2012高中数学复习讲义(通用版全套)第十二章 导数及其应用

2012高中数学复习讲义(通用版全套)第十二章 导数及其应用
2012高中数学复习讲义(通用版全套)第十二章 导数及其应用

2012高中数学复习讲义 第十二章 导数及其应用

【知识图解】

【方法点拨】

导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。

1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。

2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。

3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。

4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。

5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。

6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。

第1课 导数的概念及运算

【考点导读】

1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);

2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;

3.熟记基本导数公式;

4.掌握两个函数和、差、积、商的求导法则;

5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】

1.设函数f (x )在x =x 0处可导,则0

lim

→h h

x f h x f )

()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。

2.已知)1()('23f x x x f +=, 则=)2('f 0 。 3.已知),(,cos 1sin ππ-∈+=

x x

x y ,则当2'

=y 时,=x 3

2π±

4.已知a x x a x f =)(,则=)1('f 2ln a a a +。

5.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 解:因为点P (1,2)在曲线ax x y +=3上,1=∴a

函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数

b a +?=+?∴12132

,得b=2

又由c +?+=12122

,得1-=c

【范例导析】

例1.下列函数的导数:

①2(1)(231)y x x x =++- ②y

=

()(cos sin )x

f x e x x =?+

分析:利用导数的四则运算求导数。

解:①法一:13232223-++-+=x x x x x y 125223-++=x x x ∴ 26102y x x '=++

法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322

-+x x +)1(+x )34(+x 26102x x =++

② 2

31

2

123

32----+-=x

x

x

x y

∴ 2

52

2

32

1

2

32

33---

+

-+

='x

x

x

x

y

③()f x '=e -x (cos x +sin x )+e -x

(-sin x +cos x )=2e -x

cos x ,

点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的基本要求。

例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.

分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。 解: 切线与直线34+=x y 平行, 斜率为4

又切线在点0x 的斜率为0

3

2

0(10)31x x x x y x x x =='

'

=+-=+

∵ 41320

=+x ∴10±=x ∴??

?-==8

100y x 或??

?-=-=12

100y x

∴切点为(1,-8)或(-1,-12)

切线方程为)1(48-=+x y 或)1(412+=+x y 即124-=x y 或84-=x y

点评:函数导数的几何意义揭示了导数知识与平面解析几何知识的密切联系,利用导数能解决许多曲线的切线问题,其中寻找切点是很关键的地方。

变题:求曲线32y x x =-的过点(1,1)A 的切线方程。 答案:20,5410x y x y +-=--=

点评:本题中“过点(1,1)A 的切线”与“在点(1,1)A 的切线”的含义是不同的,后者是以A 为切点,只有一条切线,而前者不一定以A 为切点,切线也不一定只有一条,所以要先设切点,然后求出切点坐标,再解决问题。 【反馈演练】

1.一物体做直线运动的方程为21s t t =-+,s 的单位是,m t 的单位是s ,该物体在3秒末的瞬时速度是

5/m s 。

2.设生产x 个单位产品的总成本函数是2

()88

x

C x =+

,则生产8个单位产品时,边际成本是 2 。

3.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为 (1) 。

(1)f (x )=(x -1)2+3(x -1) (2)f (x )=2(x -1) (3)f (x )=2(x -1)2 (4)f (x )=x -1 4.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为430x y --=。 5.在函数x x y 83-=的图象上,其切线的倾斜角小于

4

π

的点中,坐标为整数的点的个数是 3 。

6.过点(0,-4)与曲线y =x 3+x -2相切的直线方程是 y =4x -4 . 7. 求下列函数的导数:

(1)y=(2x 2-1)(3x+1) (2)x x y sin 2

= (3))1ln(2

x x y ++=

(4)1

1-+=

x

x

e e y (5)x

x x x y sin cos ++=

(6)x

x x y cos sin 2cos -=

解:(1)34182-+='x x y , (2)x x x x y cos sin 22+='; (3)2

11x

y +=

', (4)2

)

1(2--=

'x

x e e

y ;

(5)2

)

sin (1

cos sin sin cos x x x x x x x x y +--+--=

', (6)x x y cos sin -='.

