企业工厂供电论文示例

企业工厂供电论文示例
企业工厂供电论文示例

工厂供电课程设计示例

一、设计任务书(示例)

(一)设计题目

X X机械厂降压变电所的电气设计

(二)设计要求

要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。

(三)设计依据

1、工厂总平面图,如图11-3所示

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为 4600 h ,

日最大负荷持续时间为 6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。

表11-3 工厂负荷统计资料(示例)

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条 10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为 LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为 500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定

时限过电流保护整定的动作时间为 1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为 80 km,电缆线路总长度为 25 km 。

4、气象资料本厂所在地区的年最高气温为 38°C,年平均气温为 23°C,年最低气温为 -8°C,年最热月平均最高气温为 33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为 25°C,当地主导风向为东北风,年雷暴日数为 20 。

5、地质水文资料本厂所在地区平均海拔 500 m,地层土质以砂粘土为主,地下水位为 2 m。

6、电费制度本厂与当地供电部门达成协议,在工厂变电所的高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为 18元/KVA,动力电费为 0.2 元/KW·h.,照明(含家电)电费为 0.5 元/KW·h.。工厂最大负荷时的功率因数不得低于 0.9 。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10KV为800元/KVA。

(四)设计任务

1、设计说明书需包括:

1)前言

2)目录

3)负荷计算和无功补偿

4)变电所位置和型式的选择

5)变电所主变压器台数、容量与类型的选择

6)变电所主接线方案的设计

7)短路电流的计算

8)变电所一次设备的选择与校验

9)变电所进出线的选择与校验

10)变电所二次回路方案的选择及继电保护的整定

11)防雷保护和接地装置的设计

12)附录——参考文献

2、设计图纸需包括

1)变电所主接线图1张(A2图纸)。

2)变电所平、剖面图1张(A2图纸)*。

3)其他,如某些二次回路接线图等*。

注:标*号者为课程设计时间为两周增加的设计图纸。

(五)设计时间

自年月日至年月日( 2周)

二、设计说明书(示例)

前言(略)

目录(略)

(一)负荷计算和无功补偿

1、负荷计算各厂房和生活区的负荷计算如表11-4所示。

表11-4 X X机械厂负荷计算表

2、无功功率补偿 由表11-4

可知,该厂380V 侧最大负荷时的功率因数只有 0.75.而供电部门要求该厂10KV 侧最大负荷时的功率因数不应低于 0.9。考虑到主变压器的无功损耗远大于有功损耗,因此380V 侧最大负荷时的功率因数应稍大于0.9,暂取0.92来计算380V 侧所需无功功率补偿容量:

Q C =P 30(tan φ1-tan φ2)=812.2[tan(arccos0.75)- tan(arccos0.92)] kvar=370 kvar

参照图2-6,选PGJ1型低压自动补偿屏*,并联的日期为BW0.4-14-3型,采用其方案1(主屏)1台与方案3(辅屏)4台相组合,总容量84 kvar ×5=420 kvar 。因此,无功补偿后工厂380V 侧和10KV 侧的负荷计算如表11-5所示。[注:补偿屏*型式甚多,有资料的话,可以选择其他型式]

表11-5 无功补偿后工厂的计算负荷

(二) 变电所位置和型式的选择

变电所的位置应尽量接近工厂的负荷中心。工厂的负荷中心按负荷功率矩法来确定,计算公式为式(3-2)和式(3-3)。限于本书篇幅,计算过程从略。(说明,学生设计,不能“从略”,下同。)

∑∑=

++++++=

i

i i P

x P P P P x P x P x P x )(321332211

(3-2) ∑∑=

++++++=i

i i P

y P P P P y P y P y P y )(321332211

(3-3) 由计算结果可知,工厂的负荷中心在5号厂房(仓库)的东南角(参看图11-3)。考虑到周围环境及进出线方便,决定在5号厂房(仓库)的东侧紧靠厂房建造工厂变电所,其型式为附设式。 (三)变电所主变压器及主接线方案的选择

1、变电所主变压器的选择 根据工厂的负荷性质和电源情况,工厂变电所的主 变压器考虑有下列两种可供选择的方案:

(1)装设一台主变压器 型号采用S9型,而容量根据式(3-4),选S NT =1000kVA

>S 30=900kVA ,即选一台S9-1000/10型低损耗配电变压器。至于工厂二级负荷所

需的备用电源,考虑由与邻近单位相联的高压联络线来承担。

(2)装设两台主变压器 型号亦采用S9型,而每台变压器容量按式(3-5)和式(3-6)选择,即

KVA KVA S NT )630~540(900)7.0~6.0(=?≈

且 KVA KVA S S NT 4.336)4.44160132()(30=++=≥∏

因此选两台S9-630/10型低损耗配电变压器。工厂二级负荷所需的备用电源,亦由与邻近单位相联的高压联络线来承担。

主变压器的联结组均采用Yyn0。

2、变电所主接线方案的选择 按上面考虑的两种主变压器方案可设计下列两种 主接线方案:

(1)装设一台主变压器的主接线方案 如图11-5所示(低压侧主接线从略)。 (2)装设两台主变压器的主接线方案 如图11-6所示(低压侧主接线从略)。

图11-5 装设一台主变压器的主接线方案(附高压柜列图)

图11-5 装设两台主变压器的主接线方案(附高压柜列图)3、两种主接线方案的技术经济比较如表11-6所示。

表11-6 两种主接线方案比较

从上表可以看出,按技术指标,装设两台主变的主接线方案(见图11-6)略优于装设一台主变的主接线方案(见图11-5),但按经济指标,则装设一台主变的主接线方案优于装设两台主变的主接线方案,因此决定采用装设一台主变的主接线方案(见图11-5)。(说明:如果工厂负荷近期可有较大增长的话,则宜采用装设两台主变的主接线方案。)

