ②储层敏感性与钻井完井液和射孔压井液保护储层效果评价技术 ③钻井完井液和射孔试油损害储层机理研究 ④保护储层射孔压井液所须处理剂研制与评选 ⑤保护储层的射孔压井液技术 ⑥保护储层的射孔试油工艺技术 ⑦油气层损害现场诊断与矿场评价技术 3.保护储集层技术十项原则 (1)以经济效益为中心,以提高油气产能和采收率为目标(2)技术进步、经济效益和环 境保护要统筹考虑(3)任何保护技术都应有利于及时发现、有利于准确评价、有利于高效开发(4)立足以预防损害为主,解除损害为辅(5)各作业环节的保护技术要前后照应,做到系统整体优化(6)在保护中开发油气藏,在开发中保护油气藏(7)不该进入储层的工作液要尽量避免进入,至少要少进入(8)凡进入储层的固相和液相都能够通过物理、化学和生物化学方法予以解除(9)不可避免要进入的工作液,应该与油气层配伍,且不含固相(10)力争减少井下事故,避免各种复杂情况发生,否则前功尽弃 第二章岩心分析

国外保护油气层钻井液技术新进展

2002Ο12Ο26收到 2003Ο01Ο16改回 国外保护油气层钻井液技术新进展 吴诗平 鄢捷年 (石油大学 北京 102200) 在油气钻探过程中,钻井液作为第一种入井流体,在对储层实施保护的过程中起着至关重要的作用。在长期的钻井实践中,我国已总结出三大类、共11种保护油气层的钻井液体系[1],但随着时间的推移和钻井难度的增加,保护油气层钻井液技术正面临着进一步发展和更新。近年来,液技术的研究,并已取得了较大进展和成功应用。 1 暂堵型钻井液、完井液体系的对比评价 由于储层具有高渗、天然裂缝发育等特性以及储层衰竭等原因,许多井在钻井、完井和修井过程中都会出现非常大的滤液漏失。J.Dorman 等人[2]分别对通过调整钻井液组分来控制滤失量的方法进行了研究。实验所用的主要仪器为颗粒堵塞测试仪(简称PPA )。该仪器在选择钻井液组分来降低滤失、评价颗粒堵塞情况方面十分有效。 用于室内评价的暂堵型钻井液、完井液体系有:①含有超细盐粒的聚合物体系(SSPF );②含有超细盐粒并加入合成聚合物的抗高温改性钻井液体系(SSPT ΟHT );③含有超细CaCO 3颗粒的聚合物体系(SCPF );④含有微细纤维素固相的聚合物体系(MCPF );⑤含有微细纤维素固相和抑制膨胀的天然聚合物的聚合物体系(MCPF ΟNDSP );⑥增效型聚合物凝胶体系(P GP );⑦增效型交联聚合物凝胶体系(XP GP );⑧抑制膨胀的稳定聚合物凝胶体系(DSP GP )。其对比评价内容包括高温热滚后钻井液滤失量的变化、用PPA 装置评价钻井液的滤失特性(包括瞬时滤失量以及时间与滤失量的变化关系)、正压差与滤失量的关系、动态滤失量等。 对于MCPF 体系,其组分包括黄原胶生物聚合物、PAC ΟHV 、改性淀粉(降滤失剂)、p H 缓冲剂以及微细纤维素。实验表明,该体系的瞬时失水量相对较高,但当泥饼形成后其滤失量能够有效地得以控制。不同的实验压力对SSPF 和SCPF 体系的动滤失量有很大影响,但泥饼厚度均很小。P GP 、XP GP 以及DSP GP 体系也能在不同压力下表现出良好的控制滤失和储层损害的能力,并且聚合物凝胶几乎可以完全阻止钻井液固相和滤液进入储层而造成损害。 在考虑对钻井液体系进行滤失量控制的同时,还必须考虑其流变性,尤其是高温下的流变性是否满足要求。使用Fan Ο50C 高温高压流变仪对SSPF 、SCPF 以及MCPF 体系在不同温度下的流变特性进行了评价。结果表明,随着温度升高,SSPF 和SCPF 体系比MCPF 体系具有更好的假塑性流体特征和低剪切流变特性。 通过实验研究结果的对比分析,得出以下几点认识: (1)对于高渗储层,使用含有超细盐粒(作为架桥粒子)的聚合物钻井液以及含有超细CaCO 3颗粒的聚合物钻井液,在静态和动态条件下均能有效地控制滤失; (2)在上述各种钻井液、完井液体系中,SSPF 和SCPF 体系的动滤失量相对较低; (3)在135℃(275υ)以上的高温下,建议使用具有良好抗高温性的SSPF ΟHT 体系; (4)MCPF 体系有较高的瞬时滤失量,但在泥饼形成之后滤失性可得到有效控制,而MCPF ΟNDSP 体系能有效地控制瞬时滤失量和高温高压滤失量; (5)SSPF 和SCPF 体系对于孔隙性储层能有效地控制滤失量,但对于滤失量很高的裂缝性储层,建议在体系中添加微细纤维素(MC )固相粒子进行改进。 2003年 中国海上油气(地质) CHINA OFFSHORE OIL AND G AS (GEOLO GY ) 第17卷 第4期