8 已知直线1l 为曲线22-+=x x y 在点(0,2)-处的切线,2l 为该曲线的另一条切线,且21l l ⊥ (Ⅰ)求直线2l 的方程;

(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积

解: 设直线1l 的斜率为1k ,直线2l 的斜率为2k ,

'21y x =+,由题意得10'|1x k y ===,得直线1l 的方程为2y x =-

1221

11l l k k ⊥∴=-

=-

211,1x x +=-=-令得,2

12,2x y x x y =-=+-=-将代入得

2l ∴与该曲线的切点坐标为(1,2),A --由直线方程的点斜式得直线2l 的方程为:3y x =-- (Ⅱ)由直线1l 的方程为2y x =-,令0=2y x =得: 由直线2l 的方程为3y x =--,令0=3y x =-得:

由23

y x y x =-??=--?得:52y =-

设由直线1l ,2l 和x 轴所围成的三角形的面积为S ,则:1525[2(3)]2

2

4

s =?-

?--=

第2课 导数的应用A

【考点导读】

1. 通过数形结合的方法直观了解函数的单调性与导数的关系,能熟练利用导数研究函数的单调性;会求

某些简单函数的单调区间。

2. 结合函数的图象,了解函数的极大(小)值、最大(小)值与导数的关系;会求简单多项式函数的极

大(小)值,以及在指定区间上的最大(小)值。

【基础练习】

1.若函数()f x mx n =+是R 上的单调函数,则,m n 应满足的条件是 0,m n R ≠∈ 。

2.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 5,-15 。 3.用导数确定函数()sin ([0,2])f x x x π=∈的单调减区间是3[

,]22

ππ

4.函数1()sin ,([0,2])2

f x x x x π=+∈的最大值是π,最小值是0。

5.函数2()x f x x e =?的单调递增区间是 (-∞,-2)与(0,+ ∞) 。 【范例导析】

例1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 。 解:当-1≤x <0时,()f x '>0,当0

所以当x =0时,f (x )取得最大值为2。

点评:用导数求极值或最值时要掌握一般方法,导数为0的点是否是极值点还取决与该点两侧的单调性,导数为0的点未必都是极值点,如:函数3()f x x =。 例2. 求下列函数单调区间:

(1)522

1)(2

3

+--

==x x x x f y (2)x

x y 12

-=

(3)x x

k

y +=

2

)0(>k (4)x x y ln 22

-=

解:(1)∵232

--='x x y )1)(23(-+=x x ∴)3

2,(-

-∞∈x ),1(∞+ 时0>'y )1,3

2(-

∈x 0<'y ∴ )3

2,(-

-∞,),1(∞+↑ )1,32(-

(2)2

2

1x

x y +=

' ∴ )0,(-∞,),0(∞+↑

(3)2

21x

k y -

= ∴ ),(k x --∞∈),(∞+k 0>'y , ),0()0,(k k x -∈ 0<'y

∴ ),(k --∞,↑∞+),(k )0,(k -,),0(k ↓

(4)x

x x

x y 14142

-=

-='定义域为),0(∞+ )21,0(∈x 0<'y ↓ ),2

1

(∞+∈x 0>'y ↑

点评:熟练掌握单调性的求法,函数的单调性是解决函数的极值、最值问题的基础。

例3.设函数f(x)= 3223(1)1, 1.x a x a --+≥其中(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值。 解:由已知得[]'

()6(1)f x x x a =--,令'()0f x =,解得 120,1x x a ==-。

(Ⅰ)当1a =时,'2()6f x x =,()f x 在(,)-∞+∞上单调递增;

当1a >时,()'()61f x x x a =--????

,'(),()f x f x 随x 的变化情况如下表:

从上表可知,函数()f x 在(,0)-∞上单调递增;在(0,1)a -上单调递减;在(1,)a -+∞上单调递增。 (Ⅱ)由(Ⅰ)知,当1a =时,函数()f x 没有极值;

当1a >时,函数()f x 在0x =处取得极大值,在1x a =-处取得极小值31(1)a --。

点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。 【反馈演练】

1.关于函数762)(23+-=x x x f ,下列说法不正确的是 (4) 。 (1)在区间(∞-,0)内,)(x f 为增函数 (2)在区间(0,2)内,)(x f 为减函数

(3)在区间(2,∞+)内,)(x f 为增函数 (4)在区间(∞-,0)),2(+∞?内,)(x f 为增函数 2.对任意x ,有34)('x x f =,(1)1f =-,则此函数为 2)(4

-=x x f 。 3.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 5 , -15 。 4.下列函数中,0x =是极值点的函数是 (2) 。

