无线传输模型

无线传输模型
无线传输模型

研究频率与穿透、衰减等方面特性

对于自由空间传播传输损耗的计算:

Los(dB)=32.44 +20lgD(km) +20lgF(MHz)

式中Los为传输损耗,D为传输距离,F为频率。

由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率F和传播距离D有关,当F或D增大一倍时,﹝Los﹞将分别增加6dB。

所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。这是理想状况下的传输,实际的环境是多铝粉介质,并不是理想的自由空间,无线通信要受到各种外界因素的影响,如反射、折射等造成的损耗,那么实际的环境里,其传输损耗更大。

研究铝粉中传输合适的频率

自由空间损耗为了简化链路计算而定义的一个参数,根据链路计算公式:

Pr=Pt+Gt-Los+Gr

式中Pt是发射功率,Gt是发射天线增益,Los是自由空间损耗,Gr是接收天线增益。根据前面的自由空间损耗计算公式,可以计算出自由空间中的频率。在实际的多铝粉介质中,需要加上外界环境的影响,从而可以确定其合适的频率。

由于实际情况不同,无线数据传输的方法也不同,目前常用的有电感耦合方式(距离)和电磁场耦合方式(远距离1M以上)。

电感耦合式应答器由一个电子数据做载体,通常由单个微型芯片一级用作天线的大面积线圈组成。电感耦合应答器几乎是无源工作的,这意味着:微型芯片工作所需的全部能量必须由阅读器供应。高频的强磁场由阅读器的天线线圈产生,这种磁场穿过线圈横截面和线圈周围的空间。因为使用频率范围的波长比阅读器天线和应答器之间的距离大好多倍,可以把应答器到阅读器之间的电磁场当做交变磁场来对待。

发射磁场的一小部分磁力线穿过距离阅读器天线线圈一定距离的应答器天线线圈。通过感应,在应答器天线线圈上产生一个电压。应答器的天线线圈和电容器并联构成振荡回路,谐振到阅读器的发射频率。通过该回路的谐振,应答器的线圈上的电压达到最大值。应答器线圈上的电压是一个交流信号,因此需要一个整流电路将其转化为直流电压,作为电源供给芯片内部使用。

通过两线圈之间的电磁耦合实现电能的无电连接方式的传输。电磁耦合器是电感耦合系统的核心部件,其性能决定着整个系统的传输能力。电磁耦合器的初级侧和次级侧的磁芯线圈对接后存在相对较大的间隙。这会导致两线圈的耦合系数较低,且漏电感大,励磁电感低,传输能力受到限制,自身功率损耗大。电磁耦合器的结构由磁芯和线圈组成,其中,初级线圈将电源转换器提供的电能转换为磁场能,通过电磁耦合,使次级线圈中产生感应电压和电流,从而使磁场能再转化为电能提供给负载。磁芯起强化的作用,其高的磁导率能够使初级线圈激励出的磁场强度大部分集中在两磁芯形成的此路内,线圈之间可以获得更高的耦合系数,且增加磁感应强度,使电路系统中获得更高的电感值。电磁耦合器的电感是决定电感耦合系统传输能力的主要因素,尤其是励磁电感、漏电感、互感,这些参数与电磁耦合器的几何结构以及磁芯的特性有关。电磁耦合器的磁芯线圈结构以及磁芯材料确定以后,这些参数则主要受两磁芯的相对位置影响。对于具有轴对称结构的罐型磁芯,磁芯间隙是影响耦合器性能的主要因素。为了提高系统传输能力,需要对线圈进行补偿。对于高频电源,电磁耦合器是电感性负载,因此通过在电路中增加补偿电容,以提高其功率因数是增强传输能力的有

效措施。电磁耦合方式的工作频率不会太高,一般不会超过几十MHz,即工作再低频或高频范围之内,传输距离也较近,但是由于其效率较高,目前大多数的无线电能传输系统都基于该原理,尤其在传输功率较大时。

辐射式无线能量传输技术是依靠先进的定向天线收发微波束能量,在接收端依靠高性能接收和整流技术,实现较远距离的无线电能传输。这种技术目前在距离很远,例如高空能量输送平台中可以得到很好的应用。特别是在现代空间太阳能发电的构想——太阳能发电卫星中,此技术被用作将太空中太阳能用微波辐射发送回地球,再由接收天线接收转换并二次辐射给其他基站,永久的为人类提供能源。

对于辐射式能量传输技术的天线研究方面,发展列天线是比较好的选择。列阵天线是一个由大量相同辐射单元组成的孔径,每个单元自相位和幅度上是独立控制的。能得到精确可预测的辐射方向图和波束指向。在微波源方面,必须满足两个条件:一是要提高产生微波的功率。这需要研究更高功率的真空微波放大器,并寻求高效的固态微波放大器,还可以通过功率合成的方式达到高功率的要求;二是要提高微波源的效率。研究高效率微波源是无线能量传输技术在电力系统应用的瓶颈。

磁场共振技术

当两个物体在同一频率实现共振时,将实现能量的无线传输。共振感应耦合技术是一种全新的无线供电技术——非辐射电磁能谐振隧道效应,称作“Mitricity”无线供电技术,关键在于利用了非辐射性磁耦合——两个相同频率的谐振物体产生很强的相互耦合。采用单层线圈,两端各放置一个平板电容器。共同组成谐振回路,减少能量浪费。基于普通电磁感应耦合的非接触电力传输,则是利用数百圈紧密缠绕的线圈,但只能在数毫米的范围才得到60%以上的传输效率。而该系统只是缠绕了5圈粗铜线作为天线的线圈,在进行2m传输时效率约为40%,距离为1m时效率竟高达约90%。共振技术也是一种非常高效率的能量传输方式,两个振动频率相同的物体可以高效的传输能量,而对不同振动频率的物体几乎没有影响。共振技术的传输功率可达到几千瓦,实用于大功率应用,传输距离为3-4米,传输频率需要几到几十赫兹,因此需要对所需频率进行保护。

