锤头铸造工艺

锤头铸造工艺
锤头铸造工艺

综合设计性生产实验报告

——锤头铸造工艺设计

学生姓名:

班级:

学号:

实验时间:2013.12.13-2013.12.27

实验地点:分析测试中心、工程训练车间等同组人员:

指导教师:肖玄

1实验目的

1.培养学生调查市场能力,了解生产产品所需原材料及其市场价格,对铸造行业市场有大致的初步接触与了解。

2.锻炼学生的分析问题和解决问题的综合协调能力,对本组设计产品的应用范围,工作条件,成分组成,发展状况有较深的认识。

3.加深学生对铸造工艺,熔炼工艺及铸件质量检测过程的进一步了解,使学生将所学专业理论知识、工厂实践综合性的有机结合。

4.着重培养学生的创新能力、综合工程技术能力及团队协调能力。

2实验原理

在铸造生产中广泛应用的模板(包括模板、芯盒)依据制作材料可分为木、金属、塑料、泡沫塑料等模样与芯盒。木模用于单件、批量生产,金属模用于成批量生产,塑料泡沫用于大型件生产。

塑料模具用于消失模生产,它是由环氧树脂制作,具有制造成本低、易加工、表面光洁、环保的特点。非常适用于大批量、复杂铸件的生产。但是它也有自身的缺点:质较脆、有较大的毒性。但是它最大的优点就是:几乎适用于所有不同批量的生产,由于浇注前不用将塑料模具从铸型中取出,因而又叫做实型铸造,在浇注的过程中,金属液的热量使得塑料模具融化,气化之后排除铸型。因而又叫做消失模铸造,这种塑料只能使用一次,对于大批量生产,并不是特别适用,但是对于复杂、性能要求较高的铸件,它的优势是别的铸造方法所无法替代的。

本实验通过对锤头的铸造分析,从而确定合适的铸造方法以浇注出合格的锤头。

3实验设备及原料

3.1实验设备

箱式电阻炉、抛光机、个人计算机、CAD绘图软件等。

表1箱式电阻炉参数表

电压频率加热功率最高温度最大尺寸

参数3×400V 50HZ 12KW 1300℃520×600×650mm 3.2实验原料

铝球、原砂、水玻璃、水、硝酸、盐酸、无水乙醇﹑各粒度砂纸、M3及M10抛光膏。

4实验步骤

4.1在生产中的应用情况

锤头是锤式破碎机核心零部件之一,排列在破碎机转子的锤轴上,锤头在破碎机高速运转时直接打击物料,最终破碎成合适的物料粒度。现在市场上的破碎机锤头根据制造工艺可以分为两种:铸造和锻造,但是他们的耐磨程度是不一样的。由于破碎物料,头部需要良好的耐磨性而柄部又需要足够韧性,通常用合金钢、高锰钢、铸钢加高铬铸铁双金属复合等材料用锻造或铸造方法一次成型,配上相应的热处理工艺就比较经济一点,破碎机锤头根据材质可以分为种:高锰钢锤头、双金属锤头、复合锤头、大金牙锤头、中铬合金锤头,硬质

合金锤头等. 现代工业下的技术表明:锤头最耐磨的是采用硬质合金锤头在耐磨性上表现良好。

4.2铸件图

4.2.1铸件零件图

图1

4.2.2铸件三维图

图2

4.2.3铸件装配图

图3 4.2.4铸件装配三维图

图4

4.3成分设计(铝的性质,流动性,硬度,缺陷)

在实验过程中,我们采用融化的金属铝来浇注。首先对于铝,有很多优秀的性能:

(1)铝的密度很小,仅为2.7 g/cm3,虽然它比较软,但可制成各种铝合金。

(2) 铝的熔点为660℃,比较低,有利于融化,从而在本实验中易于实现融化铝。

(3)铝是热的良导体,它的导热能力比铁大3倍,在浇注时有利于热传递。

(4)铝的表面因有致密的氧化物保护膜,不易受到腐蚀。

但是,铝的流动性不好,在浇铸时常出现浇不足的情况。且铝的硬度低,铸件容易受到损坏。

4.4铸造工艺方案及参数设计

4.4.1铸造工艺方案的确定

通过对图纸的审查,铸件要求不得有裂纹、夹杂、气孔、缩孔等缺陷,铸件要进行清砂处理。

4.4.2铸造工艺方案的确定

1.浇注位置的确定通过对锤头结构的分析,各个部分要求基本相似,无重要加工面。根据造型和砂箱的条件综合考虑选择如图3所示的浇注位置:

2.分型面的选择分型面的确定,根据以下原则

①造型简单,因为铸件为对称

②图形分型面为大平面

③有利于下芯和尺寸的检验

最终确定如图5所示的分型面。

图5 上沙箱如图6所示

下沙箱如图7所示

图7 合箱三维图如图8所示

3.浇注系统的设计

浇注系统分为几种,根据浇注系统各单元截面的比例关系,可分为封闭式,半封闭式,开放式,封闭开放式,而根据内浇道在铸件上的相对位置关系,可分为顶注式,中注式,底注式和阶梯注入式,针对本铸件,选用半封闭顶注式浇注系统,使其具有一定的撇渣能力、使充型容易,可减少浇不足、冷隔方面的缺陷。直浇口放在锤头的底部,保证钢水浇入时靠近合金块课达到冶金熔合的目的。充型后上部温度高于底部,有利于铸件自下而上的顺序凝固和冒口的补缩,结构也简单,便于清除。在铸件的凝固和冷却过程中很容易开裂,要减少铸件收缩的各种阻碍因素。为提高冒口补缩能力,内浇道尽量经过冒口进入型腔。

