学习RFID必须知道的电磁波原理

学习RFID必须知道的电磁波原理
学习RFID必须知道的电磁波原理

学习RFID必须知道的电磁波原理、天线知识

一、电磁波产生的基本原理

按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播岀去。

周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。

电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠变化电场产生变化磁场,变化磁场

产生变化电场”的机理来传播。

当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射岀去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播岀去。

根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射岀去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。

对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递岀去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高

效的发射和接收,也就形成了天线这门学问。

高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。

二、天线

在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,

用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向岀去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。

综上所述,天线应有以下功能:

1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,

其次要求天线与发射机或接收机匹配。

2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有

方向性。

3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。

-可编辑修改-

4.天线应有足够的工作频带。

这四点是天线最基本的功能,据此可定义若干参数作为设计和评价天线的依据。

把天线和发射机或接收机连接起来的系统称为馈线系统。馈线的形式随频率的不同而分为又导线传输线、同轴线传输线、波导或微带线等。所以,所谓馈线,实际上就是传输线。

天线的电参数

天线的基本功能就是能量转换和定向辐射,所谓天线的电参数,就是能定量表征其能量转换和定向辐射能力的量。

1.天线的方向性

衡量天线将能量向所需方向辐射的能力。

主瓣宽度:主瓣宽度是衡量天线的最大辐射区域的程度的物理量。越宽越好。

旁瓣电平:旁瓣电平是指离主瓣最近且电平最高的第一旁瓣的电平。实际上,旁瓣区是不需要辐射的区域,所以其电平越低越好。(天线辐射的主瓣旁瓣类似方波信号的频谱图)

前后比:

前后比指最大辐射方向(前向)电平与其相反方向(后向)电平之比。前后比越大,天线的后向辐射(或接收)越小。前后比 F / B 的计算十分简单--- F / B = 10 Lg { (前向功率密度)/(后向功率密度)}

方向系数:在离天线某一距离处,天线在最大辐射方向上的辐射功率流密度与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度之比。这是方向性中最重要的指标,能精确比较不同天线的方向性,表示了天线集束能量的电参数。

2.天线效率

天线效率定义为天线辐射功率与输入功率之比。

常用天线的辐射电阻R 来试题天线辐射功率的能力。天线的辐射电阻是一个虚拟的量,定义如下:设有一电阻R,当通过它的电流等于天线上的最大电流时,其损耗的功率就等于其辐射功率。显然,辐射电阻的高低是衡量天线辐射能力的一个重要指标,即辐射电阻越大,说明天线的辐射能力越强。

3.增益系数

增益系数是综合衡量天线能量转换和方向特性的参数,它的定义为:方向系数与天线效率的乘积,记为:D 为方向系数,为天线效率。可见,天线方向系数和越高,则增益系数也就越高。

物理意义:天线的增益系数描述了天线与理想的无方向性天线相比在最大辐射方向上将输出功率放大的倍数。也可以这样通俗地理解,为定向天线与理想全向天线(其辐射在各方向均等)在一定的距离上的某点处产生一定大小的信号之比。

例:如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定

向天线作为发射天线时,输入功率只需100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方

向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

4. 极化方向

极化特性是指天线在最大辐射方向上电场矢量的方向随时间变化的规律。

极化方向,就是天线电场的方向。天线的极化方式有线极化方式有线极化(水平极化和垂直极化)和圆极化(左旋极化和右旋极化)等方式。

如何理解线极化?首先想象那幅经典的电磁波传播图,电场在一个平面以正弦波传播,磁场在电场的正交平面也以正弦波传播,我们从起点沿着传播方向去看电场,看到的就是一段短线,这种极化就是线极化。那么线极化的方向如何确定呢?当高频电流通过天线时,会在天线上产生高频电压,形成高频电场,这个电场方向一般与天线的走向一致,即线极化的极化方向是与天线的走向一致的。如果天线是水平方向架设的导线,产生的电场也是水平方向的,叫它“水平极化”天线;如果天线是垂直于地面架设的导线,产生的电场也是垂直方向的,叫它“垂直极化”天线。(通常直线导线结构的天线为线极化)