钻井液文献综述

甲酸盐钻井液和完井液体系研究进展 张新明(2002100060) 工程技术学院2010级研究生1班 摘要:回顾了用甲酸盐体系进行油气田钻井和完井开发的历史,综述了甲酸盐水的理化性能,重点介绍了甲酸盐液钻井完井液优异特性的研究进展和趋势。 关键词:钻井液;甲酸盐;储层损害;测井 1 动机与意义 随着钻井新技术的发展,大斜度井、水平井、多支测钻井尤其是小眼井深井的钻井需求越来越高。在降低小眼井深井和裸眼完井中的摩阻、保护油气层以及高温稳定性能等方面,对钻井液和完井液提出了更高的要求。同时由于环境保护的日益加强,需要开发一种具有优良特性的环境友好型钻井液体系,而甲酸盐体系在这些方面表现突出。我国于90年代初期引入此项技术,并得到迅猛发展。90年代后期以来,甲酸盐钻井液和完井液在实际应用中获得巨大成功,相继开发出了不同类型、性能优良的甲酸盐流体[1~3]。 用甲酸盐水作为新型低固相钻井液和完井液主要成分具有以下优点[4~5]:(1)可以随意调节密度,一般不需添加重晶石,从而避免了重晶石沉降问题;(2)在高温下可保持添加剂的性能,具有很好的高温稳定性和极强的抑制性;(3)可配制无固相钻井液和完井液,润滑性能好,降低扭矩和摩阻,从而提高钻速、缩短钻井周期、节约钻探成本;(4)对地层损害小,保护储层效果好,并具有提高采收率、延长生产期的良好作用;(5)腐蚀速率低,不产生应力腐蚀裂缝,并且可被生物降解,对生物的影响小;(6)其中甲酸铯盐水可提高高温高压(HTHP)气藏的清晰度解释[51]。 2 历史与现状 20世纪80年代中期,甲酸盐钻井液和完井液体系由壳牌公司研制开发,相继在世界各国和地区用于小眼井和连续管钻井。1999年9月[1],甲酸铯钻井液首次在高温高压井中应用,壳牌公司在井底温度高达185℃的Shearwater油田使用

保护油气层试题

油层保护 一、填空题 1、X-射线衍射,(扫描电镜)(薄片分析)是保护油气层岩相学分析的三大常规技术。 2、砂岩的四种常见的孔隙喉道类型是缩径吼道、点状喉道、片状或弯片状喉道及管束状喉道。 3、敏感性矿物的产状有四种类型,即薄膜衬垫式、栉壳式、桥接式、孔隙充填式、不同产状对油气层损害的影响不同。 4、与油气层损害有关的天然气性质主要是硫化氢和二氧化碳等腐蚀性气体的含量,含量越高,对设备的腐蚀越严重,越易造成微粒运移损害。 5、粘土矿物的水化膨胀可分为两个阶段,即表面水化和渗透水化阶段 6、细菌主要以菌落堵塞、粘液堵塞和代谢产物堵塞三种方式损害油气层。 7、针对不同的分析内容,可选用相应的岩心分析方法。一般情况下,(X-射线衍射)适用于定性鉴定或定量测定各物组组成及其含量,特别是粘土矿物的成分和含量,而(扫描电镜)更适于观察孔喉的状态、大小及孔隙的连通关系。 8、宏观上描述油气层特性的两个基本参数是孔隙度和渗透率。 9、敏感性矿物可分为速敏性矿物、水敏和盐敏性矿物、碱敏性矿物和酸敏性矿物五种类型。