电感耦合传输距离较近,但是其效率较高,电磁辐射一般用于实现较远距离的无线电能传输,磁场共振一般实用于大功率应用,传输距离为3-4米且需频率进行保护,比较以上几种方法,电感耦合是最合适在多铝粉介质中进行无线传输的方式。

无线传输模型

研究频率与穿透、衰减等方面特性 对于自由空间传播传输损耗的计算: Los(dB)=32.44 +20lgD(km) +20lgF(MHz) 式中Los为传输损耗,D为传输距离,F为频率。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率F和传播距离D有关,当F或D增大一倍时,﹝Los﹞将分别增加6dB。 所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。这是理想状况下的传输,实际的环境是多铝粉介质,并不是理想的自由空间,无线通信要受到各种外界因素的影响,如反射、折射等造成的损耗,那么实际的环境里,其传输损耗更大。 研究铝粉中传输合适的频率 自由空间损耗为了简化链路计算而定义的一个参数,根据链路计算公式: Pr=Pt+Gt-Los+Gr 式中Pt是发射功率,Gt是发射天线增益,Los是自由空间损耗,Gr是接收天线增益。根据前面的自由空间损耗计算公式,可以计算出自由空间中的频率。在实际的多铝粉介质中,需要加上外界环境的影响,从而可以确定其合适的频率。 由于实际情况不同,无线数据传输的方法也不同,目前常用的有电感耦合方式(距离)和电磁场耦合方式(远距离1M以上)。 电感耦合式应答器由一个电子数据做载体,通常由单个微型芯片一级用作天线的大面积线圈组成。电感耦合应答器几乎是无源工作的,这意味着:微型芯片工作所需的全部能量必须由阅读器供应。高频的强磁场由阅读器的天线线圈产生,这种磁场穿过线圈横截面和线圈周围的空间。因为使用频率范围的波长比阅读器天线和应答器之间的距离大好多倍,可以把应答器到阅读器之间的电磁场当做交变磁场来对待。 发射磁场的一小部分磁力线穿过距离阅读器天线线圈一定距离的应答器天线线圈。通过感应,在应答器天线线圈上产生一个电压。应答器的天线线圈和电容器并联构成振荡回路,谐振到阅读器的发射频率。通过该回路的谐振,应答器的线圈上的电压达到最大值。应答器线圈上的电压是一个交流信号,因此需要一个整流电路将其转化为直流电压,作为电源供给芯片内部使用。 通过两线圈之间的电磁耦合实现电能的无电连接方式的传输。电磁耦合器是电感耦合系统的核心部件,其性能决定着整个系统的传输能力。电磁耦合器的初级侧和次级侧的磁芯线圈对接后存在相对较大的间隙。这会导致两线圈的耦合系数较低,且漏电感大,励磁电感低,传输能力受到限制,自身功率损耗大。电磁耦合器的结构由磁芯和线圈组成,其中,初级线圈将电源转换器提供的电能转换为磁场能,通过电磁耦合,使次级线圈中产生感应电压和电流,从而使磁场能再转化为电能提供给负载。磁芯起强化的作用,其高的磁导率能够使初级线圈激励出的磁场强度大部分集中在两磁芯形成的此路内,线圈之间可以获得更高的耦合系数,且增加磁感应强度,使电路系统中获得更高的电感值。电磁耦合器的电感是决定电感耦合系统传输能力的主要因素,尤其是励磁电感、漏电感、互感,这些参数与电磁耦合器的几何结构以及磁芯的特性有关。电磁耦合器的磁芯线圈结构以及磁芯材料确定以后,这些参数则主要受两磁芯的相对位置影响。对于具有轴对称结构的罐型磁芯,磁芯间隙是影响耦合器性能的主要因素。为了提高系统传输能力,需要对线圈进行补偿。对于高频电源,电磁耦合器是电感性负载,因此通过在电路中增加补偿电容,以提高其功率因数是增强传输能力的有

双向拍卖结合贝叶斯模型的认知无线电网络频谱共享方案

双向拍卖结合贝叶斯模型的认知无线电网络频谱共享方案 摘要:针对无线电网络中频谱资源有限且利用率较低的问题,提出了基于双向拍卖结合贝叶斯推理模型的频谱共享算法。首先,主用户和次用户自适应地选择拍卖价格分享频段;然后,玩家基于反馈学习过程捕捉调整价格的策略;最后,进行重复拍卖过程直到达成共识。该算法采用了贝叶斯推理技术,能够自适应地响应不断变化的系统环境和玩家数量,具有良好的可扩展性。仿真结果表明,该算法在PU 受益、交易成功率、频谱利用率、网络吞吐量等方面显著优于其他几种较新的频谱共享算法。 关键词:贝叶斯模型;分布式方式;双向拍卖;认知无线电网络;频谱共享 中图分类号:TN926?34;TP393 文献标识码: A 文章编号:1004?373X(2016)11?0024?06 Abstract:Since the spectrum resource in radio networks is limited and its utilization is low,a spectrum sharing algorithm for double auction combining Bayesian inference model is proposed. Firstly,the primary users and the secondary users adaptively select their auction prices to share the spectrum bands. And then,based on feedback learning

process,the players capture their adjustable price strategies. Finally,the auction process is repeated until the consensus is reached. The algorithm adopts Bayesian inference technique,which can adaptively response to the constantly changing system environment and players′quantity. It has better scalability. The simulation results show that the proposed algorithm is superior to several other advanced spectrum sharing algorithms in the aspects of PU benefit,trade success rate,spectrum efficiency and network throughput. Keywords:Bayesian model;distributed mode;double auction;cognitive radio network;spectrum sharing 0 引言 由于无线电频谱的限制,通信网络面临频谱资源稀缺的问题,另一方面,许多许可频谱仍然长时间[1]未被占用。认知无线电(CR)可提高频谱资源利用率,在CRs中,部分用户可以智能地监控环境并在分配的频段都处于闲置状态时 能够与许可用户共享频谱,通过许可用户(PUs即主用户)和未经许可的用户(SUs即次级用户)[2]之间的频谱共享实现CR网络频谱利用率的增加。 本文提出了一种基于双向拍卖融合贝叶斯推理模型的 频谱共享算法,假设主用户和次级用户是自相关博弈玩家,他们为了达到最大化收益的目的而做出决策。本文算法自适