(1)3

y x =- (2)2cos y x = (3)tan y x x =- (4)1y x

=

5.下列说法正确的是 (4) 。 (1)函数的极大值就是函数的最大值 (2)函数的极小值就是函数的最小值

(3)函数的最值一定是极值

(4)在闭区间上的连续函数一定存在最值

6.函数3

2

()35f x x x =-+的单调减区间是 [0,2] 。

7.求满足条件的a 的范围: (1)使ax x y +=sin 为R 上增函数;

(2)使a ax x y ++=3

为R 上的增函数; (3)使5)(2

3

-+-=x x ax x f 为R 上的增函数。

解:(1)∵a x y +='cos 由题意可知:0y '>对x R ?∈都成立 ∴ 1>a 又当1=a 时 x x y +=sin 也符合条件 ∴ ),1[∞+∈a (2)同上 ),0[∞+∈a (3)同上 ),3

1[

∞+∈a

8.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中,,a b c 为常数。 (1)试确定,a b 的值;(2)讨论函数f(x)的单调区间。

解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-. 又对()f x 求导得()3

4

3

41ln 4'bx

x

ax x ax x f +?

+=3

(4ln 4)x a x a b =++.

由题意(1)0f '=,因此40a b +=,解得12a =.

(II )由(I )知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =.

当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数. 因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞.

第3课 导数的应用B

【考点导读】

1. 深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识。

2. 利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐步提高分析问题、探索问题

以及解决实际应用问题等各种综合能力。 【基础练习】

1.若)(x f 是在()l l ,-内的可导的偶函数,且)(x f '不恒为零,则关于)(x f '下列说法正确的是(4) 。

(1)必定是()l l ,-内的偶函数 (2)必定是()l l ,-内的奇函数 (3)必定是()l l ,-内的非奇非偶函数 (4)可能是奇函数,也可能是偶函数 2.()f x '是()f x 的导函数,()f x '的图象如右图所示,则()f x 的图象只可能是(4) 。

(1) (2) (3) (4)

3.若t R ∈,曲线3y x =与直线3y x t =-在[0,1]x ∈上的不同交点的个数有 至多1个 。 4.把长为60cm 的铁丝围成矩形,要使矩形的面积最大,则长为 15cm ,宽为 15cm 。 【范例导析】

例1.函数c bx ax x x f +++=23)(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为13+=x y (1)若)(x f y =在2-=x 时有极值,求f (x )的表达式; (2)在(1)的条件下,求)(x f y =在]1,3[-上最大值;

(3)若函数)(x f y =在区间]1,2[-上单调递增,求b 的取值范围 解:(1)

1

3:))1(,1()()1)(23()1()1)(1()1(:

))1(,1()(23)(:)(2

2

3

+==-++=+++--'=-=++='+++=x y f P x f y x b a c b a y x f f y f P x f y b

ax x x f c bx ax

x x f 的切线方程为

上而过即的切线方程为上点过求导数得

??

?=++=+??

?=-++=++)

2(3)1(021

2323 c b a b a c b a b a 即故5

42)(5

,4,2)3)(2)(1()3(1240

)2(,2)(2

3

+-+==-==-=+-∴=-'-==x x x x f c b a b a f x x f y 相联立解得

由故时有极值在

(2))2)(23(44323)(22+-=-+=++='x x x x b ax x x f

135)2(4)2(2)2()2()(=+---+-=-=f x f 极大

4514121)1(3

=+?-?+=f ]1,3[)(-∴在x f 上最大值为13

(3)]1,2[)(-=在区间x f y 上单调递增

又02)1(,23)(2=+++='b a b ax x x f 知由 b bx x x f +-='∴2

3)(

依题意]1,2[03,0)(]1,2[)(2

-≥+-≥'-'在即上恒有在b bx x x f x f 上恒成立.

①在60

3)1()(,16≥∴>+-='='≥=b b b f x f b x 小时

②在0212)2()(,26

≥++=-'='-≤=

b b f x f b x 小时 ?∈∴b

③在.60012

12)(,1622

≤≤≥-=

'≤≤

-b b

b x f b

则时小

综合上述讨论可知,所求参数b 取值范围是:b ≥0。

点评:本题把导数的几何意义与单调性、极值和最值结合起来,属于函数的综合应用题。 例2.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如

右图所示)。试问当帐篷的顶点O 到底面中心1O 的距离为多少时,帐篷的体积最大?