10、根据水中主要离子的当量比,可将水划分为氯化钙型、氯化镁型、碳酸氢钠型和硫酸钠型,常见的地层水多为氯化钙型和碳酸氢钠型。 二、名词解释 1、间层矿物:是指有两种或两种以上不同结构层,沿C轴方向相间成层叠积组合而成的晶体结构。 2、乳化堵塞:外来流体中的油(如油基钻井液中的基油)与地层水或外来水与储层原油在表面活性物质的存在下可形成相对稳定、高粘度的乳状液,该乳状液产生两个方面的危害。一方面是比孔喉大的乳状液滴可堵塞孔喉,另一方面是提高流体粘度,增加油流阻力。 3、贾敏损害:是指由于非润湿相液滴对润湿相流体流动产生附加阻力,从而导致油相渗透滤降低的现象,或由于液珠或气泡对通过孔喉的流体造成附加的阻力效应,从而导致流体的渗流能力降低,这种现象称为贾敏损害。 4、临界流速:在生产过程中使油气层微粒开始运移的流体速度。或在速敏实验中,引起渗透率明显下降时的流体流动速度称为该岩石的临界速度,即临界流速。 5、微粒运移的损害:微粒在一定外力作用下,从孔壁上分离下来并随着流体一起运动,当运移至喉道位置时,粒径大于喉道直径的微粒被捕集而沉积下来,对孔喉产生堵塞,造成油气层的绝对渗透率下降,这种现象称为微粒运移损害。

(3----)减轻深层低渗储层水锁损害的钻井液研究与应用

文章编号:100125620(2009)0420004204 减轻深层低渗储层水锁损害的钻井液研究与应用 张洪霞1 鄢捷年1 吴彬2 薛玉志3 刘宝峰3 (1.中国石油大学石油工程教育部重点实验室,北京; 其它区块超深井钻井完井液的设计有一定借鉴意义。 关键词 低渗透油气藏;超深井;钻井完井液;多元醇;水锁;界面张力;理想充填理论中图分类号:TE254.3 文献标识码:A 多元醇类处理剂是具有一定表面活性的非离子型高分子化合物,应用多元醇提高水基钻井液的防塌润滑性,主要是利用其胶束化和浊点行为[1]。事实上,利用醇类物质降低滤液表/界面张力的特性减小毛细管压力,可以达到防止或减轻低渗储层水锁损害的目的。在酸化/压裂液中使用醇类物质解除低渗储层液锁损害的研究始于20世纪60年代[225],研究及应用结果表明,醇类物质能显著地降低界面张力(使用浓度低时);提高工作液与储层流体之间的混相能力(使用浓度高时);可以解除近井壁带的液相堵塞,提高工作液的返排效率。针对准噶尔盆地中部的深层低渗储层水锁损害问题,应用防液锁技术、理想充填理论及d 90规则研发了高性能多元醇钻井液。室内研究及现场应用表明,该钻井液具有低侵入、防水锁、防塌能力强、润滑性好等特点,既能满足超深井安全快速钻井的需要,也有助于保护和发现深层低渗油气藏。 1 深层储层特征及潜在损害因素 准噶尔盆地中部3区块永进油田主力储层西山窑组以中砂质、粉砂质细粒岩屑砂岩为主,岩屑含量 为57%~86%,最大粒径为0.8mm ,一般为0.125~0.250mm ,颗粒分选中等,呈次圆2次棱角状。储层矿物中石英含量为12%~40%,长石含量为4%~22%,含少量黏土矿物(1%~3%)。 该区储层埋深在5000m 以下,长期压实使得储层的原生孔隙几乎消失殆尽,孔隙度为5.3%~12.1%,渗透率为0.058×10-3~0.800×10-3μm 2,主要为粒间溶孔和粒内溶蚀孔,颗粒表面黏土化,局部形成黏土桥,绿泥石作衬垫式胶结,孔隙中绿泥石和长石晶体充填,孔隙连通性一般。储层喉道以片状为主,部分为弯片状,以微细喉道为主。储层裂缝发育,可以起一定的渗流通道作用,基本无储集能力,储集层类型仍以孔隙型为主,不具有双重孔隙介质特点。储层压力系数为1.20~1.87,地温梯度为2.285℃/100m ,储层中部温度为135.6℃,属于典型的高温高压低孔低渗砂岩油气藏。 准噶尔盆地中部的深部油气层具有低渗储层的基本特征,表现为含水饱和度高、毛细管现象突出(毛细管压力高)及孔喉细小、孔隙度低、渗透性差、结构复杂、非均质严重、油气流动阻力大、常伴有天然裂缝等特点。国内外研究结果表明[6211],水锁损 基金项目:国家863重大项目“先进钻井技术与装备”(2006AA06A109)之子课题“超深井钻井技术研究”的部分研究内 容,并获863课题资助。 第一作者简介:张洪霞,1968年生,在读博士研究生,主要从事钻井液和油气层保护技术方面的研究。地址:北京市昌平 区府学路18号中国石油大学220#信箱;邮政编码102249;电话(010)89733893;E 2mail :zhanghongxia919@https://www.360docs.net/doc/004144719.html, 。 第26卷第4期 钻 井 液 与 完 井 液 Vol.26No.42009年7月 DRILL IN G FL U ID &COM PL ETION FL U ID J uly 2009

