风机变频电控改造方案(通用方案)

风机变频电控改造方案(通用方案)
风机变频电控改造方案(通用方案)

河南地方煤炭集团季布煤业有限公司

季布煤业主通风机变频改造技术方案

一、季布煤业公司风机现状:

季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。风叶角度正向。现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。

二、存在在主要问题:

1、冲击电流大

通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。

2、电能的严重浪费

主通风机一直处在较轻负载下运行。在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。因此造成能源浪费,增加生产成本。所以就造成了电能的无端浪费!有悖于国家的节能减排政策。

3、启动困难,机械损伤严重

主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。

4、自动化程度低

主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。

三、通风机变频改造技术特点:

1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。

2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。

3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。

4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。并配备以太网模块为以后实现全矿井自动化作准备。实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。

5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.

6、GD200变频器采用先进的降噪技术,有效实现低载波频率的低噪声运行,有效降低变频器输出中的高频谐波成分,保证变频器运行中,电网质量符合GB/T14549-1993;

7、变频器具有自动节能和自动稳压功能,电机在空载或轻载运行的过程中,GD200变频器会适当调整输出电压,达到空载或轻载运行时节能的目的。当外界电压发生变化时,变频器的自动稳压功能能够保证输出电压基本不变。

四、采用自动化上位机监控功能

安全监控系统内监控系统可以采用计算机或触摸屏两种途径,优先使用上位计算机,上位机采用台湾研华高档工控机,组态软件采用组态王组态软件。

根据煤矿企业现场的实际情况以及风机在线监测系统所必需测量物理量的要求,监测以下数据(两台风机):

表1 测点统计表

下面是风机在线监测系统的拓补图.

上位机操作界面

系统主监控画面(可显示:电压、电流、输出频率、转速、电机绕阻温度、轴承温度、风机水平及垂直震动、系统累计运行时间、风量、负压、瓦斯浓度等);

系统切换控制界面;

风机特性曲线实时显示界面(采用动态曲线可根据不同频率生成);

系统历史状态查询界面(可依据用户要求按年、月、日、时对系统运行状态进行查询)

报警显示界面(显示变频器、整流变压器、电机温度、风机温

度、风机震动、瓦斯浓度等)

系统管理

控制系统所有操作均需进行“用户登录”,“用户权限”采用分级式管理方式具体如下:

操作员级用户,可对风机系统进行常规的操作(如:起、停操作等)、运行状态监控、数据查询等,但该级用户在组态方式下无法对风机进行反风、退出监控系统、消除报警记录等特殊操作;

管理员级用户,可对风机系统进行除“反风操作”外的所有操作;反风专用密码,该密码仅限于在组态系统中对系统反风进行操作时使用

可实现远程操作控制。

季布煤业机电科

2014年3月29日

风机叶片更换方案

风电场叶片更换 施工方案 批准: 审核: 初审: 编制: *************** *****年03月15日

目录 1.编制依据 2.工程概况 3.施工方法 4.施工应具备的条件 5.主要施工机索具 6.施工技术要求及安全技术措施

1.编制依据: 《电力建设安全施工管理规定》 《起重机安全规程》(GB6067) 《建筑机械使用安全技术规程》(JGJ33-2001) 《起重工操作规程》 《工程建设安装工程起重施工规范》HG20201-2000; 《石油化工施工安全技术规程》SH3505-99 《起重吊运指挥信号》GB5082-85; 风场检修专工提出方案; 2.工程概况: 该工程检修场址为****风电场,检修场地为山地,工作内容为风机(1500KW)风力发电机组的叶片变浆轴承更换,风机高度为 77米。叶轮整体重量约为43吨吊车选用。 3.施工方法和流程图如下(见5.施工流程图): 根据风机各部件重量、规格、现场具体条件,本着安全可靠、经济合理的原则,拟选用一台500吨汽车式起重机进行风机部件的拆卸与恢复吊装工作,采用一台70吨汽车吊车配合作业。 吊车吊装参数确定: 500吨吊车进行检修吊装作业时,采用TY3N工况,工作半径为***米,主吊臂长度为*****米,副臂长度为*****米,挂设****吨配重,额定吊装能力为****吨,满足轮毂和叶片组合件总重为****吨的吊装作业。 3.1在拆卸轮毂总成前的准备工作: 施工人员将所需工具(液压站、管钳、撬棍、100m的麻绳三根带