无线传输液位控制有哪些方式

无线传输液位控制有哪些方式? 在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号。这种方式发射天线和接收天线之间不能有阻挡,障碍物会使传输信号大幅度衰减。现在很多场合难以满足这样的条件,所以应用较少。第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地。这种应用在传输数据量较小的场合可以使用。因为客户需提供一收一发至少2张手机卡,手机卡有月租费和短信费用。短信量大了,通信费用较高。GKY液位信号数据量少,而且在液位发生变化的时候才发短信,这样发送的短信数量有限,是一种方便可行的方案。现在很多地区可以办理主副卡的形式,互相间发短信是免费的,如果操作得当,后期有可能实现0通信服务费。GKY短信收发器采用应答式通信的方法传输数据:发方发送液位信号,对方收到并返回收到的信息;发送方收到返回信息后,确认信息传递正确,再等待液位发生变化时发送下一个液位信号。这种方式传递液位信号,既可靠又节省,可以用于液位控制的无线传输。GKY短信收发器在实现传输液位信号的同时还可以向管理者发短信,便于管理者监控整个系统的运行。第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号。流量卡按照流量收费,即使数据量很大时候费用也很低,当然还有中间服务器的费用,不可能实现0通信服务费。GKY液位信号数据量较少,后期费用很低。这种方式除了实现传输液位信号以外还可以借助中间服务平台管理多点通信系统,实现复杂的管理控制功能。 无线液位信号传输还可以应用于液位语音短信应急报警。因为在各种场合,有许多人们意想不到的突发现象。比如,突降大雨、管道爆裂、水泵故障等等,使地下室等低处容易产生大量积水。这些事故的发生,人们往往毫无察觉,导致很多重要的设备被淹,损失惨重。GKYDXF-BJ1水位短信报警器可以在紧急时刻发出声光报警,并向相关人员发出短信和拨打电话,并进行语音提示。使人们可以第一时间采取应对措施,避免设备被淹。 以下是各种无线液位信号的传输控制系统原理图。 第一种方式:直接采用无线收发设备传输液位信号的系统原理图

无线传输技术及应用.

无线传输技术及应用 本选修课根据社会的实际需要,无线传输技术远程操作方便的特点,选择了 TC35i无线传输方案。 一.课题用途: 在工业方面:操作员用手机和电脑远距离监测、操作和控制工厂的设备。在农业方面:进行植物生长发育的远程控制。在生活方面:进行远程的LED宣传语控制。 二.课题方案: 用传感器接收要测的数据,传到单片机上,通过TC35i通信模块传输数据到操作人员的手机或者电脑上,操作人员也可以通过现场的上位机进行监测和操作。 三.无线通信模块: 3.1 TC35I介绍

TC35i新版西门子工业GSM模块是一个支持中文短信息的工业级GSM模块, TC35i由供电模块(ASIC)、闪存、ZIF连接器、天线接口等6部分组成。作为 TC35i的核心基带处 理器主要处理GSM终端内的语音和数据信号,并涵盖了蜂窝射频设备中的所有模拟和数字功能。 TC35i模块工作在EGSM900和GSM1800双频段,电源范围为直流3.3~4.8V ,电流消耗—休眠状态为3.5mA,空闲状态为25mA,发射状态为300mA(平均),2.5A 峰值;可传输语音和数据信号, 功耗在EGSM900(4类)和GSM1800(1类)分别为 2W和1W ,通过接口连接器和天线连接器分别连接SIM卡读卡器和天线。SIM电压为3V/1.8V,TC35i的数据接口(CMOS电平)通过AT命令可双向传输指令和数据,可选波特率为300b/s~115kb/s , 自动波特率为1.2kb/s~115kb/s。它支持Text 和PDU格式的SMS(Short Message Service,短消息),可通过AT命令或中断信号实现重启和故障恢复。其内部结构如图所示: TC35i模块内部结构图 3.2 TC35i硬件设计 1.发射端 发射端的模块TC35i模块有40个引脚,通过一个ZIF(Zero Insertion Force,零阻力插座)连接器引出。这40个引脚可以划分为5类,即电源、数据输入/输出、SIM卡、音频接口和控制。TC35i的第1~5引脚是正电源输入脚采用+4.2V,第6~10引脚是电源地。15脚是启动脚IGT,它与89C51的P1.3口相接,给IGT加一个大于100ms的低脉冲, 使TC35i进入工作状态。18脚RxD0通过2.2K电阻隔离和单片机的第11脚TXD相连;19脚TxD0为TTL的串口通讯脚,通过2.2K 电阻隔离和单片机的第10脚RXD相连。TC35i使用外接式SIM卡, 24~29为SIM卡引脚,SIM卡同TC35i是这样连接的:SIM上的CCRST、CCIO、CCCL、CCVCC和CCGND通过SIM卡阅读器与TC35i的同名端直接相连,ZIF连接座的CCIN引脚用来检测SIM卡是否插好,如果连接正确,则CCIN引脚输出高电

基于GSM无线传输技术的远程手机遥控系统.