(1)铸件质量

计算质量方法有很多,最简单的方法用制图软件,直接可以得出铸件的质量。也可以根据图形尺寸,用几何方法计算铸件体积,根据铸件材质密度,算出铸件的质量,具体步骤如下。

铸件材质为铝,查出密度为2.7X103kg/m3。

为了计算简单,将铸件分三两部分计算体积。第一部分为孔为30mm的平板件,体积为V1,第二部分为四棱柱体,体积为V2,底面为等腰梯形,体积为V3。

计算

V1=3.14×(352-152)

=62800mm3。

V2=65×30×20

=39000mm3。

V3=(50+54)×40×40÷2 =83200mm3

V=V1+V2+V3

=62800+39000+83200 =1.85×105mm3。

M铸件=ρ铝×V

=1.85×105×2.7X10-6

≈0.500kg。

单件出品率按65%计算钢水质量M铝水=M/65% =0.50/0.65=0.77kg. (2)冒口计算和设计

图9

如图9的各个位置的模数为: 处模数)(b a 2ab

M +==9.05cm ②处模数

)(b a 2ab M +==6cm ③处模数)(b a 2ab M +=

=12.24cm 可以看出模数②>①>③遵守顺序凝固的原则,又因为在①处开设的浇道可利用浇道的补缩,则不用开设浇冒口进行补缩。

(3)最小剩余压头高度的计算

如图10所示:经查表得a=8°L=360mm

由公式hm ≥Ltana

=360×tan8°

=51mm

取hm=100mm

又因为Ho=hm+1/2hc

=100+1/2×110

=155mm

则平均压力头Hp=Ho-0.125hc

=155-0.125×110

=142mm

图10

(4)平均压头的确定

0H ——内浇道以上的金属紧压头,即内浇道至浇口杯液面高度,cm ;

P ——内浇道以上的铸件高度,cm ;

C ——浇注时铸件的高度。

由于采用侧注式:P=C/2。

有:P=110mmHo=110+60+60=230mm

Hp=Ho-P/4=230-30=200mm

(5)浇注时间

根据经验公式n t Am

式中t —浇注时间

A 、n —系数

m —浇注金属质量

其中A=2,m=G=13.55kg ,n=0.5计算得到t=7.36s

(6)内浇道面积

根据阻流截面设计法:

10.32p G

S ut h

式中S1—内浇道横截面积(cm2);

G —流经内浇道的金属液质量(kg );

u —流量系数,可参考传统工艺查表,一般铸铁件0.40-0.60,铸刚件0.30-0.50;跟据本铸件,u 取0.3。

t —浇注时间;

p H —平均静压力头高度,对于顶注式浇注,H 0=Hp

带入数据得,S1=17.8cm2

(7)浇口比及各组元截面积

据查表[3],可得浇口比:3S :2S :1S =1:1.5:2

其中:1S —内浇道面积;2S —横浇道面积;3S —直浇道面积

由内浇道面积S1和其比例关系可以得出横浇道和直浇道面积及直径:

阻流截面的面积为:

6.3142

9812003.0842.089.716

2gH t G A p L =××××××==

ρμ

则根据浇口比得:横浇道的面积A横=5.4cm2 内浇道的面积A内=7.2cm2

根据尺寸确定浇道的形状:

图11

直浇道的尺寸为:如图11

图12

横浇道的尺寸为:如图12

图13

内浇道的尺寸为:如图13

4.4.3铸造工艺参数

工艺设计参数是:铸造收缩率(缩尺)、机械加工余量、起模斜度等。工艺参数选取得准确、合适,才能保证铸件尺寸(形状)精确,使造型、制芯、下芯、合箱方便,提高生产率,降低成本。工艺参数选取不准确,则铸件精度降低,甚至因尺寸超过公差要求而报废。

1.机械加工余量

由于纯铝成本较高,且铸件尺寸较小,所以不设定加工余量。

2.铸件的线收缩率

铸造收缩率受许多因素的影响,例如,合金的种类及成分、铸件冷却、收缩时受到阻力的大小、冷却条件的差异等用于铸造的金属液均需有一定的过热度,具有一定过热度的液态合金浇注后,随着温度下降,存在于液态金属原子集团间的空穴数逐渐减少,原子集团的距离缩短,液态合金体积缩小,温度继续下降,液态合金发生固态转变,空穴消失,原子间距离进一步缩短。凝固完毕后继续冷却,原子间距离还要缩短。大部分金属从液态浇注后到常温,都要经历液态收缩、液固态收缩和固态收缩三个联系的收缩阶段,由于不同阶段的收缩特性不同,因而对铸件质量就产生不同的影响,液态和固液态收缩是铸件产生缩孔、缩松的原因,在固态收缩阶段,铸件各方向上所表现的线尺寸缩小,不仅对铸件尺寸精度有直接的关系,而且也是铸件产生应力、变形和热裂的基本原因。据查表,参考其成分,可得收缩率为