分析:本题应该先建立模型,再求体积的最大值。选择适当的变量很关键,设

1

OO的长度会比较简便。

解:设

1()

O O x m

=,则由题设可得正六棱锥底面边长

=m)。于是底面正六边形的面积为(单位:m2):

22

62)

42

x x

==+-。

帐篷的体积为(单位:m3):

23

1

()2)(1)112)

232

V x x x x x x

??

=+--+=+-

??

??

求导数,得2

()3)

2

V x x

'=-;

令()0

V x

'=解得x=-2(不合题意,舍去),x=2。

当1

V x

'>,V(x)为增函数;当2

V x

'<,V(x)为减函数。

所以当x=2时,V(x)最大。

答:当OO

1

为2m时,帐篷的体积最大。

点评:本题是结合空间几何体的体积求最值,加深理解导数的工具作用,主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。

【反馈演练】

1.设()

f x

'是函数()

f x的导函数,将()

y f x

=和()

y f x

'

=的图象画在同一个直角坐标系中,不可能正确的是图4 。

2.已知二次函数2

()

f x ax bx c

=++的导数为'()

f x,'(0)0

f>,对于任意实数x都有()0

f x≥,则

(1)

'(0)

f

f

的最小值为

3

2

图1 图2 图3 图4

3.若π02x <<,则下列命题正确的是 (3) .

(1)2sin π

x x <

(2)2sin π

x x >

(3)3sin π

x x <

(4)3sin π

x x >

4.函数()ln (0)f x x x x =>的单调递增区间是1,e

??+∞??

??

5.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为

076=+-y x .

(Ⅰ)求函数y=f(x)的解析式; (Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='

由在M(-1,f(-1))处的切线方程是076=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即

{

{

326,23,

12 1.0,3.

b c b c b c b c b c -+=-=-∴

-+-+=-===-即

解得

故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)

22

()36 3.3630,f x x x x x '=----=令

2

210.x x --=即 解得 .21,2121+

=-

=x x

当;0)(,21,21>'+

>-

当.0)(,2121<'+

<<-

x f x 时

故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.

点评:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.

6.如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底A B 是半椭圆的短轴,上底C D 的端点在椭圆上,记2C D x =,梯形面积为S .

(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.

解:(I )依题意,以A B 的中点O 为原点建立直角坐标系O xy -(如图),

则点C 的横坐标为x .点C 的纵坐标y 满足方程222

2

1(0)4x y

y r

r

+

=≥,

解得)y x r =<<

所以1(22)2

S x r =

+

2()x r =+{}0x x r <<.

A

(II )记222()4()()0f x x r r x x r =+-<<,, 则2

()8()(2)f x x r r x '=+-.

令()0f x '=,得12

x r =

.因为当02r x <<

时,()0f x '>;当

2

r x r <<时,()0f x '<,

所以()f x 在(0,)2

r

上是单调递增函数,在(,)2

r

r 上是单调递减函数,

所以1

2f r ??

???

是()f x 的最大值.

因此,当12

x r =时,S 22=.

即梯形面积S 的最大值为

2

2

r .

7.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ;

(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 解:(Ⅰ)23()()1(0)f x t x t t t x t =+-+-∈>R ,,

∴当x t =-时,()f x 取最小值3

()1f t t t -=-+-,即3

()1h t t t =-+-.

(Ⅱ)令3()()(2)31g t h t t m t t m =--+=-+--,

由2

()330g t t '=-+=得1t =,1t =-(不合题意,舍去).

当t 变化时()g t ',()g t 的变化情况如下表:

()g t ∴在(02),内有最大值(1)1g m =-.

()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,

即等价于10m -<,所以m 的取值范围为1m >.

点评:本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.

8.设函数2()ln()f x x a x =++,若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性. 解: 1()2f x x x a '=++,依题意有(1)0f '-=,故3

2a =.

从而2

231

(21)(1)

()332

2

x x x x f x x x ++++'=

=

+

+

.()f x 的定义域为32

??

-+ ??

?

,∞,

当312

x -<<-时,()0f x '>;当112

x -<<-

时,()0f x '<;当12

x >-

时,()0f x '>.

从而,()f x 分别在区间3112

2

????

---+ ? ??

??

?

,,,

∞单调增加,在区间112??

-- ??

?

,单调减少.