如何理解圆极化呢?同样是那幅经典的电磁波传播图,不过此时的电场大小始终不变,但是方向围绕

着x轴不变旋转变化,但在任何一个平面上的投影都是一个正弦波,有点类似我们对信号的处理中辐度不变,但相位在不断变化。此时,从原点向传播方向去看电场,看到的就是一个圆,这种极化就是圆极化。当然,向左旋转就是左旋极化,向右旋转就是右旋极化。(通常螺旋结构的天线为圆极化)

只有收信天线的极化方向与所接收电磁波的极化方向一致才能感应出最大的信号来。根据这一原理,我们可以推断出以下结论。

对于线极化,当收信天线的极化方向与线极化方向一致(电场方向)时,感应出的信号最大(电磁波在极化方向上投影最大);随着收信天线的极化方向与线极化方向偏离越来越多时,感应出的信号越小(投影不断减小);当收信天线的极化方向与线极化方向正交(磁场方向)时,感应出的信号为零(投影为零)。线极化方式对天线的方向要求较高。当然在实际条件下,电磁波传播途中遇到反射折射,会引起极化方向偏转,有时一个信号既可以被水平天线接收,也可以被垂直天线接收,但无论如何,天线的极化方向常常是需要考虑的重要问题。

对于圆极化,无论收信天线的极化方向如何,感应出的信号都是相同的,不会有什么差别(电磁波在任何方向上的投影都是一样的)。所以,采用圆极化方式,使得系统对天线的方位(这里的方位是天线的方位,和前面所提到的方向系统的方位是不同的)敏感性降低。因而,大多数场合都采用了圆极化方式。打个形象的比喻,线极化类似弯曲在地面上爬行的蛇,圆极化类似蛇绕在木棍上绕行。再打个比喻,你拿一根绳子,上下摆,绳子传递的波就是线极化形式的;不断地画圆,传递的波就是圆极化的。

5.频带宽度

天线的电参数都与频率有关,也就是说,上述电参数都是针对某一工作频率设计的,当工作频率偏离设计频率时,往往要引起天线参数的变化。当工作频率变化时,天线的有关电参数不应超岀规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。

6.输入阻抗

对于发信机来说,天线是一个负载,如何使天线能最多地摄取能量,就要解决一个匹配总是。只有当天线本身的阻抗与发信机的阻抗相等是,才能得到最大的发射功率!

对于高频信号讲,天线是很长的导线。高频信号从馈点流向天线端点以及从端点反射回来所用的时间,足以引起天线各部分电压、电流的幅度和相位产生很大的差别,致使天线的长度、结构以及馈电点的位置不同,呈现的阻抗也不同。如中心馈电的偶极振子,当每臂长度为四分一波长时,呈现约50至75欧的纯

电阻,容易做到与馈电电缆及发信机直接匹配。

当条件限制,无法将天线的长度修整到适当数值时,一般应在天线电路中附加电感电容等电抗元件抵消天线本身呈现的电抗,有时还需要加阻抗变压器将天线阻抗变换到发信电路的要求值,这些附加元件构成的设备叫天线调谐器”或天线匹配器”。

7.有效长度

有效长度是衡量天线辐射能力的又一个重要指标。

天线的有效长度定义如下:在保持实际天线最大辐射方向上的场强值不变的条件下,假设天线上电流分布为均匀分布时天线的等效长度。有效长度越长,表明天线的辐射能力越强。

书上有一个例子加强感性认识:长度为2h、电流不均匀分布的短振子在最大辐射方向上的场强与长度

为h、电流为均匀分布的振子在最大辐射方向上的场强相等。也就是说,该短振子的有效长度为h。

接收天线理论

高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。接收电磁波所用的导线,一般叫做接收天线”。

1.有效接收面积

有效接收面积是衡量一个天线接收无线电波能力的重要指标。它的定义为:当天线以最大接收方向对准来波方向进行接收时,接收天线传送到匹配负载的平均功率为PLmax,并假定此功率是由一块与来波方