油气层保护新技术模板

油气田开发新技术论文 学号: 姓名: 何毅 专业: 石油工程 中国地质大学( 北京) 能源学院 12月

油气层保护新技术 摘要: 储层损造成油气井产量下降和注入能力减弱, 当前还没有一种能够解决一切储层损害问题的通用技术。但要保护储层, 首先要选择钻井完井液体系, 其次要采取一系列工程技术措施。针对油气井产量下降、注入能力减弱、注入压力的增加等问题, 采取相应的油气层保护技术是提高油井产量的重要途径。本文主要从钻井液新技术和防砂完井技术两个方面系统介绍当前国内保护油气层新技术。 1.钻井液油气层保护新技术 当前国内对于油田的油气层保护研究与应用, 形成了配套成熟强抑制性纳米封堵钻井液完井液、无固相钻井液完井液、渗透压成膜钻井液完井液、生物酶可解堵钻井液完井液技术。 1) 强抑制性纳米封堵钻井液完井液 此技术屏蔽暂堵技术、钻井液抑制技术、纳米防塌技术、钻井液成膜技术, 主要是由物理作用的惰性材料与化学作用的活性矿物综合作用来保护油气层, 适用地层高、中渗储层及强水敏的油气层。 2) 生物酶可解堵钻井液体系 这种新型解堵钻井液体系能自动降解, 其解堵的速度和时间能够经过配方的调整人为控制, 对地层低污染、低伤害, 地层的渗透性恢复值达到90%以上, 相对于常规钻井液, 能明显地提高油气井

的产量。 其特点是钻进时: 生物酶可解堵钻井液在近井壁形成一个渗透率几乎为零的封堵层, 稳定井壁和保护油气层; 钻进结束后: 钻井液在生物酶催化作用下发生生物降解, 粘度逐渐下降, 先前形成的泥饼自动破除, 产层孔隙中的阻塞物消除, 从而使地下流体通道畅通, 恢复储层渗透率 3) 渗透压成膜钻井液技术 ①渗透压成膜钻井液技术特色 这种技术使钻井液具有半透膜性能, 在井壁的外围形成保护层, 提高泥页岩的膜效率; 阻止水及钻井液进入地层引起水化膨胀, 封堵地层层理裂隙; 防止地层内粘土颗粒的运移; 防止井壁坍塌, 保护油气层。 ②施工技术措施 钻井液在井壁周围形成封闭圈, 防止有害物质侵入油气层, 减少对油气层的污染。严格控制钻井液密度, 实现近平衡钻井, 减少固相损害油气层。储层段控制钻井液的API失水≤3mL, 减少钻井液滤液对油气层损害。全井采用超细碳酸钙、非渗透处理剂等对油层起保护作用的材料, 防止有害物质侵入油气层 4) 无固相钻井液、完井液技术 此类钻井液技术特色主要表现在密度范围宽、页岩抑制能力强、热稳定性好、与地层配伍、不损害产层、无毒无污染根据不同盐类的溶解度和密度, 确定并完善了不同密度下无固