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数讲义终极版

导数目录 【导数的计算与几何意义】 【三次函数】 【导数与单调性】 【导数与极最值】 【导数与零点】 【导数中的恒成立与存在性问题】 【原函数导函数混合还原】 【导数中的距离问题】 【导数题基础练习】 【分离参数】 【构造新函数类】 【导数中的函数不等式放缩】 【导数中的卡根思想 【可使用洛必达法则】 【先构造,再赋值,证明和式或积式不等式】 【极值点偏移问题】 【极值点减元思想】 【导数解决含有x ln与x e的证明题】 【导数解决含三角函数的证明】 【高考导数真题研究】

[基础知识整合] 1、导数的定义:,)()(lim )(000 0x x f x x f x f x ?-?+='→? x x f x x f x f x ?-?+='→?) ()(lim )(0 2、导数的几何意义: 导数值)(0x f '是曲线)(x f y =上点))(,(00x f x 处的切线的斜率 3、常见函数的导数: ;sin )(cos ;cos )(sin );()(;01x x x x Q n nx x C n n -='='∈='='- ;)(;log 1 )(log ;1)(ln x x a a e e e x x x x ='='= ' ;ln )(a a a x x =' 4、导数的四则运算:[])()(;)(;)(;)(2 x u k x ku v u v v u v u u v v u uv v u v u '=' '+'=''+'=''±'='±; 5、复合函数的导数:[])()())((x u f x f ??'?'=' 6、导函数与单调性: 求增区间,解0)(>'x f ; 求减区间,解0)(<'x f 若函数)(x f 在区间),(b a 上是增函数0)(≥'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上是减函数0)(≤'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上存在增区间0)(>'?x f 在),(b a 上成立; 若函数)(x f 在区间),(b a 上存在减区间0)(<'?x f 在),(b a 上成立. 7、导函数与极最值: 确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题: 强化变形技巧、巧妙构造函数、一定要多记题型,总结方法

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录 目录 (1) 考点一导数的概念 (2) 题型1 变化的快慢和变化率 (2) 题型2 导数的概念 (4) 考点二导数的几何意义 (4) 题型3 有关斜率的判断与计算 (4) 课后综合巩固练习 (5)

考点一 导数的概念 1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义, 令0x x x ?=-,0000()()()()y y y f x f x f x x f x ?=-=-=+?-,则当0 x ?≠时,比值00()()f x x f x y x x +?-?= ??叫做函数()y f x =在0x 到0x x +?之间的平均变化率. 2.瞬时变化率:如果当x ?趋近于0时,平均变化率00()() f x x f x x +?-?趋近于一个常数l ,则 数l 称为函数()f x 在点0x 的瞬时变化率. 可用符号记为:当0x ?→时,00()() f x x f x l x +?-→?. 还可以说:当0x ?→时,函数平均变化率的极限等于函数在0x 的瞬时变化 率l ,记作:000()() lim x f x x f x l x ?→+?-=?. 3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0 |x x y ='可以写为:0000()() lim ()x f x x f x f x x ?→+?-'=?. 4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导, 这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b , 内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数. 题型1 变化的快慢和变化率 1.(2018春?菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数 ()y f x =的描述正确的是( ) A .在(,0)-∞上为减函数 B .在0x =处取得最大值 C .在(4,)+∞上为减函数 D .在2x =处取得最小值 2.(2019春?韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

高中数学导数复习(基础版)

第一章导数及其应用 1.1 导数的概念 1.函数f(x)=ax3+3x2+2,若f ′(-1)=4,则实数a的值是() A.19 3B. 16 3 C. 13 3 D. 10 3 解析:∵f(x)=ax3+3x2+2, ∴f′(-1)=lim Δx→0f(-1+Δx)-f(-1) Δx =lim Δx→0a(-1+Δx)3+3(-1+Δx)2+2-(-a+5) Δx =lim Δx→0 (aΔx2-3aΔx+3a+3Δx-6) =3a-6=4,解得a=10 3,故选D. 答案:D 2.(2019·杭州二中月考)设函数f(x)可导,则lim Δx→0f(1+Δx)-f(1) 3Δx等于() A.f ′(1) B.3f ′(1) C.1 3f ′(1) D.f ′(3) 解析:lim Δx→0f(1+Δx)-f(1) 3Δx= 1 3lim Δx→0 f(1+Δx)-f(1) Δx= 1 3f ′(1). 答案:C 3.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3 s,则子弹射出枪口时的瞬时速度为() A.1 000 m/s B.500 m/s C.1 600 m/s D.800 m/s 解析:设运动方程为s=1 2at 2, ∴Δs Δt= 1 2a(t0+Δt) 2- 1 2at 2 Δt=at0+ 1 2aΔt, ∴瞬时速度v=lim Δx→0Δs Δt=at0=5×10 5×1.6×10-3=800 m/s,故选D. 答案:D 4.设f(x)在R上可导,已知f(-x)在x=a处的导数为A,则f(x)在x=-a处的导数为________.解析:∵f(-x)在x=a处的导数为A, ∴A=lim Δx→0f[-(a+Δx)]-f(-a) Δx,