2.45%。

3.起模斜度

为了方便起模,在模样、芯盒的出模方向留有一定斜度,以免损坏砂型或砂芯。由于该铸件厚度较小,我们选择无斜度。

4.4.4冷铁的设定

为了防止在冒口难于补缩的部位产生缩孔、缩松,减轻铸件变形及厚壁铸件中的偏析,使整个铸件接近于同时凝固,防止或如细化基体组织,提高铸件表面硬度和耐磨性,本设计采用外冷铁,与冒口配合使用,扩大冒口补缩距离或范围,减少冒口数目或体积。

4.5配料

由于实验设计的是使用铝浇注,在浇注时,我们又只需要浇注一个锤头,根据设计,只需要一个冒口和冷铁。因而根据前面的计算。总共0.77kg,因而在此配料中,我们需要的铝的质量为0.77kg。4.6混砂及造型

1.混砂比例

表2型砂配料表(%)

原料名称原砂粘土水玻璃水

配比100 6 6 适取

2.混砂工艺

(1)筛砂选取筛网筛除粒度一定的原砂。

(2)混砂由于条件的限制,我们选择手工造型,按上表比例加入粘土、水玻璃、水,进行均匀混合。

3.造型

将混取的型砂放入砂箱。本次采用砂型消失模铸造。首先将混好的涂料涂在消失模的表面,待其晾干后再涂上一层消失模涂料,以保证模型强度。待第2次涂料晾干后,将模型放入沙箱中造型。利用工具进行充紧,获得砂型。并扎上气孔、再在浇口处造浇口杯。放在合适的位置晒干。砂型如图14所示:

图14

4.7熔炼、浇注以及清理

4.7.1熔炼

熔炼设备:箱式电阻炉

①装料

为了加快溶化,应该注意装料的方法。一般来说,大块的炉料放在干锅壁的附近,小块料装在中间或者炉底,因为靠干锅壁处炉温高,而中心或者底部炉温较低。大块炉料中间的空隙用小料充填。炉料装的越紧,熔化越快。

②熔化

装好炉料后开始通电熔化。将温度设置在900℃,加热约1小时,待铝球充分熔化且混合均匀后出钢。

③出钢

出钢时,应该避免水分太高,加入钢液会产生气体。

4.7.2浇注

铝球熔炼完毕后,将装有铝液的石墨坩埚内,先慢慢倒入浇口中,待铝液准确倒入浇口后,加大倾斜程度,使铝液快速浇入型腔。注意浇注过程的型砂表面的点火,浇注过程中金属液流动的均匀。浇注后零件如图15所示

图15

4.7.3清理

待铸件凝固后,敲掉浇口和冒口,将型砂从砂箱中清理掉。将浇注完成的铸件,待冷却片刻之后,立刻将其从砂中取出,在空气中冷却,相当于正火作用,以获得较细的珠光体组织。

4.8取样

将铸件浇冒口的一部分进行切割后,获得小样,进行打磨。如图16、17、18、19所示

图16 图17

图18 图19

4.9金相组织分析 选取铸件浇口部分的切割样品,用来制作为金相观察实验的样品。先用收锯将试样切割下来,再用砂轮打磨样品,最后用砂纸打磨,砂纸的使用顺序为从粗到细。并且打磨一会儿要旋转90°以保证打磨质量,最后在抛光机上抛光,也要抛光几分钟之后旋转90°以保证抛

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

锤头铸造工艺

综合设计性生产实验报告 ——锤头铸造工艺设计 学生姓名: 班级: 学号: 实验时间:2013.12.13-2013.12.27 实验地点:分析测试中心、工程训练车间等同组人员: 指导教师:肖玄

1实验目的 1.培养学生调查市场能力,了解生产产品所需原材料及其市场价格,对铸造行业市场有大致的初步接触与了解。 2.锻炼学生的分析问题和解决问题的综合协调能力,对本组设计产品的应用范围,工作条件,成分组成,发展状况有较深的认识。 3.加深学生对铸造工艺,熔炼工艺及铸件质量检测过程的进一步了解,使学生将所学专业理论知识、工厂实践综合性的有机结合。 4.着重培养学生的创新能力、综合工程技术能力及团队协调能力。 2实验原理 在铸造生产中广泛应用的模板(包括模板、芯盒)依据制作材料可分为木、金属、塑料、泡沫塑料等模样与芯盒。木模用于单件、批量生产,金属模用于成批量生产,塑料泡沫用于大型件生产。 塑料模具用于消失模生产,它是由环氧树脂制作,具有制造成本低、易加工、表面光洁、环保的特点。非常适用于大批量、复杂铸件的生产。但是它也有自身的缺点:质较脆、有较大的毒性。但是它最大的优点就是:几乎适用于所有不同批量的生产,由于浇注前不用将塑料模具从铸型中取出,因而又叫做实型铸造,在浇注的过程中,金属液的热量使得塑料模具融化,气化之后排除铸型。因而又叫做消失模铸造,这种塑料只能使用一次,对于大批量生产,并不是特别适用,但是对于复杂、性能要求较高的铸件,它的优势是别的铸造方法所无法替代的。