向相垂直的面积所截获,则这个面积就称为接收天线的有效接收面积。

有效接收面积越大,天线接收无线电波的能力也就越强。

2.等效噪声温度

接收天线的等效噪声温度是反映天线接收微弱信号性能的重要电参数。

接收天线把从周围空间接收到的噪声功率送到接收机的过程类似于噪声电阻把噪声功率输送给与其相连的电阻网络。因此接收天线等效为一个温度为Ta的电阻。Ta越高,天线送至接收机的噪声越大,反之

越小。

三、传输线传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输,因此又称为导波系统。其所引导的电磁波被称为导行波。

传输线也是一种导体,但是与天线不同,不希望电磁波在这里传播时有辐射。所以,用金属做成的传输线

的结构,是尽量不辐射能量。

以最常的同轴线缆为例,中间一根导线,外面还有一圈环形导线,电磁波就在这样一个空间中传播,而不

会辐射出去。

最常用的是TEM 波(横波)传输线,主要包括:双行平等线,同轴线,带状线,微带线等。

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,

学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

RFID基本原理

RFID基本原理 什么是RFID? [摘要]什么是RFID技术,基本工作原理和组成部分是什么,是什么让零售商如此推崇RFID,什么是RFID的典型应用,RFID中国论坛,提供无线射频识别技术应用解决方案及电子标签原理的相关信息 什么是RFID?自2004年以来,与RFID技术相关的文章在各个媒体上不断涌现,相关的报道让这个历史其实并不短的技术在短时间内成为国际追逐的焦点。从全球巨型商业帝国沃尔玛,到国际IT巨头IBM、HP、微软等等,从美国国防部到中国国家标准委,全都在RFID魔棒的指挥下舞蹈起来。 RFID是什么?RFID是Radio Frequency Identification的缩写,即射频识别,俗称电子标签。 什么是RFID技术? RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签,操作快捷方便。 埃森哲实验室首席科学家弗格森认为RFID是一种突破性的技术:"第一,可以识别单个的非常具体的物体,而不是像条形码那样只能识别一类物体;第二,其采用无线电射频,可以透过外部材料读取数据,而条形码必须靠激光来读取信息;第三,可以同时对多个物体进行识读,而条形码只能一个一个地读。此外,储存的信息量也非常大。" 什么是RFID的基本组成部分? 最基本的RFID系统由三部分组成: ? 标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象; ? 阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式; ? 天线(Antenna):在标签和读取器间传递射频信号。 RFID技术的基本工作原理是什么? RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。 是什么让零售商如此推崇RFID?

射频识别系统组成与工作原理

射频识别系统组成与工作原理 1射频识别技术的简介 1.1射频识别系统的分类 2射频识别系统组成 2.1标签的组成 22阅读器的组成 3射频识别系统工作原理 3.1耦合方式 3.2通信流程 3.3标签到阅读器的数据传输方法 1射频识别技术的简介 射频识别技术(Radio Frequency Identification , RFID),射频识别技术 是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过 所传递的信息达到识别目的的技术。基本的RFID系统至少包含阅读器(Reader)和标签(Tag)。RFID标签由芯片与天线组成,每个标签具有唯一的 电子编码。标签附着在物体上以标识目标对象。RFID阅读器的主要任务是 控制射频模块向标签发射读取信号,并接受标签的应答,对标签的识别信息进行处理。 由于RFID技术巨大的应用前景,许多企业争先研发。目前,RFID己成为IT业界的热点。各大软硬件厂商,包括IBM、Motorola、Philips、TI、Oarclel、Sun、BEA、SAP在内的各家企业都对RFID技术及其应用表现出浓厚的兴趣,相继投入大量的研发经费,推出各自的软件和硬件产品机系统应用解决方案。在应用领域,以Wal-mart、UPS、Gielltte等为代表的大批企业己经开始准备采用RFID 技术对实际系统进行改造,以提高企业的工作效率并为客户提供各种增值业务。 1.1射频识别系统的分类 RFID系统按照不同的原则有多种分类方法。依其采用的频率不同可分为低频系统、中频系统和高频系统三大类;根据标签内是否装有电池为标签通信提供能量,又可将其分为有源系统和无源系统两大类;从标签内保存的信息注入的方 式可为分集成电路固化式、现场有线改写式和现场无线改写式三大类;根据读取 电子标签数据的技术实现手段,可将其分为广播发射式、倍频式和反射调制式三大类。另外还可依据标签的材质、系统工作距离和阅读器的工作状态等方面对RFID系统进行分类。以下是各主要分类方法的简单描述: 低频系统,一般是指工作频率在100-500kHz 之间的系统。典型的工作频率有:

RFID系统工作原理及其结构

RFID 系统工作原理及其结构 一套完整的RFID系统,是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder) 及应用软件系统三个部份所组成, 其工作原理是Reader 发射一特定频率的无线电波能量给Transponder,用以驱动Transponder 电路将内部的数据送出,此时Reader 便依序接收解读数据,送给应用程序做相应的处理。 图系统的基本组成 以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成, 感 应偶合(Inductive Coupling) 及后向散射偶合(Backscatter Coupling) 两种,一般低频的RFID 大都采用第一种式,而较高频大多采用第二种方式。 图卡片阅读器及电子标签之间的通讯及能量感应方式 阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处 理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAt等实现对物体识别信息的采集、处理 及远程传送等管理功能。应答器是RFID系统的信息载体,目前应答器大多是由耦合原件 (线 圈、微带天线等)和微芯片组成无源单元。 应答器通常包含: a.天线:用来接收由阅读器送过来的信号,并把所要求的数据送回给阅读器。 /DC电路:把由卡片阅读器送过来的射频讯号转换成DC电源,并经大电容储存能量,再经 稳压电路以提供稳定的电源。 c.解调电路: 把载波去除以取出真正的调制信号。 d.逻辑控制电路:译码阅读器所送过来的信号,并依其要求回送数据给阅读器。 e.内存: 做为系统运作及存放识别数据的位置。 f.调制电路: 逻辑控制电路所送出的数据经调制电路后加载到天线送给阅读器。 图3. 标签结构 阅读器通常包含: a.天线:用来发送无线信号给Tag,并把由Tag响应回来的数据接收回来. b.系统频率产生器: 产生系统的工作频率. c.相位锁位回路(PLL): 产生射频所需的载波信号 d.调制电路:把要送给Tag的信号加载到载波并送给射频电路送出? e.微处理器:产生要送给Tag信号给调制电路,同时译码Tag回送的信号,并把所得的数据回传给应用程序,若是加密的系统还必需做加解密操作. f.存储器: 存储用户程序和数据 g.解调电路: 解调tag 送过来的微弱信号,再送给微处理器处理. h.外设接口: 用来和计算机联机

RFID原理与应用复习(附答案)

RFID原理及应用复习 一、判断 1.RFID是Radio Frequency Identification 的缩写,即无线射频识别。(yes) 2.物联网的感知层主要包括:二维码标签、读写器、RFD标签、摄像头、GPS传感器、M-M终端。(no) 3.13.56MHZ,125kHz,433MHz都是RFID系统典型的工作频率(yes) 4.在物联网节点之间做通信的时候,通信频率越高,意味着传输距离越远。( no) 5.物联网标准体系可以根据物联网技术体系的框架进行划分,即分为感知延伸层标准、网络层标准、应用层标准和共性支撑标准。(yes) 6.在物联网中,系统可以自动的、实时的对物体进行识别、追踪和监控,但不可以触发相应的事件。( no) 7.物联网共性支撑技术是不属于网络某个特定的层面,而是与网络的每层都有关系,主要包括:网络架构、标识解析、网络管理、安全、QoS等。(yes) 8.物联网中间件平台:用于支撑泛在应用的其他平台,例如封装和抽象网络和业务能力,向应用提供统一开放的接口等。(yes) 9.RFID拥有耐环境性,穿透性,形状容易小型化和多样化等特性(yes) 10.物联网信息开放平台:将各种信息和数据进行统一汇聚、整合、分类和交换,并在安全范围内开放给各种应用服务。(yes) 二、不定项选择题 1. 物联网的基本架构不包括(CD)。 A、感知层 B、传输层 C、数据层 D、会话层 2.物联网节点之间的无线通信,一般不会受到下列因素的影响。( D ) A、节点能量 B、障碍物 C、天气 D、时间 3.下列哪项不是物联网的组成系统(B)。 A、EPC编码体系 B、EPC解码体系 C、射频识别技术 D、EPC信息网络系统 4. 利用RFID 、传感器、二维码等随时随地获取物体的信息,指的是(B)。 A、可靠传递 B、全面感知 C、智能处理 D、互联网 5.RFID卡(C)可分为:主动式标签(TTF)和被动式标签(RTF)。 A、按供电方式分 B、按工作频率分 C、按通信方式分 D、按标签芯片分