(四)短路电流的计算

1、绘制计算电路如图11-7所示

图11-7短路计算电路

2、确定短路计算基准值,

设S d =100MVA ,U d =U c =1.05U N ,即高压侧U d1=10.5KV ,低压侧U d2=0.4KV ,则

3、计算短路电路中各主要元件的电抗标幺值。 (1)电力系统 已知MVA 500=Soc ,故

2.0500/100*

1==MVA MVA X

(2)架空线路 查表8-37得LGJ-150的KM X /36.00Ω= ,而线路长8km,故

6.2)5.10/(100)836.0(2*

2=?Ω?=KV MVA X

(3)电力变压器 查表3-1 ,得U Z %=4.5,故

5.410001001005.43*=?=

KVA

MVA

X 因此,短路计算等效电路图如图11-8所示。

图11-8 短路计算等效电路

4、计算k-1点(10.5KV 侧)的短路电路总电抗及三相短路电流和短路容量: (1)总电抗标幺值

KA

KV MVA U S I d d d 5.55.103100311=?=

=

KA

KV

MVA U S I d d d 1444.0310032

2=?==

(2)三相短路电流周期分量有效值

KA 96.18

.25.5X I I )

1(*1d 31-k ==

∑=

-KA

K )

( (3)其他短路电流

KA

96.296.151.1I

KA 0.596.155.2i

A

96.1I I I 3sh

3sh

31k 33=?==?====''-∞)()()

()()(K

(4)三相短路容量

MV A 7.358.2MV A

1001

k X Sd S *

31k ==-=

∑-)()( 5、计算k-2点(0.4KV 侧)的短路电路总电抗及三相短路电流和短路容量: (1)总电抗标幺值

(2)三相短路电流周期分量有效值

KA 7.193

.7144X I I )

2(*2d 32-k ==

∑=

-KA

K )

( (3)其他短路电流

KA

5.217.1909.1I

KA 2.367.1984.1i

A

7.19I I I 3sh

3sh

32k 33=?==?====''-∞)()()

()()(K

(4)三相短路容量

MV A 7.133.7MV A

1002

k X Sd S *

32k ==-=

∑-)()( 以上短路计算结果综合如表11-7所示。(说明:工程设计说明书中可只列出短路计算结果。)

表11-7 短路计算

8.26.22.0X X X *

2*11k *=+=+=-∑)

(3.75.46.22.0X X X X *

3*2*12k *=++=++=-∑)

(五)变电所一次设备的选择与校验

1、10KV侧一次设备的选择校验如表11-8所示.

表11-8 10KV侧一次设备的选择校验

表11-8所选一次设备均满足要求。

2、380V侧一次设备的选择校验,如表11-9所示。

表11-9 380V侧一次设备的选择校验

表11-9所选一次设备均满足要求。

3、高低压母线的选择参照表5-28, 10KV母线选LMY-3(40×4),即母线尺寸为40mm×4mm;380V母线选LMY-3(120×10)+80×6,即母线尺寸为120mm×10mm,而中性线尺寸为80mm×6mm。.

(六) 变电所进出线及与邻近单位联络线的选择

1、10KV高压进线和引入电缆的选择

(1)10KV高压进线的选择校验采用LJ型铝绞线架空敷设,接往10KV公用干线。

1)按发热条件选择 由I 30=I 1N.T =57.7A 及室外环境温度33℃,查表8-36初选LJ-16,其35℃时的Ial=93.5A ≥I 30,满足发热条件。

2)校验机械强度 查表8-34,最小允许截面A min =35mm 2,因此按发热条件选择的LJ-16不满足机械强度要求,故改选LJ-35。 由于此线路很短,所以不需要校验电压损耗。

(2)由高压配电室至主变的一段引入电缆的选择校验 采用YJL22-10000型交联聚乙烯绝缘的铝芯电缆直接埋地敷设。

1)按发热条件选择 由I 30=I 1N.T =57.7A 及土壤温度25℃,查表8-44,初选缆芯截面为25mm 2的交联电缆,其Ial=90A >I 30,满足发热条件。

2)校验短路热稳定度 按式(5-41)计算满足短路热稳定度的最小截面

A min =C

t I ima )3(∞

=1960×

77

75.0mm 2

= 22 mm 2< A = 25 mm 2 式中C 值由表5-13差得;ima t 按终端变电所保护动作时间0.5s ,加断路器断路时间0.2s ,再加0.05s 计,故ima t = 0.75s 。

因此YJL22-10000-3×25电缆满足短路热稳定条件。 2、380V 低压出线的选择

(1)馈电给1号厂房(铸造车间)的线路 采用VLV22-1000型聚氯乙烯绝缘铝芯电缆直接埋地敷设。

1)按发热条件选择 由I 30=210A 及地下0.8m 土壤温度为25℃,查表8-43初选缆芯截面120mm 2,其Ial=212A >I 30,满足发热条件。

2)校验电压损耗 由图11-3所示工厂平面图量得变电所至1号厂房的距离约为100m ,而由表8-42查得1200mm 2的铝芯电缆的R 0=0.31Ω/km (按缆芯工作温度75℃计),X 0=0.07Ω/km ,又1号厂房的P 30=94.8 kw ,Q 30=91.8 kar ,因此按式(8-14)得:

V KV

k KW U 4.938.0)1.007.0(var 8.91)1.031.0(8.94=Ω

??+Ω??=

?