本实验通过对锤头的铸造分析,从而确定合适的铸造方法以浇注出合格的锤头。 3实验设备及原料 3.1实验设备 箱式电阻炉、抛光机、个人计算机、CAD绘图软件等。 表1箱式电阻炉参数表 电压频率加热功率最高温度最大尺寸 参数3×400V 50HZ 12KW 1300℃520×600×650mm 3.2实验原料 铝球、原砂、水玻璃、水、硝酸、盐酸、无水乙醇﹑各粒度砂纸、M3及M10抛光膏。 4实验步骤 4.1在生产中的应用情况 锤头是锤式破碎机核心零部件之一,排列在破碎机转子的锤轴上,锤头在破碎机高速运转时直接打击物料,最终破碎成合适的物料粒度。现在市场上的破碎机锤头根据制造工艺可以分为两种:铸造和锻造,但是他们的耐磨程度是不一样的。由于破碎物料,头部需要良好的耐磨性而柄部又需要足够韧性,通常用合金钢、高锰钢、铸钢加高铬铸铁双金属复合等材料用锻造或铸造方法一次成型,配上相应的热处理工艺就比较经济一点,破碎机锤头根据材质可以分为种:高锰钢锤头、双金属锤头、复合锤头、大金牙锤头、中铬合金锤头,硬质

铸造工艺学课程设计案例

前言 铸造工艺学课程就是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法与步骤以及掌握铸造工艺与工装设计的基本技能的一门主要专业课。课程设计则就是铸造工艺学课程的实践性教学环节,同时也就是我们铸造专业迎来的第一次全面的自主进行工艺与工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程与其她先修课程的的理论与实际知识去分析与解决实际问题的能力。 通过制定与合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺与工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析与解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量与尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料与手册等。 目录 第一章零件铸造工艺分析 (4) 1、1零件基本信息 (4) 1、2材料成分要求 (4) 1、3铸造工艺参数的确定 (4) 1、3、1铸造尺寸公差与重量公差 (5) 1、3、2机械加工余量 (5) 1、3、3铸造收缩率 (5) 1、3、4拔模斜度 (5) 1、4其她工艺参数的确定 (5) 1、4、1工艺补正量 (5) 1、4、2分型负数 (5) 1、4、3非加工壁厚的负余量 (5)

铸造工艺

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性(任何铝铸件均存在这些问题)。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1)流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金《共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109)》的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。(这个度要靠经验来掌控,也是一个铸造技师,一辈子要研究的事) (2)收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,(我喜欢这句话,一看就是实际生产中中总结的)铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是(使)缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

双金属复合垂头铸造工艺及充型模拟模拟

双金属复合锤头铸造工艺设计及充型模拟 [摘要]:锤头是反击式破碎机中破碎矿石的主要部件,该部件在使用中锤柄不断承受交变的弯曲应力和冲击力,而锤头部位则主要承受较强的冲击力和摩擦力。本文通过设计出一种新型的锤头制作工艺,采用镶铸复合技术解决现有技术中存在的锤头易磨损、易破碎、使用寿命短的问题。采用的技术方案是双金属复合型锤头的制作方法,双金属复合型锤头的结构为:包括相连接的锤柄和端头,所述端头内部设置11根耐磨棒,锤柄部分为高锰钢,耐磨棒的主要成分为高铬铸铁,各耐磨棒之间呈等边三角形放置;与传统的砂型铸造相比较采用消失模模铸造工艺有大大的简化,且零件的质量及精度较高,设计自由度大。同时利用负压紧实可以解决高铬铸铁的固定问题;进而使耐磨棒的外表面与锤柄主体合金紧密结合,并力求达到冶金结合。并对铸造过程进行ProCAST铸造模拟。 [关键词]:镶铸复合法;高铬铸铁;高锰钢;消失模;

The casting process design of Double metal composite hammer and filling simulation Fan-Hao (Grade08,Class1,Major control materials,Materials Science and Engineering,Shaanxi University of Technology,Hanzhong 723003,Shaanxi) Tutor:Wang-Hua [Abstract]: Hammerhead is the main parts of the broken ore crusher hammer handle, the component is in use constantly to withstand alternating bending stress and the impact hammer parts, mainly exposed to the strong impact and friction force. Through the design of a new type of hammerhead production process, using cast-in composite technology to solve existing technology hammerhead easy wear, easy broken, the short life of the problem. The technical solution adopted for the production of bimetal composite hammer, bi-metallic composite structure of the hammer: including the hammer handle and the end connected to the end internal settings wear rods 11, the hammer handle part greatly simplified, and the quality of the parts of high manganese steel wear bar the main component of high chromium cast iron, and other equilateral triangle is placed between each wear rod was; compared with the traditional sand casting using the lost foam casting process and accuracy of high design freedom. While taking advantage of the vacuum tight can solve the fixed problem of high chromium cast iron; thus closely integrated rods, wear-resistant outer surface with a hammer handle the main alloy, and striving to achieve a metallurgical bond. And the casting process ProCAST casting simulation. [Key words]: cast-composite method; high chromium cast iron; high manganese steel; lost foam