油气层损害机理

第四章油气层损害机理 当探井落空、油气井产量快速递减、注入井注入能力下降,人们首先想到的是油气层可能被损害。随着勘探开发的地质对象越来越复杂(规模变小,储层致密、深层高温高压、老油气田压力严重衰竭),探井成功率降低,开发作业成本增加,使得油气层损害研究更加倍受关注。 油气层被钻开之前,在油气藏温度压力环境下,岩石矿物和地层流体处于一种物理、化学的平衡状态。钻井、完井、修井、注水和增产等作业或生产过程都能改变原来的环境条件,使平衡状态发生改变,这就可能造成油气井产能下降,导致油气层损害。 为了揭示油气层损害机理,不仅要研究油气层固有的工程地质特征和油气藏环境(损害内因),而且还应研究这些内因在各种作业条件下(损害外因)产生损害的具体过程。损害机理研究以岩心分析、敏感性评价、工作液损害模拟实验和矿场评价为依托,通过综合分析,诊断油气层损害发生的具体环节、主要类型及作用过程,最后要提出有针对性的保护技术和解除损害的措施建议。 第一节油气层损害类型 油气井生产或注入井注入能力下降现象的原因及其作用的物理、化学、生物变化过程称为油气层损害机理。通常所说的油气层损害,其实质就是储层孔隙结构变化导致的渗透率下降。渗透率下降包括绝对渗透率的下降(即渗流空间的改变,孔隙结构变差)和相对渗透率的下降。外来固相侵入、水敏性损害、酸敏性损害、碱敏性损害、微粒运移、结垢、细菌堵塞和应力敏感损害等都改变渗流空间;引起相对渗透率下降的因素包括水锁(流体饱和度变化)、贾敏、润湿反转和乳化堵塞。油气层损害主要发生在井筒附近区,因为该区是工作液与油气层直接接触带,也是温度、压力、流体流速剧烈变化带。钻井完井过程的损害一般限于井筒附近,而增产改造、开发中的损害可以发生在井间任何部位。 对于某一油气藏和具体作业环节到底如何有效地把握主要的损害呢?大量研究工作和现有的评价手段已能清楚地说明主要损害原因。目前比较普遍

钻井液漏失的预防及堵漏方法(油田化学调研作业)