到主机内部)。 根据现场提出的方案,现将叶片拆装至地面,在地面上拆装三支叶片,更换变浆轴承,回装叶片,吊装叶片安装至风机,根据此方法编制拆装方案。 1、叶片拆装:将风机偏航至合适吊装位臵,打开轮毂吊装孔,下方将吊笼挂勾,并在吊笼上栓两根牵引绳由地面人员控制,将吊笼里人员及牵引绳、3吨吊带,提升到指定位臵,固定好地面一端的牵引绳;然后工作人员将吊带环叶片一周,栓在整个叶片长度的0.6-0.7倍的部位上,随后把牵引绳的另一端栓到吊带上;完成将吊笼吊离一侧,将叶片反方向转动使其变平再将另外一根吊带及两根牵引绳依照前一叶片的方法拴好,把吊笼放下,将叶片归位到吊装状态;拆除主轴与轮毂保护罩,拆除连接螺栓,拆除50%螺栓时,主吊进行吊装称重,吊车称重吃力,最后完成挂钩工作;准备工作就绪后,开始轮毂剩余螺栓的拆卸工作,螺栓全部拆完后由指挥人员指挥将轮毂缓慢移出主轴法兰孔,垂直位臵叶片下降离地面1m-80cm时,停止下降由抬吊70吨吊车将工作人员及吊带、夹板吊到指定位臵(栓在里叶尖12m 处),使用带挂钩的安全带将工作人员背靠栓在50吨的主钩绳上;带拴好后,由50吨吊车的副钩将吊带吊起主钩下降将人安全放下,在该工作完成后由指挥人员指挥将轮毂总成吊平并安全放下。 叶片更换 在轮毂总成安全放下,地面人员开始进行拆除的叶片,拆除轮毂保护罩,拆除损坏的变浆轴承。更换新的变浆轴承,验收完成后,指挥吊车挂钩将叶轮吊起安装到机舱上,待力矩工作完成后摘钩。4.施工应具备的条件: 1)施工作业场地已按要求处理好,通路和现场地面必须具有足够的耐

矿井通风系统调整方案及措施

Xxxx矿通风系统调整方案及措施二〇一三年十二月五日

矿井通风系统调整方案及安全技术措施会审意见表会审地点:会审时间: 部门意见签名日期通风科 防突科 生产技术科 机电运输科 安全监察科 调度室 机电矿长 掘进矿长 生产矿长 安全矿长 总工程师

Xxx矿通风系统调整方案及措施 我矿通风系统调整方案集团公司已批复,根据集团公司批复意见结合实际情况,对矿井通风系统调整方案及安全技术措施进行了补充完善。经矿研究决定年月日进行矿井通风系统调整。 一、组织措施 为保证通风系统调整工作的顺利进行,特成立工作领导小组。 组长: 副组长: 成员: 指挥部设在调度室。 (一)具体分工 1、负责通风系统调整工作的统一部署和协调。 2、负责井下通风系统调整工作 3、负责地面通风系统调整工作,。 4、负责通风系统调整措施的落实及调整前后的检查验收工作,。(二)调整前准备工作 1、通风队负责提前构筑所需通风设施,为矿井通风系统调整做好准备; 2、通风队负责在xxx上车场提前安装两组局部通风机和连接风筒,经过调试具备运行条件,为xxx底抽巷、xxx上付巷局部通风系统调整做好准备; 3、机电部门负责把主扇风机搬迁到位,经过调试具备运行条件; 4、机电部门负责提供xxx上车场局部通风机的专线电源。 5、负责老副井井口、井底的封闭工作,具备风井使用的条件;负责拆除xx回风下山上、下段内所有电气设备(风机专线除外)。