球墨铸铁铸造工艺(1)

球墨铸铁铸造工艺 1、金属炉料的要求 各种入炉金属炉料必须明确成份,除回炉铁和废钢由炉前配料人员根据炉料状况确定外,螺纹钢不准加入球铁中。其余炉料必须具备化学成份化验单方可使用,同时应保证炉料、合金干燥。 防止有密闭容器混入炉料中。 所有炉料应按配料单过称。 球墨铸铁化学成分

球墨铸铁单铸试样力学性能( GB/T1348-1988)

3. 熔炼过程化学成分和机械性能控制范围:熔炼过程化学成分控制范围 3.1.2 球墨铸铁熔炼过程化学成分控制范围

机械性能控制范围符合、标准 配料:加料按(2200kg)根据材质和回炉料情况选择下表其中一种配比。(注 意:如果是其他增碳剂,则增碳剂加入量增加10%) 加料顺序: 200kg 新生铁或回炉料-1/3 增碳剂-废钢-1/3 增碳剂-废钢-1/3 增碳剂- 新生铁- 回炉料。 增碳剂不准一次加入. 防止棚料. 6 冶炼要求加料顺序:新生铁-废钢加满炉-增碳剂-废钢-回炉料。 熔化完毕,温度升到1380℃左右清除铁水表面的渣,取原铁水化学成分

根据成分标准加合金或其他原料调整化学成分。成份不合格不准出铁水 测温,根据铸件工艺要求要求确定出铁温度, 出铁水前扒渣干净。 小铸件要用吨包分包出铁或球化 7 球墨铸铁的孕育和球化处理 孕育剂选用75SiFe, 加入方法为随流加入。 球化处理材料的技术要求参见下表(有特殊要求的球化剂按专项规定). 球铁处理方法 7.3.1 球化处理采取冲入法 7.3.2 将球化处理材料按球化剂-孕育剂(1/3 的硅铁粒)%增碳剂-聚渣剂- 铁板的顺序层状加入铁水包底的一边,每加入一种材料需扒平, 椿实。 7.3.3 铁水冲入位置应是放置合金等材料的另一边,防止铁水直接冲击合 金。先出2/3 铁水球化 7.3.4 球化反应结束后,再出余下的铁水1/3 。剩余2/3 Si75 孕育剂硅铁粒随在出剩余铁水均匀加入。孕育后必须搅拌铁水。

高铬热处理工艺

高铬铸热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650 750 850 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。

锤头铸造工艺设计

目录 目录 (2) 1实验目的 (3) 2实验原理 (3) 3实验设备及原料 (3) 3.1实验设备 (3) 3.2实验原料 (3) 3.3原料市场价格 (3) 4 实验步骤 (4) 4.1在生产中的应用情况 (4) 4.2铸件图 (4) 4.3成分设计 (4) 4.4铸造工艺方案及参数设计 (5) 4.4.1 铸造工艺方案的确定 (5) 4.4.2 铸造工艺方案的确定 (5) 4.4.3铸造工艺参数 (9) 4.4.4 冷铁的设定 (10) 4.5配料 (10) 4.6混砂及造型 (11) 4.7熔炼、浇注以及清理 (12) 4.7.1 熔炼 (12) 4.7.2浇注 (13) 4.7.3清理 (13) 4.8取样 (14) 4.9性能测试 (14) 4.9.1硬度测试 (14) 4.9.2 金相组织分析 (14) 5 试验结果及分析 (15) 5.1实验结果 (15) 5.2断裂分析 (15) 5.3表面和断口分析 (15) 5.4金相图分析 (16) 5.5硬度分析 (16) 6实验心得 (17) 参考文献 (18)

1实验目的 1. 培养学生调查市场能力,了解生产产品所需原材料及其市场价格,对铸造行业市场有大致的初步接触与了解。 2. 锻炼学生的分析问题和解决问题的综合协调能力,对本组设计产品的应用范围,工作条件,成分组成,发展状况有较深的认识。 3. 加深学生对铸造工艺,熔炼工艺及铸件质量检测过程的进一步了解,使学生将所学专业理论知识、工厂实践综合性的有机结合。 4. 着重培养学生的创新能力、综合工程技术能力及团队协调能力。 2实验原理 通过对锤头工作状况的了解,选择成分牌号,并根据牌号进行配料计算。再根据其结构进行分析选择铸造方式,并进行铸造工艺的设计,浇冒口的设计。再进行混砂、造型和制芯。最后进行实际的感应炉熔炼和浇注。将获得的铸件进行清砂、硬度和金相观察。根据根据检测的结果进行分析讨论并进行方案的修改。 3实验设备及原料 3.1实验设备 非真空中频感应、MCE金相显微镜、个人计算机、CAD 绘图软件等。 表 1 MCE热处理炉参数表 电压频率加热功率最高温度最大尺寸 参数3×400V 50HZ 12KW 1300℃520×600×650mm 3.2实验原料 废钢、生铁、铬铁、硅铁、锰铁、原砂、粘土、水玻璃、水、淬火冷却油、硝酸、酒精﹑Cr2O3细抛光粉。 3.3原料市场价格 本设计所需原料为废钢、回炉料、硅铁、锰铁等,其价格大致如下表1所示: 表1 四川地区铸造原料市场价格表 原料名称废钢生铁硅铁锰铁铬铁 价格(元/吨)2500 3000 7200 7000 9000