%5.2%1003804.9%=?=?V V

U < %5%U =?al

故满足允许电压损耗的要求。

3)短路热稳定度校验 按式(5-41)计算满足短路热稳定度的最小截面

A min =C

t I ima )

3(∞

=19700×

76

75.0mm 2

= 224 mm 2

由于前面按发热条件所选120 mm 2的缆芯截面小于A min ,不满足短路热稳定要求,故改选缆芯截面为240 mm 2的电缆,即选VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆,中性线芯按不小于相线芯一半选择,下同。

(2)馈电给2号厂房(锻压车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(3)馈电给3号厂房(热处理车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(4)馈电给4号厂房(电镀车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(5)馈电给5号厂房(仓库)的线路 由于仓库就在变电所旁边,而且共一建筑物,因此采用聚氯乙烯绝缘铝芯导线BLV-1000型(见表8-30)5根(包括3根相线、1根N 线、1根PE 线)穿硬塑料管埋地敷设。

1)按发热条件选择 由I 30=16.2A 及环境温度(年最热月平均气温)为26℃,查表8-41,相线截面初选4mm 2,其Ial ≈19A >I 30,满足发热条件。

按规定,N 线和PE 线截面也都选4mm 2,与相线截面相同。即选BLV-1000-1

×4mm 2

塑料导线5根穿内径25mm 的硬塑料管埋地敷设。

2)校验机械强度 查表8-35,最小允许截面A min =2.5mm 2,因此上面所选4mm 2的导线满足机械强度要求。

3)校验电压损耗 所选穿管线,估计长50m ,而由查表8-39查得R 0=8.55Ω/km ,X 0=0.119Ω/km ,又仓库的P 30=8.8 kw ,Q 30=6kar ,因此:

V KV

k KW U 1038.0)05.0119.0(var 6)05.055.8(8.8=Ω

??+Ω??=

?

%63.2%10038010%=?=?V V

U < %5%U =?al

故满足允许电压损耗的要求。

(6)馈电给6号厂房(工具车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(7)馈电给7号厂房(金工车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(8)馈电给8号厂房(锅炉房)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(9)馈电给9号厂房(装配车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(10)馈电给10号厂房(机修车间)的线路 亦采用VLV22-1000-3×240+1×120的四芯聚氯乙烯绝缘铝芯电缆直埋敷设。(方法同上,从略)。

(11)馈电给11号(生活区)的线路 采用BLX-1000型铝芯橡皮绝缘线架空敷设。

1)按发热条件选择 由I 30=413A 及室外环境温度为33℃,查表8-40,初选BLX-1000-1×240,其Ial ≈455A >I 30,满足发热条件。

2)校验机械强度 查表8-35,最小允许截面A min =10mm 2,因此BLX-1000-1

×240的导线满足机械强度要求。

3)校验电压损耗 由图11-3所示工厂平面图量得变电所至11号生活区负荷中心的距离约为200m ,而由表8-36查得其阻抗值与BLX-1000-1×240近似等值的LJ-240D 的阻抗R 0=0.14Ω/km ,X 0=0.30Ω/km (按线间几何平均距0.8m 计),又生活区的P 30=245 kw ,Q 30=117.6 kar ,因此

V KV

k KW U 6.3638.0)2.03.0(var 6.117)2.014.0(245=Ω

??+Ω??=

?

%6.9%1003806.36%=?=?V V

U > %5%U =?al

不满足允许电压损耗的要求。为确保生活用电(照明,家电)的电压质量,决定采用四回BLX-1000-1×120的三相架空线路对生活区供电。PEN 线采用BLX-1000-1×70橡皮绝缘线。重新校验电压损耗,完全合格(此略)。 3、作为备用电源的高压联络线的选择校验 采用YJL22-10000型交联聚乙烯绝缘的铝芯电缆,直接埋地敷设。与相距约2km 的邻近单位变配电所的10KV 母线相联。

(1)按发热条件选择 工厂二级负荷容量共335.1KVA ,

I 30=335.1/KV 103?=19.3A 而最热月土壤平均温度为25℃,查表8-44,初选缆芯截面为25mm 2的交联聚乙烯铝芯电缆,(该型电缆最小芯线截面为25 mm 2)其Ial=90A >I 30,满足发热条件。

(2)校验电压损耗 由表8-42查得缆芯截面为25mm 2铝芯电缆的R 0=1.54Ω/km (按缆芯工作温度80℃计),X 0=0.12Ω/km ,又二级负荷的P 30=259.5 kw ,Q 30=211.9 kar ,线路长度按2km 计,因此

V KV

k KW U 8510)212.0(var 9.211)254.1(5.259=Ω

??+Ω??=

?

%85.0%1001000085%=?=?V V

U < %5%U =?al

满足允许电压损耗的要求。

3)短路热稳定度校验 按本变电所高压侧短路校验,由前述引入电缆的短路热稳定校验,可知缆芯25mm 2

交联电缆是满足短路热稳定要求的。由于邻近单位10KV 的短路数据不详,因此该联络线的短路热稳定校验无法进行,只有暂缺。

综合以上所选变电所进出线和联络线的导线和电缆型号规格如表11-10所示。

表11-10 变电所进出线和联络线的型号规格

(七)变电所二次回路方案的现在与继电保护的整定

1、高压断路器的操作机构控制与信号回路

断路器采用弹簧储能操作机构,其控制和信号回路如图6-13所示。可实现一次重合闸。

2、变电所的电能计量回路

变电所高压侧装设专用电能计量柜,其上装有三相有功电能表和无功电能表,分别计量全厂消耗的有功电能和无功电能。并据以计算每月工厂的平均功率

因数。计量柜由有关供电部门加封和管理。 3、变电所的测量和绝缘监察回路

变电所高压侧装有电压互感器-避雷器柜,其中电压互感器为3个JDZJ-10型,组成?//00Y Y (开口三角形)的接线,用以实现电压测量和绝缘监视。其接线如图6-8所示。

作为备用电源的高压联络线上,装有三相有功电能表、三相无功电能表和电流表,其接线如图6-9所示。高压进线上,也装有电流表。

低压侧的动力出线上,均装有有功电能表和无功电能表。低压照明线路上,三相四线有功电能表。低压并联电容器组线路上,装有无功电能表。每一回路均装有电流表。低压母线上装有电压表。仪表的准确度等级按规范要求。 4、变电所的保护装置