(三)调整期间工作安排 按矿井通风系统进行调整方案,通风队对需调整的通风设施、局部通风机配备专人,每组设施、风机配备2名,并落实到责任人;通风科安排人员对系统调整后进行一次全面测风。 (四)调整之后安全验收工作 通风系统调整之后,由安全监察科、通风科组织对井下通风系统即通风设施、局部通风及各采掘工作面风量情况进行验收,确保安全可靠、符合规程规定要求。二、通风系统调整前、后安排专人测定各地点风量、瓦斯 (五)通风系统调整前、后,对井下各地点进行风量、瓦斯测定。分工如下: (测风员)、(瓦检员)--xx运输下山、xx轨道下山、xx回风下山、总回 (测风员)、(瓦检员)--xx上付巷、xx运输下山下段、xx轨道下山下段、11回风下山下段 (测风员)、(瓦检员)--xx上车场、xx底抽巷、xx回风下山下段(xx上车场下侧) (瓦检员)-- xx变电所、泵房 二、通风系统调整方案 (一)调整方案: 1、调整风井。将主扇风机搬迁到新风井(老副井),老副井改为专用风井,报废原风井。 2、调整矿井通风系统。通风系统调整后新副井、主井进风,老副井回风,11采区实现两进一回,即:xx运输下山上、下段和xx轨道下山上、下段进风,xx回风下山上、下段回风。

篦冷机技术升级改造方案资料word版本

篦冷机技术升级改造方案 目前新型干法水泥生产线中,篦冷机主流机型为第三代和第四代篦冷机,还有部分第二代篦冷机。随着设备使用时间的不断增加,磨损的不断加剧,出现了各种各样的问题,如:机械故障率上升,影响窑的年运转率;二、三次风温低,热回收效率低,烧成系统煤耗高;窜风严重,风机电耗高;出篦冷机熟料温度高,影响熟料的正常储存和粉磨。因此,经过长期运转后,篦冷机的提升改造非常必要。本文介绍某装备公司的Sinowalk 第四代篦冷机的研发经验,并根据不同现场篦冷机的实际使用情况,结合市场需求,提出了篦冷机技术升级改造的五种方案。从施工周期、节能降耗和成本分析等几个方面,详细阐述了每种方案的特点,以求在合理的投资下,得到最优的技术升级方案。 1 Sinowalk 第四代篦冷机简介 2008 年,天津水泥工业设计研究院推出国内第一台拥有自主知识产权的Sinowalk 第四代篦冷机。本产品吸收了国外先进的设计理念,结合国内机械加工制造水平和用户使用反馈经验,最终研发成功,并顺利达标达产。 2009年,成功开发出熟料尾置辊式破碎机,代替锤式破碎机。同时,第一台Sinowalk 第四代篦冷机配套尾置辊式破碎机成功投产。 2010年,第一台带有中间辊式破碎机的第四代篦冷机成功投产。中间

辊式破碎机位于两段篦床中间,将冷却机篦床一分为二,熟料经第一段篦床冷却后,进入中间辊式破碎机进行破碎,将大块料、红芯料破碎为粒径25mm 左右熟料,再经过第二段篦床冷却。与尾置辊式破碎机相比,配置中间辊式破碎机的冷却机可以得到更低的出篦冷机熟料温度和更高的余热发电风温。 Sinowalk 冷却机主要技术特点如下: 1)二、三次风温高,热回收效率高,大于75%,从而降低系统热耗;2)出篦冷机熟料温度低,有利于熟料的储存和粉磨; 3)机械运转率高,年运转率100%(定期停窑检修除外); 4)每块篦板下方都有自动风量调节阀,提高冷却风利用率,降低冷却风使用量,从而降低风机电耗,单位熟料冷却风量仅1.7~1.9Nm3/kg (由于不同现场熟料结粒不一致,风量在此范围内波动); 5)篦床上方存在相对固定的死料层,保护篦板免受高温热熟料的侵蚀,篦板寿命长达5 年以上,降低了备品备件费用,也节约了更换备件的人工费;

变频改造电气方案的优化 (终)