油田化学钻井液漏失的预防及堵漏方法 学院:石油工程 班级:石工******班 任课老师:****** 姓名:**** 学号:**********

钻井液漏失的预防及堵漏方法 随着油气勘探开发的深入,钻井过程中遇到的地层越来越复杂,在钻进压力衰竭地层、破碎或弱胶结地层、裂缝发育地层及多套压力层系等时,井漏问题非常突出。由井漏诱发的井壁失稳、坍塌、井喷等问题是长期以来油气勘探开发过程中的世界性难题,是制约勘探开发速度的主要技术瓶颈;同时井漏造成钻井液损失巨大,而在储层发生的漏失对储层的伤害更是难以估量。 1.钻井液的漏失 在钻进过程中,井眼内钻井液大量流入地层的现象称为钻井液的漏失。 井漏是钻井过程中常见的井下复杂情况之一,它耗费钻井时间,损失泥浆,可能引起卡钻、井喷、井塌等一系列复杂情况,甚至导致井眼报废,造成重大经济损失。 1.1井漏的原因 井漏主要是由于钻井液液柱压力大于地层孔隙压力或破裂压力造成的。其主要原因有: 1.地层因素:天然裂缝、溶洞、高渗透低压地层; 2.钻井工艺措施不当引起的漏失:钻井工艺措施不当发生的漏失,主要发 生在上部地层环空堵塞,造成环空憋压引起漏失;开泵过猛、下钻速度 过快、加重过猛造成井漏; 3.井身结构不合理,中间套管下深不够。或不下中间套管致使高低压地层 处于同一裸眼井段,造成井漏。 1.2井漏的分类 根据漏失地层的特点,钻井液的漏失分为三类: 1.渗透性漏失 有高渗透的砂岩底层或砾岩地层引起的钻井液的漏失称为渗透性漏失(见图1-1a)。 特点:漏失速率不高,表现为钻井液池的液面缓慢下降; 2.裂缝性漏失 由裂缝性地层引起钻井液的漏失称为裂缝性漏失(见图2-1b)。引起钻井液漏失的裂缝包括灰岩和砂岩地层中天然存在的裂缝和由钻井液压力将灰岩和砂岩地层压开所形成的裂缝。 特点:漏失速率较快,表现为钻井液池的液面迅速下降; 3.溶洞性漏失 由溶洞性地层引起钻井液的漏失称为溶洞性漏失(见图3-1c)。 特点:一般只出现在灰岩地层,漏失速度很快,钻井液有进无出。 另外,根据钻井液漏失速度还可分为:微漏、小漏、中漏、大漏、严重漏失五种类型;如果按漏失地层通道分类则可分为:自然漏失通道和人为漏失通道。 1.3井漏的危害 井漏对油气勘探、钻井和开发作业所带来的危害,可以归纳为: 1.井漏延误钻井作业时间,延长钻井周期; 2.井漏直接造成巨大的物资损失; 3.储层漏失会损害产能;

钻井液性能对钻井的影响

钻井液性能对钻井的影响 一、钻井液的稳定性 钻井液是一种分散体系,即粘土分散在水中。钻井液中的粘土颗粒多数在悬浮体范围(0.1~0.2μm)内,少数在溶液范围(0.1μm~1nm)内,所以钻井液是溶胶与悬浮体的混合物。 钻井液中胶体颗粒含量的大小,对钻井液的稳定性影响很大。胶体含量的大小主要取决于粘土在钻井液中的分散状态——分散、絮凝和聚结。 粘土的造浆率高,颗粒分散得细,钻井液相对来讲就稳定;若泥土造浆率低,颗粒分散得粗,钻井液相对来讲就不稳定,易呈絮凝或聚结状态。因此,钻井液稳定的首要条件是钻井液中粘土颗粒要细,即从粘土在水中的稳定角度来看,分散得越细越好(胶体含量越高越好)。这种稳定性称为沉降稳定性。然而,即使很细的颗粒,因它具有极大的表面积和很高的表面能,根据表面能自发减少的原理,其发展趋势必然是小颗粒自行聚结变大,最后下沉。由于某种原因分散相颗粒具有对抗小颗粒自行粘结变大所具有的性质称为聚结稳定性。 沉降稳定性和聚结稳定性是互相联系的。只有保持聚结稳定性,使小颗粒不聚结为大颗粒,钻井液才能有沉降稳定性,才不至于因聚结而下沉。所以,聚结稳定性是矛盾的主要方面。 二、钻井液几个重要的流变参数τ ⑴动切应力(屈服值)。动切力(τ。)反映钻井液在层流流态时,粘土颗粒之间及高聚物分子之间的相互作用力(形成空间网架结构之力)。影响动切应力的因素有钻井业的固相含量、固体分散度、粘土的水化程度、粘土吸附处理剂的情况及聚合物的使用等。