简述高铬铸铁轧辊的铸造和应用

简述高铬铸铁轧辊的铸造和应用 摘要:高铬铸铁轧辊现已广泛应用于热轧中宽带钢精轧机组前架及部分小型棒线、型钢精轧机组,以其良好的耐磨性和抗“斑带”性能广受用户的青睐。本文对高铬铸铁轧辊的铸造、热处理过程进行简要阐述,对使用中易出现的问题加以分析。 关键词:高铬铸铁轧辊、耐磨、抗“斑带”、铸造、热处理 一、高铬铸铁轧辊的生产方式 当前,几乎所有的高铬铸铁轧辊均采用离心铸造方式,只是离心机有水平式、立式和倾斜式3中形式。相比较“溢流法”等以前的生产方式,离心铸造可以使少量的高铬铸铁外壳迅速冷却,以便获得更加细小分散的碳化物组织,且生产效率进一步提高。 轧辊的芯部通常采用高强度球墨铸铁,由于外层的铬含量较高,芯部成份中的硅含量和镍含量应较普通轧辊适当提高,以便减少芯部组织中碳化物含量、增强芯部强度。 通常情况下,为防止外层含量较高的铬成份在浇注芯部时向芯部扩散,要在外层浇注完毕时择机浇入过渡层,过渡层铁水可采用中铬铸铁、半钢、灰铸铁等材料。浇入的时间、温度和铁水量要进行严格控制。二、高铬铸铁轧辊的冶金性能 在Fe-Cr-C合金中,如果铬的含量超过15%,渗碳体就会变得不稳定,其将会被具有复杂结构的六边形碳化物M7C3代替,该种碳化物被称为铬碳化物,主要成分为铬和铁,可能含有少量的其它合金元素。高铬铸铁轧辊外层材质的基本特征是显微组织中共晶碳化物以(Cr,Fe)7C3型为主,其显微硬度为1500-1800HV,而渗碳体的显微硬度为1000-1200HV,这也是高铬铸铁轧辊有较强耐磨性能的原因。高铬铸铁轧辊的主要化学成分(%)为:C2.2~3.4,Cr10~25,Mo0.3~4,Ni0.3~3.0。铬碳比(Cr/C)决定了高铬铸铁外层组织中碳化物的类型,C、Cr、Mo等元素的含量决定了碳化物的数量。Ni和Mo的作用一方面是强化基体,另一方面是增加基体组织的淬透性。 对Fe-Cr-C合金系的研究大多基于以下Fe-Cr-C合金相图 生产工艺高铬铸铁一般采用感应电炉或电弧炉熔炼,常用的原料为生铁、废钢、回炉料、铬铁、钼铁,

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

材料加工新技术与新工艺 7 复合铸造

7 复合铸造 7.1 概述 现代机械设备的设计和制造技术的发展,不断对铸件的性能和质量提出更高的要求,例如,要求同一铸件兼有几种不同的使用性能。要生产这类铸件,仅仅靠控制单一材料的成分和组织,一般是难以实现的,需要采用某些特殊的复合制造方法,如机械连接复合、镶套复合、铸造复合等方法。 复合铸造是指将两种或两种以上具有不同性能的金属材料铸造成为一个完整的铸件,使铸件的不同部位具有不同的性能,以满足使用的要求。通常是一种合金具有较高的力学性能,而另一种或几种合金则具有抗磨、耐蚀、耐热等特殊使用性能。 常见的复合铸造工艺有镶铸工艺、重力复合铸造工艺、离心复合铸造工艺。 镶铸工艺是将一种或两种金属预制成一定形状的镶块,镶铸到另一种金属液体内,得到兼有两种或多种特性的双(多)金属铸件。目前用镶铸工艺生产的铸件有:高压阀门、高压柱塞泵等耐磨耐蚀耐热关键性金属零部件、硬质合金导卫板等。 重力复合铸造是将两种或多种不同成分、性能的铸造合金分别熔化后,采用特定的浇注方式或浇注系统,在重力条件下先后浇入同一铸型内,获得复合铸件的工艺。重力复合铸造生产的铸件有:挖掘机斗齿、双金属锤头、保险柜材料等。 离心复合铸造是将两种或多种不同成分、性能的铸造合金分别熔化后,先后浇人离心机旋转的模筒内,获得复合铸件的工艺。离心复合铸造生产的铸件有:轧辊辊环,陶瓷内衬复合铸铁管等。 复合铸造铸件的质量除取决于铸造合金本身的性能外,更主要地取决于两种合金材料界面结合的质量。在双金属复合铸造过程中,两种金属中的主要元素在一定温度场内可以相互扩散、相互熔融形成一层成分与组织介于两种金属之间的过渡合金层,一般厚度为40~60mm。控制各工艺因素以获得理想的过渡层的成分、组织、性能和厚度,是制造优质复合铸造铸件的技术关键。 除上述常规复合铸造工艺外,近年来还出现了水平磁场制动复合连铸法(LMF)、包覆层连续铸造法(CPC)、电渣包覆铸造法(ESSLM)、反向凝固连铸复合法、复合线材铸拉法、双流连铸梯度复合法、双结晶器连铸法、充芯连铸法(CFC法)等复合铸造新技术和新工艺。 7.2水平磁场制动复合连铸法(LMF) 近年来,电磁力技术在材料加工过程中的应用取得了引人注目的成就。利用温度计检验和磁流体动力学分析的方法,研究安装在结晶器上的水平磁场(LMF)所产生的磁场对钢液在结晶器中流动的影响,发现LMF可以抑 制结晶器内化学成分的混合程度,导致 了一种新的复合钢坯连铸工艺概念的形 成,即水平磁场制动复合连铸工艺。在 这种新工艺中,结晶器中的不同钢液通 过水平磁场的作用实现分离,并且凝固 成复合钢坯。 用LMF方法生产复合钢坯的连铸 工艺如图7-l所示。 图7-1中水平磁场安装在结晶器的 下部,两种不同化学成分的金属液分别 通过长型和短型的浸入式浇口同时注入