给水泵变频改造电气方案的优化 林永祥吴广臣瞿宿伟 上海电力修造总厂有限公司 摘要:目前电动给水泵变频改造技术日趋成熟,已有较多电厂已完成改造并投入运行,节能情况也十分理想。但是经了解,对于给水泵变频一拖二的情况,需要经过“二启二停” 才能实现倒泵,较为繁琐。针对这种情况,对电气方案进行深入研究,发现只需“一启一停”即可实现倒泵,为电厂变频运行提供了更简洁的优化方案。 关键字:给水泵变频改造电气方案一启一停优化 1.引言 近年来,随着电网容量的不断增加,用电峰谷差也逐步增大,需要机组调峰幅度相应增加,目前某某发电有限公司调峰幅度甚至超过50%,而作为全厂最大辅机设备的给水泵,虽然配置有液力耦合器调速,但电机在固定转速下随着给水泵输出转速的降低,给水泵组的效率也越来越低,给水泵耗电率一直居高不下,直接影响到全厂经济技术指标和节能效益,故此全电泵机组进行变频改造也应运而生。目前也已有较多电厂完成改造并投入运行,节能情况也较为理想,但是在经过与野马寨电厂、珲春电厂、双鸭山电厂的交流后也发现存在的一个问题,即对于电气改造一拖二的方案,需要经过“二启二停”,才能实现倒泵,较为繁琐。于是找出优化方案,为电厂解决难题成为我们一个新的课题。 下面通过对旧方案与优化方案的简介以及对比来进行介绍。 2.旧方案简介 2.1 高压变频调速装置的构成 对应单台给水泵配置一套高压变频调速装置,每套变频调速装置包括控制柜、单元柜、移相变压器柜、旁通柜,它们和电动机、给水泵及后台控制系统构成一套完整调速系统。2.2 给水泵变频一拖二方案的电气一次接线 给水泵变频一拖二方案的电气一次接线如下图。虚线框内设备,为实现给水泵变频一拖二方案增加的设备。

除尘风机节能改造方案

第一部分项目综述 一、本次拟改对象简介 通过我公司工程师对炼铁分厂原料场除尘风机的细致勘察和科学分析,调查工况如下: 原料场除尘系统采用布袋除尘方式,风机动力由一台1250kw的电机提供,采用风门调节来控制系统风量,主要是针对翻斗机来料和返矿经皮带机输送至料场,再将料从料场经堆取料机提取,经混料机混匀后供给烧结的过程中产生的扬尘进行处理。期间主要扬尘来自于各皮带转换时,卸料产生。系统将扬尘经除尘点进行收集后,进行集中除尘处理。系统除尘管道共包含各类阀门39个,以下为阀门相关情况:

二、本项目实施的必要性 原料场除尘风机采用调节阀的方式调节系统参数,这种调节方式是最原始的调节方法,仅仅是改变通道的流通阻力,其开合度大小不与流量成比例,从而驱动源的输出功率并没有改变,浪费了大量电能,而且调节阀调节人工操作控制精度差、无法实现自动化控制,容易误操作,且设备使用效率不高,不能充分满足工艺要求。经我司技术人员根据风机工况进行多次检测,如采用适配风机加变频调速,年节能量在42万Kwh。 原料场除尘系统覆盖范围广,除尘点多且位置分散,除尘管道比较长且弯道多,导致风阻、风损增大,进而降低了除尘风量和风压,导致除尘效果差,达不到环保要求。 由于大功率电机的起停和非线性负载的使用,供电线路中电压、电流谐波含量大;电力污染较严重;电压、电流波形失真;设备及短网损耗大、输送效率降低。电力系统低劣的电力品质,易造成输电线路及电机等设备温升增高,噪音增大,损耗增加,设备故障率上升,严重时可引起开关保护跳闸和其它停车事故,增加企业生产成本,造成设备维修成本升高、生产不稳定等危害。 因此企业有必要采取有效措施减少能源的浪费,提高除尘系统能源利用率,提升系统除尘效果。

风机变频电控改造方案(通用方案)

河南地方煤炭集团季布煤业有限公司 主 通 风 机 变 频 改 造 技 术 方 案

季布煤业主通风机变频改造技术方案 一、季布煤业公司风机现状: 季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。风叶角度正向。现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。 二、存在在主要问题: 1、冲击电流大 通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。 2、电能的严重浪费 主通风机一直处在较轻负载下运行。在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。因此造成能源浪费,增加生产成本。所以就造成了电能的无端浪费!有悖于国家的节能减排政策。 3、启动困难,机械损伤严重 主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。

4、自动化程度低 主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。 三、通风机变频改造技术特点: 1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。 2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。 3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。 4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。并配备以太网模块为以后实现全矿井自动化作准备。实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。 5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.