(1)主变压器的继电保护装置

1)装设瓦斯保护 当变压器油箱内部故障产生轻微瓦斯或油面下降时,瞬时动作于信号;当因严重故障产生大量瓦斯时,则动作于跳闸。

2)装设反时限过电流保护 采用GL15型感应式过电流继电器,两相两继电器式接线,去分流跳闸的操作方式。

①过电流保护动作电流的整定 利用式(6-2),式中,I L .max = 2I 1N .T = 2×1000KVA/)103(KV ?=2×57.7A=115A ,K rel =1.3, K re =0.8 ,K i =100A/5A=20 ,因此,动作电流为

A A I OP 3.911520

8.01

3.1=???=

因此,过电流保护动作电流I op 整定为10A 。(注意:GL15型感应式过电流继电器动作电流只能2~10A ,且为整数)

②过电流保护动作时间的整定 由于本变电所为电力系统的终端变电所,故其过电流保护动作时间(10倍动作电流动作时间)可整定为最短的0.5S 。 ③过电流保护灵敏系数的检验 利用式(6-4),式中, I K .min = I (2)K-2/K T = 0.866 I (3)K-2/K T =0.866×19.7KA/)4.0/10(KV KV =0.682KA ,I OP.1 = I OP K i / K W =10A ×20/1=200A 因此,其保护灵敏系数为 5.141.3200/682?==A A S P

满足规定的灵敏系数1.5的要求。

2)装设电流速断保护 利用GL15型继电器的电流速断装置来实现。 ①速断电流的整定 利用式(6-5),式中,I K .max = I (3)K-2=19.7KA ,K rel =1.4, K W =1 ,K i =100A/5A=20 ,K T =10KV/0.4KV=25 ,因此,速断电流为

A A I qP 551970025

201

4.1=???=

速断电流倍数整定为

5.51055==

=

A

A

I I K op

qb qP

(注意:K

qb

可不为整数,但必须在2~8之间。)

②电流速断保护灵敏系数的检验利用式(6-6),式中,

I K.min = I(2)

K-1

= 0.866 I(3)

K-1

=0.866×1.96KA=1.7KA,I

qb..1

=I

qb

K

i

/ K

W

=55A×

20/1=1100A 因此,其保护灵敏系数为

5.1

55

.1

1100

/

1700?

=

=A

A

S

P

从表6-1可知,按GB50062-1992规定,电流保护(含电流速断保护)的最小灵敏系数为1.5,因此,满足规定的灵敏系数的要求。

(2)作为备用电源的高压联络线的继电保护装置

1)装设反时限过电流保护亦采用GL15型感应式过电流继电器,两相两继电器式接线,去分流跳闸的操作方式。

①过电流保护动作电流的整定利用式(6-2),式中,I

L.max = 2I

30

I 30=)

10

3

/(

)4.

44

160

132

(

)

3

/(

)

(

1

8.

30

4.

30

1.

30

)

(

30

KV

KVA

U

S

S

S

I

N

?

+

+

=

+

+

∑ =

19.4A, K

rel =1.3, K

W

=1 ,K

re

=0.8 ,因此,动作电流为

A

A

I OP

3.6

4.

19

2

10

8.0

1

3.1

=

?

?

?

?

=

因此,过电流保护动作电流I

op

整定为7A。

②过电流保护动作时间的整定按终端保护考虑,动作时间整定为0.5S。

③过电流保护灵敏系数因为数据资料不全,暂缺。

2)装设电流速断保护亦利用GL15型继电器的电流速断装置来实现。但因数据资料不全,其整定计算亦暂缺。

(3)变电所低压侧的保护装置

1)低压总开关采用DW15-15000/3型低压断路器,三相均装设过流脱扣器,既可实现对低压侧相间短路和过负荷的保护,又可实现对低压单相接地短路的保护。脱扣器动作电流的整定可参看文献[2]、[3]或其他手册,限于篇幅,此略。

2)低压侧所有出线上均装设DZ20型低压断路器控制,其过流脱扣器可实现对线路短路故障的保护。限于篇幅,整定计算略。

(八)变电所的防雷保护与接地装置的设计

1、变电所的防雷保护

(1)直击雷防护在变电所的屋顶装设避雷针或避雷带,并且引出两根接地线与变电所公共接地装置相连。避雷针采用直径20mm的镀锌圆钢,避雷带采用25mm ×4mm的镀锌扁钢。

(2)雷电侵入波的防护

1)在10KV电源进线的终端杆上装设FS4-10型阀式避雷器。其引下线采用25mm ×4mm的镀锌扁钢,下面与公共接地网焊接相连,上面与避雷器接地端螺栓连接。2)在10KV高压配电室内装设GG-1A(F)-54型高压开关柜,其中配有FS4-10型阀式避雷器,靠近主变压器。主变压器主要靠此避雷器来雷电侵入波的危害。3)在380V低压架空出线杆上,装设保护间隙,或将其绝缘子的铁脚接地,用以防护沿架空线入侵的雷电波。

2、变电所公共接地装置的设计

工厂供电毕业设计论文

学号04350403 毕业设计说明书石家庄危险废弃物处置中心供电系统设计 学生姓名王东亮 专业名称电气工程及其自动化 指导教师陈建辉 电子与信息工程系 2008年 6月9日

石家庄危险废弃物处置中心供电系统设计 Shijiazhuang hazardous waste disposal center power supply system design 2

摘要 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 本工程为石家庄危险废弃物处置中心的供电系统设计,该处置中心大部分用电设备属于长期连续负载,全年工作小时数为8760小时,要求不间断供电,主要车间及附属设备均为二级负荷。采用10KV电压等级双回路线路提供电源,单母线分段,放射式接线的设计方案。设计内容包括负荷计算、方案选择、功率补偿计算、短路电流计算、设备选择、二次系统设计、继电器选择、防雷接地设计、照明设计等。由于缺乏经验,设计中有很多不足与疏漏,请老师给予批评指正。 关键词:供电系统;计算负荷;短路电流;设备选择;