基于GSM无线传输技术的远程手机遥控系统【摘 科技纵横

要】本系统实现了以GSM短消息AT命令。表1 部分AT指令分析

对于TC35i模块控制,IGT信号非常的重要,只有正确的IGT信号才可以使 TC35i模块正常的运行。模块的时序如图3所示。 为载体的控制信号传送,用户通过手机发送短信息命令“开”或“关”就可以通过GSM网络远程控制一个家电的开关(本文中用饮水机模拟),若短信命令不正确,则报错指示灯亮。并且,通过GSM模块与车载GPRS模块的相连,可以实现实时显示汽车位置的功能。 【关键词】GSM的无线传输技术AT指令 远程控制 1.GSM数据传输技术的发展现状GSM技术自从1982年开始提出、1992年正式问世以来,经过了十几年的发展,其技术也日趋成熟。因为GSM无线网络覆盖范围广,在信息传递方面性能稳定、可靠,所以把GSM无线网络作为信息传递的载体,与单片机结合起来构成应用系统有着强大的生命力和广阔的应用空间,特别是在远程数据传输、远程监控等领域更是受到电子设计应用工程师的关注。 2.研究的目的及意义 基于GSM网络的通用短信息控制系统由于结构简单、价格低廉、通用性、实用性强,能够直接或者在稍作改造后用于诸如:工厂、煤矿等需要远程自动控制的场合。该基于GSM网络的通用短信息控制系统能够在提高经济效益.减少工作人员劳动强度方面起到了较大的作用,能使需要该系统的工矿自动化水平提高。具有一定的社会和经济意义。 3.AT指令格式及分析3.1AT指令集简介 AT指令是调制解调器的控制命令,在调制解调器中几乎所有的操作都是通过AT 来完成的,AT是Attention的缩写,绝大多数指令是以AT作为前缀的,如拨号命令ATD设置波特率命令AT+IPR等,因此这些指令被称为AT指令,由这些指令所构成的指令集叫做AT指令集。 3.2AT指令的格式 在TC35i所支持命令集中根据命令名称可简单分为: (1)“ATXX”及少量“AT+XXX”为V.25标准命令集; (2)“AT+CXXX”为GSM标准所扩展的AT命令; (3)“AT^SXXX”为SIEMENS定义扩展的 注:,内存中消息的状态;[],电话本中与对应的字母数字域部分可选(短消息中一般此项为空);,对PDU方式指数据单元的字节数;,16进制表示的数据单元。 4.系统硬件设计 图3TC35i模块上电后各信号波形图 4.3串口模块的电路设计

无线通信作业(23题)

无线通信作业 1.哪三种技术应用需求的变化有力地推动和促进了现代无线通信和无线通信网络技术的发展和演进? 1)Wireless Local Area Network 2)Wireless Metropolitan Area Network 3)Wireless Sensor Networks 2.现代无线通信技术和现代无线网络技术所面临的主要挑战有哪些? 1)干扰的避免和管理以及宽带通信的高移动性 2)资源有限,频谱和能量利用率有待提高 3)服务质量 4)可扩展性 5)自组织、自修复能力 6)安全性能 3.未来无线通信网络技术发展中需要采用哪些关键技术? 无线链路传输技术、无线网络管理控制技术、组网和网络优化技术 4.哪些无线通信网络技术可以支持1Gbps的峰值数据传输速率?其所使用的频段为多少? 超宽带(UWB)无线通信技术,频段:3.1G-10.6G。 5.无线通信所面临的时间选择性衰落和频率选择性衰落会对无线通信产生什么影响? 时间选择性衰落会造成信号波形展宽引起码间干扰,信号可能无法区分; 频率选择性干扰会增加接受端信号的误码率,信号能量也会大大减少。 6.可以采用哪些技术来克服平坦衰落和频率选择性衰落对无线通信的不利影响? 平坦衰落:多样组合技术、编码和交织技术和自适应调制技术; 频率选择性衰落:均衡技术、多载波技术、频谱扩展和天线解决方法。 7.在无线通信网络中采用中继技术可以带来哪些好处?常用的中继方法有哪些? 答:(1)中继技术的好处: 1)有利于减少阴影衰落和路径衰落; 2)可以帮助蜂窝用户; 3)提供了多样性:通过使用中继技术,由在空间上分离的天线组成的多路虚拟天线阵列成为可能; 4)适用于ad-hoc网络; 5)安装高度比基站低:可以减少运行开销; 6)高密度中继系统的传输数据速率更高,可以大区域蜂窝的覆盖问题; (2)常用的中继方法:解码转发、放大转发、编码合作。 8.感知无线电技术中的频谱共享方法有哪几种?每种方法各有什么特点? 答:唯一访问、纵向访问、横向访问; 唯一访问:一个系统对频谱有唯一访问性; 纵向共享:一个主系统,并且只有当从系统不产生对主系统有害的干扰时才共享从系统。 横向共享:所有系统有相同的监管状态,可以平等的访问频谱

VGA无线传输

USB转VGA无线传输,VGA无线传输,电脑主机无线传输到显示器 2010/01/02 14:28[未分类 ] 如果您想捧着笔记本电脑,懒洋洋地坐在客厅沙发上,就能从另一台面积硕大的显示器上看到笔记本电脑所显示的内容,那么,你就需要IOGEAR为您倾情奉上的超宽频USB网络设备GUW2015VKIT了。GUW2015VKIT能利用无线USB技术实现高清显示输出,通过USB适配器让PC机与具备VGA接口的显示器连接,彻底摆脱数据线缆的束缚。 产品特点: 最远连接距离10m 解决长距离视频布线问题 可以在远程屏幕同步或是延伸计算机画面 将PC内容在远端显示设备输出 最高可达720p高清视频输出(4.5米内) 最高分辨率UXGA(1600x1200)或者WSXGA+(1680x1050) 容易切换到不同的PC播放源,以便播放不同的影像内容 可在不同主机之间切换(每次只限一个连接) 通过无线USB 1.0兼容性认证 相容WiMedia 1.0 MAC与1.1 PHY