矿井主扇风机选型计算

XX煤矿主通风系统选型 设计说明书 一、XX矿主要通风系统状况说明 根据我矿通风部门提供的原始参数:目前矿井总进风量为2726m3/min,总排风量为2826m3/min,负压为1480Pa,等积孔1.46㎡。16采区现有两条下山,16运输下山担负采区运输、进风,16轨道下山担负运料、行人和回风。我矿现使用的BDKIII-№16号风机2×75Kw,风量范围为25-50m3/S,风压范围为700-2700Pa,已不能满足生产需要。 随着矿井往深部开采及扩层扩界的开展,通风科提供数 :6743m3/min,最大负压据要求:矿井最大风量Q 大 :2509Pa。现在通风系统已不能满足生产要求,因此需对H 大 主通风系统进行技术改造。 二、XX煤矿主通风系统改造方案 根据通风科提供的最大风量6743m3/min,最大负压2509Pa,经选型计算,主通风机需选用FBCDZ-№25号风机2×220Kw。由于新选用风机能力增加,西井风机房低压配电盘、风机启动柜等也需同时改造。本方案中,根据主通风机选用的配套电机功率,选用高压驱动装置。即主通风系统配置主通风机2台,高压配电柜6块,高压变频控制装置2套,变压器1台。

附图:主通风机装置性能曲线图附件:主通风机选型计算

附件: 主扇风机选型计算 根据通风科提供数据,矿井需用风量为Q:67433/min m ,通风容易时期负压min h :1480Pa ,通风困难时期负压max h :2509Pa,矿井自然风压z h :±30Pa 。 1、 计算风机必须产生的风量和静压 (1)、通风机必须产生的风量为 f l Q K Q ==67433/min m =112.43/m s (2)根据通风科提供数据,在通风容易时期的静压为1480Pa ,在通风困难时期的静压为2509Pa 。 2、 选择通风机型号及台数 根据计算得到的通风机必须产生的风量,以及通风容易时期和通风困难时期的风压,在通风机产品样本中选择合适的通风机。可选用FBCDZ-8-№25轴流通风机2台,1台工作,1台备用。风机转速为740r/min 。 3、 确定通风机工况点 (1) 计算等效网路风阻和等效网路特性方程式 通风容易时期等效网路风阻 21min /s f R H Q ==1480/112.42 =0.1171(N ·S 2)/m 8 通风容易时期等效网路特性方程式 h=0.1171Q 2 通风困难时期等效网路风阻

水泥公司篦冷机技改方案

水泥集团公司5500t/d篦冷机技改方案书 工程号:

1. 项目概况 大连集团水泥公司现有Φ4.8x74m预分解生产线,采用FLS史密斯公司设计的水平推料棒式篦冷机。规格为SFC4x5,有效篦板面积为117㎡。 根据业主现有生产线熟料达到6000t/d生产能力的需求,这里我们提出了对现有篦冷机进行优化升级改造,以满足业主生产线生产能力提高的要求。 2 篦冷机技改说明 2.1篦冷机改造总体说明 a)篦冷机篦床面积改造,增加冷却面积。 b)篦冷机冷却风机改造,增加冷却风量和风压。 c)篦冷机液压泵站改造,增加输送能力。 d)其它配套改造: 篦冷机设备基础及土建部分改造,增加梁柱及修改孔洞。 篦冷机下料收尘管道改造。 拉链机检修吊车,轨道改造。 2.2篦冷机改造内容 通过上面的技术分析,能够看出需要技改的内容,主要是三个方面,一是增加篦冷机篦床面积,二是合理配风,三是增加输送能力,以满足提产的需要。改造后,篦冷机型号为SF4x6。 具体改造方案: 1、将现有篦冷机的后端(出口端)及破碎机拆除,并后移4.2m,中间增设一段长4200mm 的4个标准模块及相应壳体,增加面积约为21.84㎡,熟料达到6000t/d时,单位面积产量为43.22t/(d. ㎡),可保证熟料冷却后温度在120℃以下。 2、由于前段篦床面风速偏低,加上高温段风量不足,因而,更换倾斜段一室和二室风机3台风机,并将原六室风机移至新增部分的第七室,新增加一台六室风机。与原风量和风压相比,分别增加了102120 Nm3/h和17530 Pa. 为了避免影响生产,仍利用原一室、二室和六室风机基础(改风机混凝土基础不改),钢底座重新设计配套制作。新增七室风机基础。相关技改的各室风机非标需要变更。 3、原液压站更换5台液压泵,新型号为