ABSTRACT It is well known, the electrical energy is the modern industry production primary energy and the power. The electrical energy both comes easy by other form's energy conversion, and easy to transform for other form energy supplies the application; Electrical energy transportation's assignment both simple economy, and is advantageous for the control, the adjustment and the survey, is advantageous in realizes the production process automation. Therefore, the electrical energy applies in the modern industry production and the entire national economy life extremely widely. This project for Shijiazhuang hazardous waste disposal center the power supply system design, the disposal center’s equipment belonging to the majority of long-term continuous load, annual work hours to 8760 hours, uninterrupted power supply requirements, the main workshop and ancillary equipment are 2 load. Use 10 KV double-circuit voltage lines to provide power, sub-bus, radiation-wiring design. Design elements include load calculation, options, power compensation, short-circuit current calculation, equipment selection, the second system design, choice of the relay, mine grounding design, lighting design. Due to lack of experience, there are many inadequacies in the design and oversight, to criticize the teacher corrected. Key words:Power Supply System; calculated load; short circuit; equipment selection

工厂供电课程设计示例

工厂供电课程设计示例

工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示 2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,

日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例)

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MV A。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为 1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为25°C,当地主导风向为东北风,年雷暴日数为20 。

工厂供电本科论文

第一章概述 工厂供电,就是指工厂所需电能的供应和分配,亦即工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其他形式的能量转换而来,又易于转换为其他形式的能量以供应用;电能的输送和分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占比重一般很小(除电化工业外)。例如在机械工业中,电费开支仅占产品成本的5%左右。从投资额来看,一般机械工厂在供电设备上的投资,也仅占总投资的5%左右。因此电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高劳动质量,提高劳动生产率,降低劳动成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能突然中断,则对工业生产可能造成严重的后果。例如某些对供电可靠性要求很高的工厂,即使是极短时间的停电,也会引起重大设备损坏,或引起大量产品报废,甚至可能发生重大的人身事故,给国家和人民带来经济上甚至政治上的重大损失。 因此,做好工厂供电工作对于发展工业生产,实现工业自动化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求。 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部和当前的利益,又要有全局观点,能顾全大局,适应发展。 第二章总降压变电所相关节点的短路计算 1短路计算的意义和内容 短路计算的目的: (1)对所选电气设备进行动稳定和热稳定校验 (2)进行变压器和线路保护的整定值和灵敏度计算 短路计算的内容: 计算总降压变电所相关节点的三相短路电流和两相短路电流 短路计算的方法: 对应系统最大运行方式和最小运行方式两种工况,按无限大容量系统,进行相关短路点的三相短路电流计算,求得I”z、i ch、I ch值,并求得的两相短路电流I Z (2)。 2短路计算点的选取 选取总降压变电所的35kV和10kV母线作为计算点,如图3所示。

工厂供电毕业设计开题报告

甘肃畜牧工程职业技术学院 毕业设计开题报告 题目:XXX机械厂低压供配电系统的设计 系部:电子信息工程系 专业:机电一体化 班级:机电一体化09.2 班学生姓名:任东红 学号:0904310783 指导老师:俞瀛 日期:2011 年09 月21 日 (本报告一式三份,一份交指导教师,一份存系上,一份存学生设计档案袋) 一、课题名称 XXX机械厂低压供配电系统的设计

二、工厂供电的概述 工厂供电系统就是将电力系统的电能降压再分配电能到各个厂房或车间中去,它由工厂降压变电所,高压配电线路,车间变电所,低压配电线路及用电设备组成。工厂总降压变电所及配电系统设计,是根据各个车间的负荷数量和性质,生产工艺对负荷的要求,以及负荷布局,结合国家供电情况?解决对各部门的安全可靠,经济技术的分配电能问题。其基本内容有以下几方面:进线电压的选择,变配电所位置的电气设计,短路电流的计算及 继电保护,电气设备的选择,车间变电所位置和变压器数量、容量的选择,防雷接地装置设 计等。 四、工厂供配电系统的特点 1 )供电半径小而范围广。 2)负荷类型多而操作频繁。 3 )厂房环境复杂。 4)低压配电线路长等,既复杂又重要。

因此选择供电方式时应力求简单可靠按有色金属的消耗量和供电可靠性的要求而定, 并因考虑线路运行的安全和方便,周围环境和线路安装的可靠性 五、课题研究的基本内容 1 ?统计负荷并进行负荷计算以及功率的补偿确定 2 ?变配电所的所址和型式的选择 3 ?变压器容量和台数的选择 4 ?短路电流的计算 5.变配电所主接线方案的确定 6 ?一次及二次设备的选择、高低压配电柜的选择 7 .防雷及接地设施的确定 8 ?绘制主接线及平面图 9 ?编写设计说明书

企业工厂供电论文示例

工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示 2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为 4600 h ,

日最大负荷持续时间为 6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条 10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为 LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为 500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定

时限过电流保护整定的动作时间为 1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为 80 km,电缆线路总长度为 25 km 。 4、气象资料本厂所在地区的年最高气温为 38°C,年平均气温为 23°C,年最低气温为 -8°C,年最热月平均最高气温为 33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为 25°C,当地主导风向为东北风,年雷暴日数为 20 。 5、地质水文资料本厂所在地区平均海拔 500 m,地层土质以砂粘土为主,地下水位为 2 m。 6、电费制度本厂与当地供电部门达成协议,在工厂变电所的高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为 18元/KVA,动力电费为 0.2 元/KW·h.,照明(含家电)电费为 0.5 元/KW·h.。工厂最大负荷时的功率因数不得低于 0.9 。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10KV为800元/KVA。 (四)设计任务 1、设计说明书需包括: 1)前言 2)目录 3)负荷计算和无功补偿 4)变电所位置和型式的选择 5)变电所主变压器台数、容量与类型的选择 6)变电所主接线方案的设计 7)短路电流的计算 8)变电所一次设备的选择与校验 9)变电所进出线的选择与校验 10)变电所二次回路方案的选择及继电保护的整定