系统需求 ?Microsoft Windows XP 32-bit (Service Pack 2) or Microsoft Windows Vista 32/64-bit ?USB 2.0 兼容 ?支持720p视频播放, 最小系统要求: CPU 2GHz (单核), 内存: 1GB 装箱清单 ?一个无线USB适配器(连接PC) ?一个无线VGA适配器(连接显示器/电视机/投影仪) ?一根A to mini-B USB线(0.9米) ?一根USB 2.0延长线(1.5米) ?一个维克罗搭扣 ?一个电源适配器(full-range) ?一本快速指南 ?一张安装光盘(包括电子版用户手册) ?一张质保卡 规格参数:

2.4G超远距离无线传输方案随笔

超低成本的2.4G 超远距离超远距离无线遥控无线遥控无线遥控、、无线传输传输方案方案方案随笔随笔 在2.4G 的领域里面。大家比较熟悉的就是蓝牙和wifi 。物联网用的比较多的就是zigbee 。而在专业的领域用的比较多的就是nrf2401,cc2500等低成本芯片。就距离而言,相同的功率下100mw ,17Dbm 的增益下。蓝牙只有10米,wifi 大概20米。Zigbee 也不超过50米。nrf2401,CC2500不会超过100米。 其实目前2.4G 的传输距离为什么近,其最本质的原因是1:该公共频道带宽不足,手机,蓝牙,wifi 都占用这个频道。2:功率必须符合100mw ,增益在17dbm 以下,不然过不了FCC 、国家标准。也因此意味着你无法通过加大功率的办法来增加距离。有人会反问我:网络上有看过人家wifi 能传300km 的呢。是的,我也相信这是真的。只是这根本没有可比性,也没有实用价值。这好比你硬要在自行车上实现飞机那样的速度,你说可以吗?我的答案是完全可以。我需要增加最先进的动力设备,加最轻的机壳材料,加最好的传感器,把飞机上得所有东西放在自行车上。相信最后做出来的自行车飞机,那完全就不叫自行车了,也许最后我们连自行车的轮子都看不到了。更可悲的是这个产品的造价也许够人家飞机厂做几台这样的飞机出来了。 如果你得产品要获得出口到美国,中欧一些国家的话。使用2.4G 的公共频道是不需要申请的。但是辐射功率必须在100mv 以下。甚至有些国家还要求RF 发送的时间间隙要在3ms 以上。否则你的产品没办法在这些国家销售。中国的话没有强制的要求,但2016年之后中国也会出台相关的强制标准。 那是不是除了上面两个条件,就没有其他办法来增加传输的距离了呢?答案当然是可以。本文就针对该问题提出了一整套的解决方案。至于你能不能领悟到其中的奥秘,那就看你的造化了。 废话少说,我们转入正题。方案好不好,首先我们得要选一个好的硬件平台,就好像做饭一样,巧妇难为无米之炊,我们要做一个上好的牛扒,选对牛肉是关键。无线传输中,选对一个RF 芯片是非常重要的。 那如何选对一颗好的芯片呢,其实无线传输最重要的一个指标就是灵敏度和传输速率。理论上是灵敏度越高,传输距离会越远。传输速率越快,传输距离也会越远。简单的说,就是你灵敏度高了,同样的距离下,你很微弱的信号都能让对方接收到,然后你才有条件来作数据的转换,才能变成有效的信息。而传输的速率快,换句话说,同样的时间内,以1秒为一个单位,假设芯片A 一共发送10个包,其中在500米的地方只能成功收到2个包,再远就收不到了。假设芯片B 速率快,它在1秒内可以发送20个包,同样条件下在500米的地方能成功的收到4个包,这样的话芯片B 其实还能把距离再拉远一点,也许在700米的地方它还能成功收到2个包,那我们就说芯片B 的传输距离比芯片A 的要远。如果有个芯片灵敏度又高,速率又快,那就完美了。不过现实总是那么的残酷,鱼与熊掌不可兼得。我们做产品的首先考虑的还是性价比问题。这在低成本的产品中更为突出。所以我们都是在同价格中选功能,同功能中我们选性能。总之你如果能用最小的成本做最好的产品,那你就是厉害的了。你不能只出自行车的价格要求做出摩托车那样的速度,你也不能用摩托车的价格来跟汽车这样的产品。这个道理你懂的。

认知无线电之频谱共享技术

软件无线电课程论文 论文题目:认知无线电之频谱共享技术 姓名: 学号: 班级: 目录 目录 2 摘要 3 1 引言 3 2 研究现状 3 3 基本原理和算法 3 4 分布式动态频谱共享系统系统模型 3 5 个人理解和体会 3 6 参考文献 3 摘要 当前,无线频谱资源的紧缺是限制无线通信与服务应用持续发展的瓶颈。认知无线电(Cognitive Radio,CR)作为一种新兴的技术,它改变了传统的由政府授权使用无线电频谱的方式,它以频谱利用的高效性为目标,允许非授权用户机会式利用授权用户的频谱空洞传输,被认为是解决无线频谱资源紧缺问题的一种新方法。基于认知无线电技术进行频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.本文将从研究现状、原理等简单介绍认知无线电中的频谱共享技术。 关键字:认知无线电频谱共享技术频谱利用频谱分配 1 引言 基于认知无线电技术进行动态频谱共享,能大大降低频谱和带宽限制对无线通信技术发展的束缚,极大地改变目前无线频谱资源日益紧缺的状况.动态频谱共享本质上是一种多目标优化问题,由于所有参与者(包括主用户和认知用户) 具有不同的目标和利益,彼此之间的决