高三数学导数基础讲义教案

高三数学导数基础讲义教案 二、考试要求 ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. x的导数)。 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 5.瞬时速度

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

人教A版高中数学选修《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分) 已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f

高中数学竞赛教材讲义第十四章极限与导数讲义

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导, 此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x) 在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7) )'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) ) () (']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

(推荐)高中数学导数专题复习

专题一 第5讲 导数及其应用 一、选择题(每小题4分,共24分) 1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则 f ′(1)= A .-e B .-1 C .1 D .e 解析 f ′(x )=2f ′(1)+1x ,令x =1,得f ′(1)=2f ′(1)+1, ∴f ′(1)=-1.故选B. 答案 B 2.(2012·泉州模拟)已知曲线y =x 2 4-3ln x 的一条切线的斜率为1 2,则切 点的横坐标为 A .3 B .2 C .1 D.1 2 解析 设切点为(x 0,y 0). ∵y ′=12x -3 x , ∴12x 0-3x 0=1 2 , 解得x 0=3(x 0=-2舍去). 答案 A 3.(2012·聊城模拟)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是 A .S =??01(x 2-x )d x B .S =??01(x -x 2)d x C .S =??0 1(y 2 -y )d y D .S =??0 1(y -y )d y 解析 两函数图象的交点坐标是(0,1),(1,1), 故积分上限是1,下限是0,

由于在[ 0,1]上,x ≥x 2,故求曲线y =x 2与y =x 所围成图形的面S =??0 1(x -x 2)d x . 答案 B 4.函数f (x )=32231,0, e , 0ax x x x x ?++≤??>?? 在[-2,2]上的最大值为2,则a 的取 值范围是 A.???? ?? 12ln 2,+∞ B.?? ???? 0,12ln 2 C .(-∞,0] D.? ?? ??-∞,12ln 2 解析 当x ≤0时,f ′(x )=6x 2+6x ,函数的极大值点是x =-1,极小值点是x =0,当x =-1时,f (x )=2,故只要在(0,2]上e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ ln 2 x 在(0,2]上恒成立,故a≤12ln 2. 答案 D 5.设函数f (x)=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )图象的是 解析 设h (x )=f (x )e x ,则h ′(x )=(2ax +b )e x +(ax 2+bx +c )e x =(ax 2+2ax +bx +b +c )e x .由x =-1为函数f (x )e x 的一个极值点,得当x =-1时,

高中数学导数讲义之定积分

第一部分 定积分的概念 问题一 曲边梯形的面积 如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段, 我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形 称为曲边梯形.如何计算这个曲边梯形的面积? 例如:求由抛物线2 y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。 ★求曲边梯形面积的四个步骤:第一步:分割.第二步:近似代替。第三步:求和.第四步:取极限。 (说明:最后所得曲边形的面积不是近似值,而是真实值) 问题二 汽车行驶的路程 汽车以速度v 组匀速直线运动时,经过时间t 所行驶的路程为S vt =.如果汽车作变速直线运动,在时刻t 的速度为()2 2v t t =-+(单位:km/h ),那么它在0≤t ≤1(单位:h)这段时间内行驶的路程S (单位:km ) 是多少? 问题三 定积分的概念 : 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,在每个小区间 []1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:()()i n i n i i f n a b x f ξξ∑ ∑==-=??1 1 当n →+∞)时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分。记为: ()b a f x dx ? 即 ()b a f x dx ? =()i n i n f n a b ξ∑ =∞ →-1 lim 其中函数()f x 叫做 ,x 叫做 变量,区间[,]a b 为 区间,b 积分 ,a 积分 。 说明:(1)定积分 ()b a f x dx ? 是一个常数 (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx = ? ;变速运动路程2 1 ()t t S v t dt =? ☆定积分的几何意义 从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。那么定积分 ()b a f x dx ? 表示由直 线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。 ☆定积分的性质

相关文档
最新文档