高压变频器市场情况分析报告

高压变频器市场情况分析报告 一、高压变频器产品市场概述 高压变频器技术的发展历史较短。在中国,90年代后期高压变频器才开始在电力、冶金等少数行业得到应用,由于产品和技术都由国外厂商垄断,价格高昂,而且进口产品对我国电力运行环境的适应性较差,行业发展缓慢。2000年以后,国内企业的高压变频器技术和生产制造工艺得到了大幅提高,产品运行的稳定性和可靠性显著提升,产品生产成本也大幅下降,高压变频器行业开始进入快速发展时期,行业应用领域被大幅拓宽。 高压变频器总体竞争形势而言,目前仍然是国外品牌垄断高端市场,主要由西门子、ABB、日本三菱垄断,包括炼钢高炉等场合应用的超大功率(8000KW 以上)变频器,轧钢机、机车牵引等应用的特种变频器等,而中小容量产品的低端产品则是国产品牌占据优势。虽然国内品牌在高端市场的影响力及技术水平方面与国外品牌有一定差距,但以利德华福、合康变频为代表的领先品牌已不再满足于产品应用局限于中低端市场的情况,开始向大功率、超大功率等高端应用市场的进军。例如在2008 年11 月份,广州智光电气公司推出的7 000kV A级超大功率高压变频调速系统,将打破高压大功率变频调速系统长期被国外品牌“一统天下”的格局。该设备已通过国家电控配电设备质量监督检验中心检验,这意味着我国高压变频器市场将告别被外国品牌垄断的时代。且随着国内厂家的技术进步和质量稳定性的提升,加上服务和价格方面的优势,预计未来几年高端产品被国外厂家垄断的市场局面将有所改观。 国外高压变频器的技术开发起步早,目前各大品牌的变频器生产商,均形成了系列化的产品,其控制系统也已实现全数字化。几乎所有的产品均具有矢量控制功能,完善的工艺水平也是国外品牌的一大特点。目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。 二、中国高压变频器预计市场规模 根据中国电机系统节能项目组在所著的“中国电机系统能源效率与市场潜力分析”中对于1999年中国分行业用电量与电动机装机容量和耗电量的详细调查分析,中国用电设备的总容量为3.73亿kW,其耗电量为9800亿kW时,占当年全国总用电量的81%;其中由电动机拖动的设备总容量为1.83亿kW,其耗电

风机变频调速节能改造的分析及计算

风机变频调速节能改造的分析及计算 张恒谢国政张黎海 (昆明电器科学研究所,云南昆明 650221) 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理,介绍了针对阀门及液力耦合器调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算 一、 引言 在工业生产、发电、居民供暖(热电厂)和产品加工制造业中,风机水泵类设备应用范围广泛。其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能量是困难的,这在一定程度上影响了变频调速节能改造的实施。

二、 变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!” 变频器本身不是发电机。在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。 叶片式风机水泵的负载特性属于平方转矩型,即负载的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量 (Q)与转速(n)的一次方成正比;扬程(压力)H 与转速的二次方成正比;轴功率 (P)则与转速的三次方成正比。即: ''n n Q Q = ; 2''(n n H H = 2''(n n p p = ; 3''(n n P P = 当风机、水泵的转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。因管路阻力曲线不随转速变化而变化,故当流量由Q1变至Q2时,运行工况点将由A 点变至C 点。 图1风机流量、压力特性