策行为相互影响,并存在竞争和协作关系. 如何设计频谱的使用规则和相关接入机制,协调所有参与者的行为实现有效的频谱共享,满足各自不同的利益需求就成为关键问题. 目前,利用博弈论的方法分析动态频谱分配策略研究逐渐被研究者关注. 目前普遍采用的非合作博弈模型中,理性的博弈者总是追求自身利益最大化,从而导致博弈的纳什均衡偏离全局最优状态. 解决这一问题的一种有效方法用户效用函数的设计中,除了包括用户自身的收益之外,还将自身行为对其他用户造成的影响考虑在内. 每个用户在追求自身效用最大化的同时兼顾了其他人的利益,其结果使得非合作博弈的均衡状态收敛于系统的最优状态. 2 研究现状 认知无线电的频谱共享技术在提高频谱利用率方面的价值引起了各国电信管制机构的兴趣,不过由于认知无线电的技术和概念都非常超前,多数国家仍在研究讨论当中,只有美国的FCC已经正式批准具备认知无线电性能的设备进入市场。 近年来美国希望大力发展宽带无线接入业务,但由于频谱资源匮乏,亟需寻找新的频段给新的接入技术。美国是最早推动和批准使用认知无线电设备的国家。FCC从2003年就开始尝试引入认知无线电提高频谱的利用。2003年12月,FCC公布了《使用认知无线电技术促进频谱利用的通知》,就《FCC规则第15章(FCC rule part 15)》(用于数字式设备和低功发射机的法规)进行了修订,并于2005年10月,正式批准了关于引入认知无线电技术、使用认知无线电设备的法规。 FCC认为目前最适合应用认知无线电技术的是UHF中分配给电视广播业务的6 MHz频段,因为目前该频段在美国利用率很低,通过允许其它免许可设备使用这个频段,不仅可以提高频率利用率,而且还可以推广宽带无线接入业务,因为这个波段传播距离远,适合为偏远地区提供服务,可以促进美国社会的宽带普及。FCC认为认知无线电技术还可以在高频率频段发挥作用,如100 GHz以上的频段在美国的使用率只有5%-10%。 认知无线电的频谱共享技术听起来是个十分新颖的概念,但事实上无线局域网(WLAN)领域已经开始利用认知无线电技术的频谱共享技术。 WLAN是最早利用认知无线电频谱共享技术的无线通信系统。FCC等法规机构要求802.11a无线电能检测雷达信号并避免与它们形成干扰,这种躲避雷达的能力要求系统具有强大的CR类自适应能力,而这只是WLAN-CR功能的开始。 无论在军用还是民用领域,认知无线电的研究与应用都处于起步阶段。在军用领域,美国国防部高等研究计划署(DARPA)于2003年成立了下一代通信计划(XG),着眼于开发认知无线电的实际标准和动态频谱管理标准。2003年开始,Raytheon公司与DARPA签订了下一代无线通信计划的合同。从事认知无线电相关的技术研究与开发。在民用领域,Motorola、Intel等公司也已经成立认知无线电研究组并开始开展相关的研究。 3 基本原理和算法 3.1频谱共享技术概述 采用高效频谱利用技术,首先需要重新认识频谱,频谱不是具体和有限的资源,它是抽象和无限的资源,对其利用率高低取决于所采用的技术。其次,需要详细探讨能充分利用频谱的高效频谱利用技术。近年来随着智能天线、高性能数字处理器,新型扩频码、多址接入技术,软件无线电、智能无线电、感知无线电,动态频谱分配和共享等新技术的迅猛发展,为频谱高效利用提供了可能。 在这些改善频谱利用的新技术中,多无线电系统动态频谱分配与共享技术能显著提高整体频谱利用率,从长远看是提高频谱利用率的根本方法。但动态频谱分配需要改变现有频谱分配总体结构,对频谱管理、网络结构、通信终端等方面改变较大,近期看,实现难度较大。而频谱共享技术在不改变现有频谱分配总体结构下,通过不同无线电系统频谱共享来提高频

无线电能传输技术

所谓无线电能传输,就是借助于电磁场或电磁波进行能量传递的一种技术。无线 输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开釆中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在此旨在阐述当前的技术进展,分析无线输电原理。 1无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉?特斯拉(NikolaTesla),因而有人称之为无线电能 传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现。 其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20 年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,乂称为八木一宇田天 线。20世纪60年代初期雷声公司(Raytheon)的布iM(W.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微 波能量转换为了直流电。1977年在实验中使用GaAs—Pt 肖特基势垒二极管,用铝条构造 半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波一一直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%o 自从Brown实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975 年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 ail'划。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波一一直流的转换效率达83%。1991

远程无线视频传输设备

远程无线视频传输设备 Remote wireless video transmission equipment 设备概述:HY-A123是一款性价比很高的无线视频传输器,它具有传输距离远,载频高,抗干扰比较好,适合在跨河,道路上面,高楼层之间无线传输,所有设备采用电气接口,保证了良好的接触性.无线传输是在有线基础上延伸的,省去了开沟,挖地,布线等事情,节约了大量劳动力和时间. 设备特点: 工作频率: 2370MHz 2390MHz 2414MHz 2432MHz 2450MHz 2468MHz 2490MHz 2510MHz 通常工程当中,可同时使用8个频道设备经济型防水型微波图像传输系统,采用S波段(2370~2510MHz)频段的无线微波来传输监控视频信号。由于选用了较高的频率,而且采用FM(调频)工作方式,具有较强的抗干扰性能,图像十分清晰稳定。 设备本身具有防水性能,频点可调,应用方便,可有效躲开干扰频点;带宽大