供用电系统课程设计报告

供用电系统课程设计报告

供用电系统课程设计 (报告书范例) 姓名: 班级: 学号: 时间:

工厂供电课程设计任务书 一、设计题目:XX机械厂降压变电所的电气设计。 二、设计要求: 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与形式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。 三、设计依据: 1.工厂总平面图: 2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为2500h,日最大负荷持续时间为5h。该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1所示。

表1 工厂负荷统计资料 3.供电电源情况:按照工厂与当地供电部门签订的供电协议规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ-150,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约7km。干线首端所装设的高压断路器断流容量为500MVA。此断路器配备有定时限过流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7s。为满足工厂二级负荷的要求,可采用高压联

络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为50km,电缆线路总长度为20km。 4.气象资料:本场所在地区的年最高气温为35o C,年平均气温为23o C,年最低气温为-8o C,年最热月平均最高气温为33o C,年最热月平均气温为26 o C,年最热月地下0.8m处平均温度为250C。当地主导风向为东北风,年雷暴日数为20。 5.地质水文资料:本厂所在地区平均海拔500m,地层以沙粘土为主;地下水位为1m。 6.电费制度:本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为15元/kVA,动力电费为0.2元/kW.h,照明(含家电)电费为0.5元/kW.h。工厂最大负荷时的功率因数不得低于0.9。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10kV为800元/kVA。 四、设计任务: 要求在规定时间内独立完成下列工作量: 1、设计说明书,需包括: 1)前言。2)目录。3)负荷计算和无功功率补偿。4)变电所位置和型式的选择。5)变电所主变压器台数和容量、类型的选择。6)变电所主结线方案的设计。7)短路电流的计算。8)变电所一次设备的选择与校验。9)变电所进出线的选择和校验。10)变电所继电保护的方案选择。11)附录——参考文献。

某工厂供电系统的设计毕业论文

某工厂供电系统的设计毕业论文 目录 摘要 ............................................................... I Abstract .............................................................. II 目录 ............................................................. III 第一章引言 .................................................... - 1 - 1.1 选题的背景及意义 ........................................... - 1 - 1.1.1 选题的背景 ........................................... - 1 - 1.1.2 选题的意义 ........................................... - 1 - 1.2 工厂供电设计的要求及原则 ................................... - 1 - 1.3 本设计的主要要求 ........................................... - 2 - 第二章冶金厂各变电所负荷计算和无功补偿计算 ........................ - 4 - 2.1 负荷计算的目的及其计算方法 ................................. - 4 - 2.1.1 负荷计算的目的 ....................................... - 4 - 2.1.2负荷计算的计算方法.................................... - 4 - 2.2 冶金厂各个车间及整个工厂计算负荷的确定 ..................... - 5 - 2.2.1 380V车间计算负荷的确定.............................. - 5 - 2.2.2 6KV车间负荷计算..................................... - 6 - 2.2.3 冶金厂总负荷列表 .................................... - 7 - 2.3 无功功率补偿方式及其计算 ................................... - 8 - 2.3.1 无功补偿的方式 ....................................... - 8 - 2.3.2 380V车间无功补偿的计算............................... - 9 - 2.3.3 6kV侧无功补偿的计算................................. - 10 - 2.3.4 变压器损耗的计算 .................................... - 10 - 2.3.5 全厂计算负荷 ....................................... - 10 - 第三章冶金厂主变压器的选择 ....................................... - 12 - 3.1变压器台数和容量的选择原则................................. - 12 - 3.2 变压器台数及容量的选择 .................................... - 13 - 第四章冶金厂变电所的主接线的设计 ................................. - 14 -

低压配电系统的工厂供电课程设计知识分享

低压配电系统的工厂供电课程设计 姓 名 学 号 院、系、部 电气工程系 班 号 完成时间 2012年6月18日 ※※※※※※※※※ ※ ※ ※ ※ ※ ※ 2009级 工厂供电课程设计

设计任务书 一、设计内容: (1)由总降压变电所的配出电压和用电设备的电压要求,参考国际规定的标准电压等级确定车间变电所的电压级别。 (2)计算负荷采用需用的系数法,计算出单台设备支线、用电设备组干线和车间变电所低压母线和进线的计算负荷。 (3)由计算负荷结果,确定补偿方式,计算出补偿容量,选择电容器个数和电容柜个数。 (4)按对负荷可靠性要求,确定车间变电所电气主接线。 (5)按车间变电所低压母线的计算负荷,确定变电器的容量和台数。 (6)导线截面积的选择,支线和干线按发热条件选择,进线电缆按经济电缆密度选择,按允许发热,电压损耗进行校验。 (7)短路电流计算,绘制计算电路和等值电路图,确定短路点,计算出各短路点短路电流值及短路容量。 (8)车间变电所低压母线按发热条件选择,按短路的热合力校验。 (9)按国家规定的标准符号和图符,用CAD画出车间变电所的电气主接线图、车间配电系统和配电平面图。 二、设计条件: (1)机加车间符合全部为三级负荷,对供电可靠性要求不高。