⑵表观粘度。又称有效粘度或视粘度。它的定义是在某一速度梯度下,用流速梯度去除相应的切应力所得的商。表面粘度不仅与流体本身性质有关,还受测定仪器的几何形状和尺寸、速度梯度的变化及测量方法的影响。 ⑶塑性粘度。塑性粘度是指钻井液在层流时,钻井液中的固体颗粒与固体颗粒之间,固体颗粒与液体分子之间,液体分子与液体分子之间三种内摩擦力的总和。 ⑷触变性。钻井液的触变性是指搅拌后变稀(切力降低),静置后变稠(切力升高)的特性。或者说,钻井液的切力是随搅拌后静置时间的增长而增大的特性。 由于钻井液有触变性,静止时间不同,则切力不同。通常测两个静止时间的切力值。高速搅拌的钻井液静止1min后测得的切力为初切力,静止10min后测得的切力为终切力;初切力与终切力的差值,即表示触变性的大小。差值越大,则触变性越大。 ⑸剪切稀释特性。表观粘度随着速度梯度的增大而降低的特性,称为剪切稀释特性。即当钻井液从睡眼喷出时有较低的粘度,有利于钻头破碎演示、清洗井底,而在环形空间又具有较高粘度,有利携带岩屑,该特性对于提高钻速有利。 油气层的损害与保护 一、油气层的损害 在钻开油气、注水层、射孔试油、酸化与压裂、采油、注水、修井等施工过程中都会不同程度的破坏油气层原有的物理、化学平衡状态,都可能给油气层带来损害。 1、钻井过程中的损害 1)钻井液固相的损害。钻井液中所含各种悬浮物质(粘土、眼斜、加重材料和堵漏剂等)都有可能对储层造成损害。当他们进入储层时,便可能逐步充填

保护油气层技术复习资料.

1、油气层损害的定义:在钻井,完井,井下作业及油气田开采全过程中,造成油气层渗透率下降的现象统称为油气层损害。 2、油气层损害的实质:绝对渗透率的下降和相对渗透率的下降。 3、保护油气层的重要性:a.勘探过程中,保护油气层工作的好坏直接关系到能否及时发现新的油气层、油气田和对储量的正确评价。b.保护油气层有利于油气井产量及油气田开发经济效益的提高。c.油气田开发生产各项作业中,搞好油气层保护有利于油气井的稳产和增产。 4、保护油气层技术的特点: a.保护油气层技术是一项涉及多学科、多专业、多部门并贯穿整个油气生产过程的系统工程。从钻开油气层、完井、试油、采油、增产、修井、注水、热采的每一项作业过程中均可能使油气层受到损害,而且如果后一项作业没搞好保护油气层工作,就有可能使前面各项作业中的保护油气层所获得的成效部分或者全部丧失。因此保护油气层技术是一项系统工程,此项工程涉及地质、钻井、测井、试油、采油、井下作业等多个部门,只有这些部门密切配合,协同工作,正确对待投入与产出,才能受到良好的效果。 b. 保护油气层技术具有很强的针对性. 保护油气层技术的研究对象是油气层,油气层特性资料是研究此项技术的基础。由于不同的油气层具有不同的特点,因此从油气层特性出发研究出的保护油气层技术也具有很强的针对性。 c. 保护油气层技术在研究方法上采用三个结合. 保护油气层技术在研究方法上采用三个结合:微观研究与宏观研究相结合;机理研究与应用规律相结合;室内研究和现场实践相结合。 5、保护油气层系统工程的技术思路: 保护油气层系统工程的主要技术思路可归纳为五个方面: 1. 分析所研究油气层的岩石和流体特性,以此为依据来研究 该油气层潜在损害因素与机理。 2. 收集现场资料,开展室内试验,分析研究每组油气层在各 项作业过程中潜在损害因素被诱发的原因、过程及防治措 施。 3. 按照系统工程研究各项作业中所选择的保护油气层技术措 施的可行性与经济上的合理性,通过综合研究配套形成系 列,纳入钻井、完井与开发方案设计及每一项作业的具体 设计中。 4. 各项作业结束后进行诊断与测试,获取油气层损害程度的 信息,并评价保护油气层的效果和经济效益。然后反馈给