(2.29—2.51GHz),可调范围大;功放小,对人体伤害小等特点,另外接口也透明,和有线监控接法非常的类似,接口都是常见的接头(BNC、AV),电源一般为220V交流电,也可根据客户要球定做12V电源以配合太阳能等供电。 为了适合各种场合,设备的工作频率通常由用户根据具体使用场合来确定。根据微波传输的特性,特别适合在空阔的场所进行远距离传输,比如海岸线,跨河跨江,不便架线的道路、油田、矿区、森林防火等以及小区楼层之间跨距较大时,本身在某些场所是对有线监控的一种扩充。 对需要控制云镜的球机,可以配合使用我公司的(无线指令控制器),放置在中心端,设备设计接口为RS485接口,可以连接DVR、工控机、电脑串口转换后的RS485接口、控制键盘、网络视频服务器等一切安防RS485接口设备,通信波特率一般为:1200bps、2400bps、4800bps、9600bps 发射机参数: 工作频段2370MHz~2510MHz(公共频段, 无需申请。) 发射功率3W (0.5W,1W,2W,可定制) 50Ω 输入阻抗 输入视频1V峰—峰值 输出功率1w~3w(功率可定制) 输入音频0.1~1.0峰峰值 传输距离(1W)600-1000米(2W)1-2公里 (3w)2~4公里(与天线增益有直接 关系) DC12V 工作电压 FM 调制方式 20MHz 调制带宽 PAL 视频制式 环境温度-20~+60°C

专用LTE网络,频谱共享LTE蜂窝无线路由器

私有LTE网络蜂窝无线路由器的概念并不新鲜,但随着最近新的频谱共享创新和“工业4.0”的起源- 工业流程的数字化转型和第四次工业革命- 私有LTE网络的潜力巨大。Harbor Research 最近的一项研究表明,私人LTE网络市场到2022年可能达到170亿美元。今天,我们看到了从制造业自动化和航运港口到石油和天然气以及发电等一系列行业领域的浓厚兴趣。。 除了公共网络之外还要设置专用LTE网络,私有LTE网络的独特概念是,它们使企业客户能够使用专用设备和设置运行自己的本地网络。这种方法提供三个主要好处: 1.本地控制 通过使用专用设备,专用LTE网络及其性能独立于其他用户,并且不存在可能在共享网络中发生的突然流量激增等问题。这种好处对于工业和企业应用至关重要,因为生产率必须保持在高水平和可预测的水平。拥有本地专用网络还可以完全控制数据。例如,公司可以确保敏感数据不会离开场所。 2.优化 通过满足单个公司的需求,可以为该公司的特定物联网应用定制专用LTE网络。这种优化的示例是服务质量(QoS)和移动性设置。通过定制的QoS,可以为关键应用程序提供一致的服务,而不管网络负载如何。通过自定义移动设置,可以针对本地应用程序优化行为; 例如,在不太可能发生链路故障的情况下执行更快的重新连接。 3.随时部署 利用可供任何人用于私有LTE网络的共享和未许可频谱,私有LTE网络的部署很容易,这使新实体能够享受LTE。这将扩展整个LTE生态系统。此外,利用LTE路线图的能力允许访问诸如自组织网络之类的功能以及具有自包含或虚拟/托管核心网络的网络架构。 使用私有LTE网络的好处,现在我们知道私有LTE网络是什么,让我们来看看使用基于LTE 的技术的好处。如下图所示,与其他无线本地网络相比的主要优势是: ?更高的容量支持许多设备同时作为高带宽应用。 ?更远的范围, ?无缝移动, ?行业级可靠性, ?一致的延迟和服务质量, ?安全,最后但并非最不重要, 多个供应商之间的互操作性和5G的路线图。5G的路线图确保了具有新的5G功能的面向未来的解决方案,例如新的5G新无线电(NR)和具有超可靠和超低延迟通信的关键任务服务。那么,你可能会问什么新东西?移动网络运营商可以通过专用其许可频谱的一部分来提供私有LTE网络,这是并将继续是私有LTE市场的重要部分。新的是频谱共享方面的进展,换句话说就是未经许可和共享的频谱。在最近的博客文章中,我们概述了进展 - 从五年前未经许可的LTE的第一个概念到今年早些时候发布其MulteFire 1.0规范的 MulteFire联盟,最近开始对未经许可的频谱中的5G进行的研究。这些努力主要集中在未经许可的频谱上,但最近共享频谱也令人兴奋。在美国,FCC已经定义了公民宽带无线电服务(CBRS),这是一个大约3.5 GHz的150 MHz共享频谱带。为支持在此频段部署基于LTE的技术,我们

物联网中的几种短距离无线传输技术

短距离无线通信场指的是100m 以内的通信,主要技术包括Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(?U ltra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的EPC 规范、日本的UID(Ubiquitous ID)规范和ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合14 部委制订的《中国RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(IEEE802.11b),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是2.4GHz,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如802.11a和802.11g的先后推出,Wi-Fi的应用将越来越广泛。速度更快的802.11g使用与802.11b相同的正交频分多路复用调制技术,它也工作在2.4GHz频段,速率达54Mb/s。根据最新的发展趋势判断,802.11g 将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复