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

HINV高压变频器维修方案

HINV高压变频器维修方案 一、概述 1、高压变频系统维护意义 贵公司所使用的北京动力源公司生产高压变频器在国内市占有率很高,虽然每台变频器的应用行业和应用场合不同,但是它们的重要性都是毋庸置疑的,由于大功率高压变频器应用的部位都是生产系统的关键部位,它的稳定运行决定着行业安全和稳定。由于设备长时间的连续运行,从环境的温度,湿度,洁净度,负荷度,元件老化程度等的不同,设备也会出现不同的故障,及时的有效的对故障变频器进行维修维护会对生产带来有效的保障。 二、解决方案 针对贵公司使用的北京动力源HINV系列高压变频器型号为HINV-10/1460B 发生的故障我们给出如下维修维护翻案。 首先是故障单元的处理,本次确定的故障单元共有6台,分别位A1、B1、C1、A2、B2、C2,这6台单元需要返回我们公司本部进行系统维修,对故障单元进行检测,损坏的元器件进行复原或者更换,在对修复的单元进行带载实验,周期大约7个工作日,合格后将修复单元返回,我们会给出相应的检测合格报告。可以说此次维修设备过程中故障单元的维修是重中之重,同样也是最大的技术难关。下面具体介绍下这6个单元的调试过程: 1. 适用范围 适用于HINV系列高压变频器的功率单元的调试。 2. 仪器设备及工具 功率单元调试检验工装 1台 3相调压器(10kVA) 2台负载电抗(100A/4mH) 功率单元额定电流<80A时,每个功率单元用1个负载电抗,当额定电流超过80A时,负载电抗并联使用1组 数字万用表(UT56) 1块扳手、改锥等工具 1套

隔离示波器(TEK TPS2012,2根1KV探头,电流探头) 1台钳形电流表(YF-800型) 1块数字测温枪(Raytek MT)1个离心风机(130FJ1 0.5A 85W 苏州电信电机) 1台风速仪(AM-4202) 1块 3. 调试过程 进入电气调试阶段的功率单元应当通过装配检验,具有装配检验合格的质量跟踪单。 电气调试过程分为调试准备、空载性能调试、空载高温老化和负载调试。4. 调试人员要求 4.1 调试过程中应有2名或2名以上调试人员操作。 4.2 调试人员应认真阅读《安全生产规程》、《JS-HINV-16功率单元调试通用工艺》和《附:功率单元调试工装台使用说明书》,并熟练操作功率单元调试工装台。 4.3 测试时请严格按照规定步骤和项目进行测试。 4.4 调试人员操作过程中勿触及功率单元机壳。 5. 调试准备 5.1 工艺检查 在功率单元每次上电调试前需要作工艺检查。 5.1.1 螺丝紧固检查 功率单元内半导体功率器件、电解电容器(组件)和结构件螺丝紧固合适,不得松动。 5.1.2 检查导热硅脂涂敷 功率单元内半导体功率器件应均匀涂敷导热硅脂。 5.1.3 接线正确性检查 功率单元内连接线连接牢固,无受力脱落的现象。 5.1.4 功率单元机箱内检查 功率单元内部的接线固定合理,机箱内没有异物。 5.1.5 驱动电阻检查

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

一次风机变频改造及节能分析

一次风机变频改造及节能分析 摘要:介绍了某电厂一次风机的变频改造方案,给出了一套可靠的控制策略。比较了一次风机变频控制和工频控制的节能效果,阐述了变频控制技术在电厂节能降耗的效果,对降低厂用电率,提高机组运行效率有很大的意义。 关键词:一次风机;变频改造;控制策略;节能 Abstract: A certain power plant is introduced of the primary air fan frequency converter design, and design a reliable control strategy for the primary air energy-saving effect of adopting transducer fore-and-aft is compared, which has practical meaning on reducing power plant curl consumption and increasing unit running efficiency. Key words: induced draft fan; frequency converter reconstruction; control strategy; energy-saving 1引言 在火力发电厂中,一次风机是最主要的耗电设备之一,这些设备都是长期连续运行并常常处于变负荷运行状态,其节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已经被推到了能源战略的首位。 2设备概述 华电集团某电厂一期工程采用2×330MW国产亚临界、燃煤空冷抽汽凝汽式供热机组,锅炉、汽轮机均采用上海电气集团公司设备。其中锅炉型号SG-1170/,为亚临界参数汽包炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。每台锅炉配四台钢球磨煤机,一次风机为静叶可调轴流风机。 3 一次风机变频改造方案 % 主要设计原则 目前,交流调速取代其它调速及计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流调速技术是节能、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速、启动和制动性能、高效率、高功率因素和节电效果、广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。

煤矿主扇风机性能测试方案及安全措施通用版

解决方案编号:YTO-FS-PD131 煤矿主扇风机性能测试方案及安全措 施通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