(2)车间平面布置图如下图所示 (3)车间电气设备各细表如下表所示 设备代号设备名称台数单台容量(kW)效率功率因数启动倍数备注1~3 普通车床C630-1 3 7.6 0.88 0.81 6 4 内圆磨床M2120 1 7.2 5 0.88 0.83 6 5,16 砂轮机S3SL-300 2 1.5 0.92 0.82 6.5 6 平面磨床M7130 1 7.6 0.88 0.82 6 7~9 牛头刨床B6050 3 4 0.87 0.82 6 11,12 普通车床C6140 2 6.125 0.89 0.81 6 13~15 普通车床C616 3 4.6 0.90 0.81 6 17,18 单臂龙门刨床B1012 2 67.8 0.86 0.81 2.5 19 龙门刨床B2016 1 66.8 0.86 0.81 2.5 20,21 普通车床C630 2 10.125 0.88 0.81 6 22 立式钻床Z535 1 4.625 0.90 0.80 6 23 立式车床C534J1 1 80 0.86 0.80 3 24 摇臂钻床Z35 1 8.5 0.87 0.82 5.5

电修车间低压配电系统及车间变电所工厂供电设计大学毕设论文

《工厂供电工程》课程设计 说明书 设计题目:电修车间低压配电系统及车间变电所院系: 专业: 姓名: 学号: 班级: 指导教师:

摘要 本次设计的主要任务是为一个电修车间设计低压配电系统及车间变电所。经过对基础设计资料的分析后发现这些设备基本都是三级负荷,对供电系统的要求也就每那么高了,经过计算,其间我从图书馆和同学借来很多关于供电设计的书和设计手册,查到了很多相关系数和参数,最后我选择了一台800KV.A的主变压器,变压器从35/10kV总降压变电所引入作为电源,采用单母线进线的方式,进线后采用电缆铺设深埋1米,各个设备的低压接线方式采用放射式的接线方式。选好各个设备后通过短路电流、电压损失等进行校验和整定,最后确定设计完成,画好系统大图。 关键词:配电系统、电修车间、车间变电所、系统大图 Abstract This design primary mission is electricity repairs a vehicle designs the low pressure electrical power distribution system and the workshop transformer substation。After basic design information for the analysis revealed that the equipment is basic-load of the power supply system will require every so high that after calculation, during which I learned from the library and borrowed a lot of students on the design of electricity supply and design manual, found a lot of relevant factors and parameters, and finally I chose one Taiwan 800KV.A main transformers, transformers 35/10kV total relief from the introduction of a power sub-stations, bus bar into a single line, into line after a 1-meter cable laying buried, the low voltage wiring equipment used radiation-way connections. After selecting various equipment through short-circuit current, voltage and the status will be a loss to finalize the design completed, painting good system great maps. Keywords: power distribution system, electricity repair workshop, workshop substations, large map system

工厂供电课程设计报告

工厂供电课程设计报告 题目XX机械厂降压变电所的电气设计 姓名 学号 班级 指导老师 完成日期2014.5.24

一、设计任务书 (一)设计题目 xx机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。 (三)设计依据 1.工厂总平面图 图11—2××机械厂总平面图 2.工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4200h,日最大负荷持续时间为6 h。该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1—74所示。? 表1-74 工厂负荷统计资料

3.供电电源情况按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10 kV 的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ -150,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约6 km。干线首端所装设的高压断路器断流容量为500 MV A。此断路器配备有定时限过电流保护种电流速断保护,定时限过电流保护整定的动作时间为1.6s。为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为70 km,电缆线路总长度为15 km。 4.气象资料本厂所在地区的年最高气温为35℃,年平均气温为26℃,年最低气温为-100C,年最热月平均最高气温为35℃,年最热月平均气温为27℃,年最热月地下o.8m处平均温度为24℃。当地主导风向为东南风,年雷暴日数为15。 5.地质水文资料本厂所在地区平均海拔600m。地层以粘土(土质)为主;地下水位为3m。 6.电费制度本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为18元/kV A,动力电费为0.20元/kw·h,照明(含家电)电费为0.56元/kw·h。工厂最大负荷时的功率因数不得低于0.9。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~lOkV为800元/kV A 二、设计说明书 (一)负荷计算和无功功率补偿

工厂供电课程设计

本科课程设计题目: 院(系)信息科学与工程学院 专业电气工程及其自动化 届别 学号 姓名 指导老师 华侨大学教务处印制 2013年4月21号

目录 第1章概述....................................................................................................错误!未定义书签。第2章负荷计算与负荷等级确定...........................................................................错误!未定义书签。第3章变压器选择及主接线设计...........................................................................错误!未定义书签。第4章短路电流计算 . (10) 第5章电气设备选择 (17) 第6章课设体会及总结 (20) 参考文献 (21) 附录 (22)

第1章概述 通过这个供配电系统的设计,能对工厂供电的知识有一个系统的认识和更深入的了解,对书中的很多理论知识能更深入了解,能将书中的知识都系统化。本次课程设计是对南阳防爆厂降压变电所的电气设计,设计的主要内容包括: (1)负荷计算与负荷等级确定; (2)变压器选择与主接线设计; (3)短路电流计算; (4)电气设备选择; 后有此次课程设计的体会及总结和参考文献. 由于设计者知识掌握的深度和广度有限,很多知识都只能参考网上知识,所以本设计尚有不完善的地方,敬请老师批评指正! 设计任务如下: (一)设计题目 南阳防爆厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定一次回路方案,最后定出设计说明书。 (三)设计依据 1.工厂总平面图,如图(1)所示。 2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为4000h,日最大负荷持续时间为10h。该厂除铸造车间、锻压车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表(1)所示。 3.供电电源情况:按照工厂与当地供电部门签订的供用协议规定,本厂可由附近一条35kV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ—120导线为等边三角形排列,线距为1m;干线首端(即电力系统的馈电变电电站)距离本厂约20km,该干线首端所装高压断路器300MV A,此断路器配备有定时限过电流保护和电流速断保护,其定时限过电流保护整定的动作时间为1.5s。为满足工厂二级负荷的要求,可采用联络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度达100km,电缆线路总长度达80km。 4.气象资料本厂所在地区的年最高气温为37 ℃,年平均气温为24℃,年最低气温为-8℃,年最热月平均最高气温为33℃,年最热月平均气温为26℃,年最热月地下0.8处平均温度为25℃。当地主导风向为东北风,年雷暴是数为20。 5.工厂最大负荷时的功率因数不得低于0.92。 主要参考资料 1 刘介才主编供配电技术北京:机械工业出版社 2 张华主编电类专业毕业设计指导北京:机械工业出版社 3 王荣藩编著工厂供电设计与指导天津:天津大学出版社