基于230 MHz电力无线专网的频谱共享关键技术研究

基于230 MHz电力无线专网的频谱共享关键技术研究 摘要:无线通信技术是一种重要的电力系统接入网技术,电力无线专用230 MHz频段频谱效率较低,只能支持很低的传输速率,制约了智能电网新业务的发展。为了进一步促进智能电网的实现,提出了一种频谱共享算法,该算法基于OFDM和功率分配技术实现。仿真结果表明,采用该算法能极大地提高频谱效率,提高系统容量。该算法的提出为国家无线电管理委员会进一步完善230 MHz频谱规划方案、促进智能电网的发展提供了有效的参考。 关键词:无线通信专网;频谱共享;OFDM;功率分配 0 引言 随着经济和社会的发展,电网规模不断发展壮大,各种新业务对通信速率和质量的要求不尽相同,因此对传输带宽的需求也不尽相同。为了同时支持对速率、质量要求不同的各种业务,需要一种频谱效率更高,并且能灵活分配带宽的技术。基于认知无线电(Cognitive Radio,CR)的频谱共享正是一种能有效解决频谱稀缺问题的技术,其主要目标在于最大化频谱利用率并兼顾共享用户之间的公平性。目前,基于CR的频谱共享的研究主要基于频谱共享池(Spectrum Pooling)这一策略,基本思想是将一部分分配给不同业务的频谱合并成一个公共的频谱池,并将整个频谱池划分为若干个子信道。因此,信道是频谱分配的基本单位,频谱共享问题可以转化为信道分配问题,以最大化信道利用率为主要目标的同时考虑干扰的最小化和接入的公平性。 作为电力骨干网的延伸,电力无线专网是实现电网智能化的重要保障,其中的230 MHz 频段是国家无委专门划拨给电力、水力、地质等行业的专用频谱资源[1]。目前,基于电力230 MHz频段的传输方案只能支持很低的传输速率,为了促进智能电网的发展,必须提高230 MHz频段的频谱使用效率,以承载更高速率和质量要求的业务。正交频分复用(OFDM)技术能够有效地提高频谱效率,增加系统容量[2],同时还能抵抗多径干扰,是一种优秀的物理层技术。同时,OFDM把实际信道划分成若干个子信道,这样做的好处之一就是能根据各个子信道的实际情况灵活地分配传输功率,以提高系统容量。为此,本文提出了一种基于OFDM和功率分配技术的传输方案,以提高230 MHz频段的频谱效率。仿真结果表明,这种算法在信噪比正常的情况下(10 dB~20 dB),能将频谱效率提高30%~40%左右,这就给无委会对230 MHz频段进行规划决策提供了非常有效的参考。 1 电力专网通信与业务需求 不久前,全国首个TD-LTE 230 MHz电力无线宽带通信系统在浙江海盐建成,将为智能电网配用电侧的信息传输提供专门的无线信号通道,是智能电网通信技术的重大突破。根据国家无线电管理委员会的规划,电力专网离散分布于223 MHz~235 MHz频段内,共有40个频点,每个离散频点带宽为25 kHz。其中,单频频段共包含10个频点,离散不均匀地分布于228 MHz~230 MHz频段,频道间隔为25 kHz;双频组网频段包含30个频点,离散不等间隔分布于223 MHz~228 MHz频段和230 MHz~235 MHz频段,收发频率间隔为7 MHz,频道间隔为25 kHz。 目前,这种传统的单频点信道只能提供低速率的数据传输,然而随着经济和社会的发展,电力系统对设备的监控和维护方面的需求逐渐加大,这就需要电力通信专网能够提供图像和视频传输等对速率要求较高的业务,也意味着电力通信专网需要提供更高的数据传输能力。随着智能电网的发展,传统的数传电台由于带宽较小、时延长、频谱利用率低,已不能支持一些新兴业务对传输速率的要求,也不能满足智能配电业务日益增长的需求。为了更合理地利用230 MHz稀缺的频谱资源,必须提升该频段的传输速率和频谱效率。 2 电力专网OFDM方案设计 在OFDM系统设计中,需要折中考虑各种系统要求,这些需求常常是相互矛盾的。通常有三个主要的系统参数需要重点考虑:系统带宽W,业务传输速率R以及多径时延拓展。

4~20mA信号的无线传输与远程显示方案

4~20mA信号的无线传输与远程显示方案 模拟量信号无线传输,智能单回路测控仪的显示调试纪实 一、项目描述: 苏州刘工有个技术改造项目,要把车间生产线上的液体压力信号传输到600 米外的控制室进行就地实时显示。由于项目时间紧,通信距离远,布线麻烦,所以他选购了DTD110FB模拟量无线传输终端。 DTD110FB就是点对点的无线模拟信号传输装置,通过无线信号发射器和无线信号接收器代替了有线信号传输导线,由于不需要编写程序,只需要连接好电源,发射端连接输入信号,接收端连接显示仪表,所以操作非常简便。 DTD110FB由一个无线发射模块和一个无线接收模块组成,发射端 DTD110FB-T模块直接连接压力变送器的4~20mA标准输出信号,接收端DTD110FB-R模块输出端子与智能单回路测控仪的电流信号输入端子连接。二、调试纪实: 刘工接好信号线,给设备通电后,发射端电流信号正常,但是接收端显示数据总是与发射端对应不上,偶尔还会出现接收端信号灯不闪烁,无信号的现象。达泰技术电话指导确认接线都没有问题,但是就是工作不正常。还好工期还有几天,正好遇上周末,我们建议刘工把设备和显示仪表快递到西安,第二天周六收到后,我们立即进行连接测试,确实是这种现象。 显示仪表是南通秦城仪表生产的C90智能单回路测控仪,通过仔细阅读仪表设置说明,对照刘工设置的参数,原来是仪表显示量程的上限设置的不是 20mA,所以显示的数据就不正确。这个问题虽然解决了,但是接收端无信号 的问题我们没有发现啊,我们还是有点担心,与刘工电话沟通后他让我们把全套设备立即快递到苏州,顺丰的速度就是快,第二天周日刘工就收到了,仪表

相关文档
最新文档