我国铸铁铸造业当前发展状况及趋势

我国铸铁铸造业当前发展状况及趋势 20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料,在铸造合金材料中占有重要地位。 由于受能源、劳动力价格和环境因素的影响,西方工业发达国家的铸件产量将会逐渐减少,转而向发展中国家采购一般铸件,但同时又会向发展中国家出口高附加值、高技术含量的优质铸件。当前,世界经济全球化进程的加速为我国铸造业的发展提供了机遇,国际和国内市场对我国铸件的需求呈持续增长的趋势。与此同时,铸铁作为一种传统的金属材料,在其质量、性能和价格等方面正面临着严酷的挑战。抓紧我国铸铁铸造业的结构调整和技术改造;努力提高铸件质量档次,提高和理环境污染的水平,实现铸铁材料的高附加值化是应付未来更加激烈的市场竞争,满足用户多样化需求的主要对策。 一、我国铸铁的生产水平及差距 1.铸造工艺材料及辅料 我国铸造工艺材料如原砂、粘土、煤粉、粘结剂和涂料在品种、性能、质量等方面与工业先进国家之间的差距极大,以致我国的铸件尺寸精度和表面粗糙度比国外差一到两个等级,铸件表面缺陷造成的废品率比国外高几倍。铸造用工艺原料的标准化、系列化和商品化仍是一个亟待解决的问题。 2.铸造工艺过程及铸件质量的检测与控制 我国在铸造工艺过程和铸件质量的检测与控制方面与工业先进国家还存在比较大的差距,主要反映在以下方面:

①铸造工艺过程的检测。 ②铸造工艺过程的优化和控制。 ③铸件质量的检测。而上述检测和控制手段的完善是提升我国铸铁铸造生产水平的一个主要内容。 3.铸造工艺装备 对于铸造生产,国外广泛采用流水线大量生产;高压造型、射压造型、静压造型和气冲造型;造芯全部用壳芯和冷、热芯盒工艺。国内除汽车等行业中少数厂家采用半自动、自动化流水线大量生产外,多数厂家仍采用较落后的铸造工艺装备。 二、铸铁熔炼技术 1.冲天炉技术 冲天炉居铸铁熔炼设备之首,至今仍担负着80%以上铸铁件的熔炼任务。70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁液质量,进而讲求提高技术、经济、劳动卫个和环境保护的综合指标,逐步开发应用了从炉料处理、修炉、烘炉到配加料、鼓风。炉况控制、铁液检验等全过程的操作技术。在较短的历程中,我们在冲天炉理论研究、炉子结构、修炉材料、送风系统、热能利用、强化底作燃烧、炉内气氛调整控制、铁液炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方自都取得了可喜的成绩。 冲火炉的发展是围绕着提高性能和生产率,降低消耗,改善操作,减少污染进行的。冲天炉性能主要体现在炭的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生

高铬铸铁的热处理

高铬铸铁的热处理 1. 退火 由于高铬制品其铸态硬度较高,为改善工件的机械加工性能,所有毛坯必须进行必要的软化退火处理。 具体工艺( 以壁厚不超过100mm且外形较复杂铸件为例) 如下。 首先将需处理工件在室温下装入热处理炉,然后随炉缓慢升温至400 ℃左右进行保温1 ~2h,随后将炉温升至600 ℃再进行保温1 ~2h,之后以不超过150 ℃/ h的温升速度,将炉温快速升至950 ℃后进行2 ~3h 的保温,而后停止加热,待炉温自然降至820 ℃左右,此后可控制电炉以10 ~15 ℃/ h 的温降速度将炉温降至700 ~720 ℃,并在此温度保温4 ~6h ( 工件越厚其保温时间应越长) 后停炉,工件可视情况随炉冷却或出炉置于静止的空气中冷却至室温( 以获得珠光体基体,满足性能要求,便于切削加工) 。 具体生产中,若所处理工件形状较为简单,也可采用较快速的退火工艺,即在温升至950 ℃并保温3h 后停炉,之后可随炉冷却至400 ℃左右,然后打开炉门,继续冷却至300 ℃以下,工件即可出炉空冷。 工件退火后可进行机械加工,由于高铬白口铸铁在淬火过程中尺寸变化比铸钢和灰铸铁小的多,一般无须矫正尺