RFID技术的工作原理

RFID技术的工作原理 RFID技术的基本原理是利用射频信号或空间耦合(电感或电磁耦合)的传输特性,实现对物体或商品的自动识别。 数据存储在电子数据载体(称电子标签或标签)之中,电子标签的能量供应以及电子标签与读写器之间的数据交换不是通过电流的触点接通而是通过无线电电磁场。射频识别是无线电频率识别的简称,即通过无线电波进行识别。 RFID技术的工作原理: 电子标签tag进入读写器产生的磁场后,读写器发出射频信号; 凭借感应电流所获得的能量发送出存储在芯片中的产品信息(无源标签或被动标签),或者主动发送某一频率的信号(有源标签或主动标签); 读写器读取信息并解码后,通过主机与数据库系统相连进行处理。数据库系统由本地网络和全球互联网组成,是实

现信息管理和信息流通的功能模块。数据库系统可以在全球互联网上,通过管理软件或系统来实现全球性质的“实物互联”。 1)RFID系统的工作流程 读写器通过发射天线发送一定频率的射频信号,形成读写器的一个有效识别范围;当附着有射频标签的目标对象进入读写器的电磁信号辐射区域时会产生感应电流;借助感应电流或自身电源提供的能量,射频标签被激活将自身编码等信息通过内置天线发送出去;读写器天线接收来自射频标签的载波信号,经天线调节器传送到读写器的控制单元进行解调和解码后,送到应用系统进行相关处理;应用系统根据逻辑运算判断该射频标签的合法性,并针对不同的应用做出相应的处理和控制,发出指令信号并执行相应的应用操作。 2)RFID系统中的三种事件类型 在RFID系统中,始终以能量作为基础,通过一定的时序方式来实现数据交换。在RFID系统工作的信道中存在3种事件模型: 以能量提供为基础的事件模型

RFID工作原理

RFID工作原理 RFID又称为电子标签、远距离射频卡、远距离IC卡、射频标签、应答器、数据载体;RFID读写器又称为电子标签读写器、远距离读卡器、读出装臵、扫描器、通讯器、读写器(取决于电子标签RFID是否可以无线改写数据)。电子标签与读写器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现能量的传递、数据的交换。基于RFID系统的特性,其在集装箱自动识别、家校通、动物跟踪和追踪领域、不停车收费、车辆出入管理、无线巡检领域中正日益得到广泛重视和大面积推广应用。发生在读写器和电子标签RFID之间的射频信号的耦合类型有两种。(1)电感耦合。变压器模型,通过空间高频交变磁场实现耦合,依据的是电磁感应定律。(2)电磁反向散射耦合:雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。电感耦合方式一般适合于中、低频工作的近距离射频识别系统。典型的工作频率有:125kHz、225kHz和13.56MHz。识别作用距离小于1m,典型作用距离为10~20cra。电磁反向散射耦合方式一般适合于高频、微波工作的远距离射频识别系统。典型的工作频率有:433MHz,915MHz,2.45GHz,5.8GHz。识别作用距离大于1m,典型作用距离为3—l0m。(RFID)标签和读写器的通信在RFID系统中,RFID标签和读写器之间采用无线通信方式传递信息。其基本的通信方式有两种,第一种基于电磁