煤矿主扇风机性能测试方案及安全 措施通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 根据《煤矿安全规程》及AQ1011-2005有关规定,在矿井生产能力变更前需要对矿井主通风机进行性能测试。为了测试主通风机的安全运行状况和各种技术参数,我矿委托山西省煤矿安全技术监测中心对两台主扇风机性能进行测试。为了确保安全测试,特制定本方案及安全技术措施。 一、主通风机测试时间: 主通风机测试时间安排在20xx年月日点分至日点分。 二、测定时人员组织安排: 为保证测试工作安全、准确、快速进行,测试前设总指挥和各测试小组,各小组各负其责,听从总指挥领导和安排。 1、测试指挥组: 上榆泉煤矿现场总指挥:机电矿长 检测现场指挥:

职责:现场指挥和监护工作 2、工况调节组 组长: 副组长: 成员:通风组人员 职责:负责风机测试时风量调节。 3、风机启动和运行维护组 组长: 副组长: 成员:主扇司机2人、风机房维修电工2人、维修人员6人 职责:负责风机测试过程中启动和运行维护,按总指挥的指令进行风机的开停。 4、风机电机运行参数测试组 组长:成员:山西省煤矿安全技术监测中心 职责:负责风机测试过程中电机参数的测试(电流、电压、功率因数、电机输入功率和转速等)。 负责风机测试过程中风机运行参数的测试(风机风量、风压、风机房水柱计读值、空气密度测算等),根据测试参数及时速算风机的运行工况点,确定测试工况的准确性和可靠性,并作为风机运行工况调节的指导。 5、安全组

水泥篦冷机改造方案20120218

篦冷机改造方案 一、概述 武汉亚鑫2500t/d生产线由湖北省建筑材料工业设计院设计,采用沈阳水泥机械厂SCO-1174篦式冷却机,篦床有效面71m2,设计产量3000t/d,二段传动,有部分固定梁采用空气梁,活动梁无空气梁,2007年9月28日投产,运行直今已四年多,由于受当时技术水平的限制,在篦冷机设计、加工上存在一定的缺陷,亟需利用我院的新技术对冷却系统进行技术改造。经过四年的运行,冷却系统中部分设备部件也需要更换。技术改造后不仅可提高热回收效率和系统可靠性,减少维修、维护费用,而且还能满足水泥厂增产的要求。 二、技术方案 投标提供的冷却机为步进式高效冷却机WHEC-3000规格W7632,采用6个道,有效面积76.5m2,配置3台进口液压泵,单位产量为40.4t/d.m2。原破碎机更换为尾部辊式熟料破碎机。在原地坑周围做混凝土墩子支撑冷却机底部框架,重新安装设备。 三、工作内容 1.拆除原有设备,并将链斗机按图纸要求前移,原破碎机基础要 打掉一部分; 2.在原设备地坑周围按基础图做混凝土墩子,并打地脚螺栓孔; 3.重做风机基础; 4.安装找平底部支撑框架,并浇灌; 5.安装冷却机及辊式破碎机; 6.试车; 7.砌筑; 8.投入运行。 四、实施计划 1.设备加工时间为120天,以预付款到合肥院的日期计算; 2.拆除设备及制作基础由需方完成,需在设备到场前结束;

3.设备安装、试车、砌筑时间约为45天,如安装或试车条件不具 备,安装时间顺延。 五、WHEC-3000型步进高效能冷却机技术性能 规格: WHEC-3000型 型号: W7-632 产量: 3000t/d 产量(最大): 3500t/d 入料温度: 1400℃ 出料温度: 65℃+环境温度 有效面积:76.5m2 设计冲程: 200~420mm 单位风量: <2.0 Nm3/kg-cl 单位载荷: 39.2-45.7t/d.m2 热效率: >74% 数量: 1套 2.1液压传动主电机 功率: 3x75kW 转速: 1480r.p.m 电压: 380V 数量: 3台 2.2循环泵电机 型号: Y132S1-2 功率: 5.5kW 转速: 2900 r.p.m 电压: 380V 数量: 1台 2.3电加热器 型号: SRY4-220/5 功率: 3X5kW

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

相关文档
最新文档