寸,对于按工艺要求需磨削加工的工件所留磨削量也可很小。 2. 淬火 将机械加工后的工件室温装炉,以小于80 ℃/ h 的温升速度将炉温升至600 ℃( 若工件较厚或形状较复杂,可在温升至300 ℃、400 ℃、500 ℃、600 ℃时分别给予0. 5h 的保温) ,之后以不超过150 ℃/ h 的温升速度将炉温升至淬火温度950 ~980 ℃后进行保温,保温时间为2~4h ( 视工件厚薄不同保温时间有所差别,越厚保温时间越长) ,而后将工件快速出炉进行空冷,若遇环境气温较高,淬火时应辅以强风和水雾喷洒,以强化冷却,淬火工艺曲线如图2 所示。 3. 回火 为降低铸件残余应力和脆性,并保持其淬火得到的高硬度和耐磨性,同时也使马氏体得以回火,以及残余奥氏体有所减少,应对淬火后的工件再进行230 ~260 ℃的回火处理。具体工艺为: 将工件在室温状态下装炉,再升温至230 ~260 ℃,保温3 ~6h,之后出炉空冷。

铸造工艺学课程设计案例

前言 铸造工艺学课程是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法和步骤以及掌握铸造工艺和工装设计的基本技能的一门主要专业课。课程设计则是铸造工艺学课程的实践性教学环节,同时也是我们铸造专业迎来的第一次全面的自主进行工艺和工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点:通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程和其他先修课程的的理论与实际知识去分析和解决实际问题的能力。 通过制定和合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺和工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析和解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量和尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册等。

目录 零件铸造工艺分析 (4) 零件基本信息 (4) 材料成分要求 (4) 铸造工艺参数的确定 (4) 铸造尺寸公差和重量公差 (5) 机械加工余量 (5) 铸造收缩率 (5) 拔模斜度 (5) 其他工艺参数的确定 (5) 工艺补正量 (5) 分型负数 (5) 非加工壁厚的负余量 (5) 反变形量 (5) 分芯负数 (6) 铸造三维实体造型 (6) 上冠件图纸技术要求 (6) 上冠件结构工艺分析 (6) 基于UG零件的三维造型 (6) 软件简介 (6) 零件的三维造型图 (6) 第三章铸造工艺方案设计 (7) 工艺方案的确定 (7) 铸造方法 (7) 型(芯)砂配比 (8) 混砂工艺 (8) 铸造用涂料、分型剂及修补材料 (8) 铸造熔炼 (8) 熔炼设备 (9) 熔炼工艺 (9) 分型面的选择 (9) 砂箱大小及砂箱中铸件数目的确定 (10) 砂芯设计及排气 (11) 芯头的基本尺寸 (11) 芯撑、芯骨的设计 (12) 砂芯的排气 (12) 第四章浇冒系统的设计及计算 (12) 浇注系统的类型及选择 (12) 浇注位置的选择 (12)

灰铸铁的铸造工艺

灰铸铁的铸造工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

灰铸铁的铸造工艺 铸造业就说“三好”即:好铁水、好型砂、好工艺。铸造工艺在铸件的制造上是和铁水、型砂并列的而做出铸件,铸造工艺是研究决定其流入的路径、方法的技术。 铸型分为: 浇口:把铁水从铁水包注入铸型的入口。往往为使浇注量均匀,除去铁水中的夹杂物,设有集渣浇 横浇道:指铁水从直浇道向型腔流道的水平部分。 内浇口:指铁水从横浇道进入型腔的部位。铸造俗语叫“堰”,是工艺上的重要部分。 出气孔:是随着铁水的充型把型腔内部的空气向外排放的孔道,如果型砂的透气性合适,一般是没 冒口:是把铁水中的夹杂物和铸型中的杂物向外排出口,但是由于铸件冷却收缩造成体积不足起补 铸造工艺的基本要点 铸造工艺是为了使浇注顺利进行,得到良好铸件的技术,平稳且快是加山延太郎博士的名言,即(1)关于铸型的上下:铸件的切削加工面尽量在下箱里,因下部产生缩孔少,材质致密。(2)浇注方式:有从铸件的上部浇入的顶注式和从下部、中部浇注的底注式。顶注式铸型容易(3)内浇口的位置:由于流入型腔内的铁水急速冷却成固体,如果在厚壁部分开内浇口铁水进浇口的数量、形状而决定其位置。 (4)内浇口的种类: 主要为三角内浇口和梯形内浇口。三角内浇口容易做,梯形内浇口能防止渣子混入铸型。(5)直浇口、横浇口、内浇口的断面积比。 按西德R·LEHMANN博士的意见,直浇口为A,横浇口为B,内浇口为C时,A ∶B ∶C=3.6 ∶4.0 ∶虽然关于这个比例是否妥当,有各种不同意见,但说明一下这个比例的思路是:首先铁水通过3间稍长,这期间比重轻的夹杂物可以上浮,就不能从内浇口进入铸件内部。这就是这种比例的要点 浇注系统的设计 浇注系统设计上的一个要点

相关文档
最新文档