总降压变电所设计_工厂供电毕业设计论文

摘要 为使工厂供电工作很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,本设计在大量收集资料,并对原始资料进行分析后,做出35kV变电所及变电系统电气部分的选择和设计,使其达到以下基本要求: 1、安全在电能的供应、分配和使用中,不发生人身事故和设备事故。 2、可靠满足电能用户对供电可靠性的要求。 3、优质满足电能用户对电压和频率等质量的要求 4、经济供电系统的投资少,运行费用低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,又合理地处理局部和全局、当前和长远等关系,既照顾局部的当前的利益,又要有全局观点,顾全大局,适应发展。 按照国家标准GB50052-95 《供配电系统设计规范》、GB50059-92 《35~110kV变电所设计规范》、GB50054-95 《低压配电设计规范》等的规定,工厂供电设计遵循以下原则: 1、遵守规程、执行政策; 遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。 2、安全可靠、先进合理; 做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进电气产品。 3、近期为主、考虑发展; 根据工作特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性。 4、全局出发、统筹兼顾。 按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成部分。工厂供电设计的质量直接影响到工厂的生产及发展。 I

关键词:节能配电安全合理发展 II

目录 摘要··································································································································································I ABSTRACT ················································································································错误!未定义书签。 1绪论 (1) 1.1设计题目 (1) 1.2设计依据 (1) 1.2.1工厂总平面布置图(略) (1) 1.2.2全厂各车间负荷情况汇总表。 (1) 1.2.3供用电协议。 (2) 1.2.4工厂的负荷性质 (3) 1.2.5工厂的自然条件 (3) 1.3设计任务及设计大纲 (3) 1.3.1高压供电系统设计 (3) 1.3.2总变电所设计 (3) 1.4设计成果 (4) 1.4.1设计说明书 (4) 1.4.2设计图纸 (4) 2供电电压等级选择 (5) 2.1电源电压等级选择 (5) 3全厂负荷计算 (5) 3.1变电所的负荷计算 (5) 3.1.1用电设备的负荷计算 (5) 3.1.2变压器损耗估算 (6) 3.1.3无功功率补偿计算 (7) 3.1.4变压器选择 (8) 4系统主接线方案的选择 (9) III

工厂供电课程设计作业

一、工厂供电的意义和要求 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 二、工厂供电设计的一般原则 按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94 《10kv及以下设计规范》、GB50054-95 《低压配电设计规范》等的规定,进行工厂供电设计必须遵循以下原则:(1)遵守规程、执行政策; 必须遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。 (2)安全可靠、先进合理; 应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进的电气产品。 (3)近期为主、考虑发展; 应根据工作特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性。 (4)全局出发、统筹兼顾。 按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成部分。工厂供电设计的质量直接影响到工厂的生产及发展。作为从事工厂供电工作的人员,有必要了解和掌握工厂供电设计的有关知识,以便适应设计工作的需要。 三、设计内容及步骤

工厂供电课程设计示例(完整资料).doc

【最新整理,下载后即可编辑】 工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4600 h ,日最大负荷持续时间为6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例) 厂 房编号厂房 名称 负 荷 类 别 设备 容量 (KW) 需要 系数 Kd 功率 因数 cosφ P30 (KW) Q30 (Kvar) S30 (KVA) I30 (A) 1 铸造 车间 动 力 300 0.3 0.7 照 6 0.8 1.0

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为LGJ-150 ,导线为等边三角形排列,线距为2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为80 km,电缆线路总长度为25 km 。 4、气象资料本厂所在地区的年最高气温为38°C,年平均气温为23°C,年最低气温为-8°C,年最热月平均最高气温为

工厂供电设计的负荷计算毕业论文

工厂供电设计的负荷计算毕业论文 目录 摘要..................................................................... I ABSTRACT................................................................. II 第一章绪论. (3) 1.1课题设计背景 (3) 1.2工厂供电设计的一般原则 (3) 1.3工厂供电设计容及步骤 (3) 第二章负荷计算和功率补偿 (3) 2.1负荷计算的容和目的 (3) 2.2负荷计算的方法 (3) 第三章变压器容量和数量的选择 (3) 第四章主接线方案的选择 (3) 4.1对变电所主结线的一般要求 (3) 4.2变电所主结线 (3) 4.2.1单电源进线的变电所主接线 (3) 4.2.2双回电源进线变电所主接线 (3) 第五章短路电流的计算 (3) 5.1短路电流计算的目的及方法 (3) 5.2三相短路电流计算 (3) 第六章导线、电缆的选择 (3)

6.1 导线电缆的使用条件 (3) 6.2 导线电缆的选择 (3) 第七章电气设备的选择 (3) 7.1电气设备选择的一般原则 (3) 7.2高压开关电器的选择 (3) 7.2.1高压断路器的选择 (3) 7.2.2高压隔离开关的选择 (3) 7.2.3电流互感器的选择 (3) 7.3配电所高压开关柜的选择 (3) 第八章变压器的继电保护 (3) 8.1概述 (3) 8.2变压器电流保护的接线方式 (3) 8.3继电保护配置 (3) 8.3.1变压器的过电流保护 (3) 8.3.2变压器的电流速断保护 (3) 第九章二次回路操作电源和中央信号回路 (3) 9.1二次回路的操作电源 (3) 9.2中央信号回路 (3) 9.2.1概述 (3) 9.2.2对中央信号回路的要求 (3) 第十章测量和绝缘监视回路 (3) 10.1测量仪表的配置 (3)

相关文档
最新文档