油气层保护技术试题复习

1、从钻井方面考虑,有哪些对油层的伤害因素,为什么? 钻井因素有:压差、环空流速、钻井液类型及性能、钻速和浸泡时间. (1)压差的影响 压差是储层损害的主要因素。在压差下,钻井液中的滤液和固相会渗入地层,造成固相堵塞和粘土水化。压差越大,对储层损害深度越深,对储层渗透率影响严重。其中,钻井造成井内压差增大的原因有以下几方面: ①采用过平衡钻井液密度;②管柱在充有流体的井内运动产生的激动压力;③地层压力检测不准确;④水力参数设计不合理;⑤井身结构不合理;⑥钻井液流变参数设计不合理;⑦井喷及井控方法不合理;⑧井内钻屑浓度;⑨开泵引起的井内压力激动 (2)钻井液浸泡时间的影响 在钻开储集层过程中,钻井液滤失到储集层中的数量随钻井液浸泡时间的延长而增加。浸泡过程中除滤液进入地层外,钻井液中的固相在压差作用下也逐步侵入地层,其侵入地层的数量及深度随时间增加,浸泡时间越长侵入越多。在钻井过程中,储集层的浸泡时间包括从钻入储集层开始至完井电测、下套管、注水泥和替钻井液这一段时间。在钻开储集层过程中,若钻井措施不当,或其它人为原因,造成掉牙轮,卡钻,井喷或溢流等井下复杂情况和事故后,就要花费大量的时间去处理井下复杂事故,这样将成倍地增加钻井液对储集层的浸泡时间。 (3)环空流速对储层的影响 ①高的环空流速,即环空流态为紊流时,井壁被冲刷,使井眼扩大,造成井内固相含量增加。泥岩水化后发生剥蚀掉块垮塌引起的井眼扩大和盐岩、玄武岩等不稳定地层的井眼扩大,采取钻井液柱压力与地层压力平衡,抑制水化,保持渗透压力平衡,控制失水,改善造壁性能等措施。或者控制环空流为层流状态,层流对井壁避免了冲刷冲蚀作用,在一定条件下,对井壁稳定起主导作用。②高环空流速在环空产生的循环压降将增大钻井液对井底的有效液柱压力,即增大对井底的压差。 高环空流速产生的原因 1、水力参数设计中未考虑井壁冲蚀条件,致使排量设计大而导致环空流态为紊流。 2、起下钻速度太快,在环空形成高流速,特别是当井下出现复杂情况(遇阻卡时),且开泵时快速下放管柱就会在环空产生极高的流速。 (4)钻井液类型 工作液中固相粒子进入油层造成损害,工作液中液相进入油层后引起的地层固相

第五章 钻井过程中的保护油气层技术

第五章钻井过程中的保护油气层技术 第一节钻井过程中造成油气层损害原因分析 一、钻井过程中油气层损害原因 钻井的目的是交给试油或采油部门一口无损害或低损害的油气井。钻井中对油气层的损害不仅影响油气层的发现和油气井的产量。 钻开油气层时,在正压差、毛管力作用下,钻井液固相进入油气层造成孔喉堵塞,液相进入油气层与油气层岩石和流体作用,破坏油气层原有的平衡,从而诱发油气层潜在损害因素,造成渗透率下降。 钻井液中固相对地层渗透率的影响二、钻井过程中影响油气层损害程度的工程因素 影响油气层损害程度的工程因素:压差、浸泡时间、环空返速、钻井液性能(与固相、滤液和泥饼质量密切相关)

第二节保护油气层的钻井液技术 一、钻井液在钻井中的主要作用 钻井液的作用:冲洗井底和携带岩屑;破岩作用;平衡地层压力;冷却与润滑钻头;稳定井壁;保护油气层;获取地层信息;传递功率 二、保护油气层对钻井液的要求 1.钻井液密度可调,满足不同压力油气层近平衡压力钻井的需要 2.钻井液中固相颗粒与油气层渗流通道匹配 3.钻井液必须与油气层岩石相配伍 4.钻井液滤液组分必须与油气层中流体相配伍 5.钻井液的组分与性能都能满足保护油气层的需要 三、钻开油气层的钻井液类型 目前保护油气层钻井液技术已从初级阶段(仅控制钻井液密度、滤失量和浸泡时间)进入到比较高级的阶段。针对不同类型油气藏形成了系列的保护油气层钻井液技术。 1.水基钻井液 由于水基钻井液具有成本低、配置处理维护较简单、处理剂来源广、可供选择的类型多、性能容易控制等优点,并具有较好的保护油气层效果,是国内外钻开油气层常用的钻井液体系。 按钻井液组分与使用范围分: 1)无固相清洁盐水钻井液 2)水包油钻井液 3)无膨润土暂堵型聚合物钻井液 4)低膨润土聚合物钻井液

相关文档
最新文档