耦合或者电感耦合,第二种基于电磁波的传播。图3示意画出了这两种不同的耦合方式。RFID标签与读写器之间的耦合通过天线完成,这里的天线通常可以理解为电波传播的天线,有时也指电感耦合的天线。数据在读写器和标签之间用无线方式传递,噪声、干扰以及失真与数据本身一样传递。与其他通信系统相似,技术上必须保证数据被正确传递和恢复。数据通信领域,数据传递有同步和异步之分,在RFID系统中,码流结构也要适应信道特性的要求,码流结构化过程称为信道编码。对于RFID系统,信道编码必须对用户透明,现在有各种不同的信道编码方法,其特点也不尽相同。为了通过空间有效传递数据,要求将数据调制在载波上,这一过程称为调制。常用的调制方法有ASK、FSK 和PSK。 射频标签读写设备是射频识别系统的两个重要组成部分(标签与读写器)之一。射频标签读写设备根据具体实现功能的特点也有一些其他较为流行的别称,如:阅读器(Reader),查询器(Interrogator),通信器(Communicator),扫描器(Scanner),读写器(Reader and Writer),编程器(Programmer),读出装臵(Reading Device),便携式读出器(Portable Readout Device),AEI设备( Automatic Equipment Identification Device)等。

RFID系统结构

RFID系统结构 RFID系统一般包括射频标签、读写器和计算机三部分。 (1)射频标签是射频识别系统的数据载体,是安装在被识别对象上,由芯片和内置天线组成,芯片内保存一定格式的电子数据,作为待识别物品的标示性信息。芯片随着应用的不同而有所差异,主要控制标签的操作频率、数据传输速率、信号调制、加密解密、数据的读写机制等,芯片在得到工作所需要的能量后,会将存储区的数据以调制信号的方式发送给天线再传输给阅读器,或者将阅读器发送过来的信号解调后更新存储区内的数据。天线电路用来感应阅读器所发射出来的射频能量,完成数据的更新,还用来以射频信号的方式回传给阅读器标签内的数据信息标签天线的大小和能量是影响系统阅读距离的主要因素之一。 按照标签内电池的有无,也即能量供应方式分类可以分为无源标签和有源标签。在无源系统中,标签没有自己的电源,它所需要的工作能量主要从读写器发出的射频波束中获取,经过整流、存储后提供电子标签所需要的电流。与有源系统相比,其成本低、寿命长等特点。缺点是读写器需要发射大功率的射频电波,识别距离较近。 在有源系统中,有源标签通常都内装有电池,为电子标签的工作提供全部或者部分能量。虽然电池会带来额外的成本,并且有寿命限制,但如果能做好标签的低功耗设计,其在阅读距离和适应物体运动速度方面的优势则是无源标签不可比拟的。应用的范围也比无源系统大得多。 (2)读写器是利用射频技术从标签中读取射频识别标签信息、或将信息写入标签的电子设备。读写器读出的标签信息通过计算机及网络系统进行管理和信息传输,对对象标识信息进行解码,并将标识信息以及一些相关的信息输入计算机进行处理。读写器可设计为手持式或固定式,并且可以通过通信网络将采集到的标签ID和数据报给计算机通信网络,并可以接收计算机的命令对标签进行操作。典型的阅读器包含有高频模块(发送器和接收器)、控制单元以及阅读器天线。以微处理器为核心部件的控制系统主要是执行以下三种任务:与计算机通信网络进行通信,上报给应用系统标签数据,并执行从应用系统发来的动作指令;控制与射频电子标签的通信过程,执行按防冲突算法对标签进行识别,在标签识别以后和标签进行数据交换;对信号进行编码和解码。 通过阅读器实现对标签数据的无线接触或从阅读器向标签写入信息都要送回到计算机通信系统,这就形成了射频标签阅读器与计算机通信系统之间的接口API(Application Program Interface)。对此,要求阅读器能接受来自计算机系统的指令,并按照约定的协议做出相应的响应。另外,高频接口由接收器和发射器来组成,其主要任务是:在无源系统中,产生高频发射能量,激活射频电子标签并为其提供能量,和接收并解调来自射频电子标签的射频信号。射频识别系统中,读写器与电子标签中的信息交换需要通过一种可靠的方式来实现,在这里数据编码和信号调制被作为读写器与电子标签信号传输的方式。 (3)计算机通信网络在射频系统中的主要作用是对阅读器上报的标签数据进行管理,针对应用需要,发送指令给阅读器以实现对标签的操作。在通信过程中,必须保证整体射频系统的通畅,正确和迅速地采集数据,确保数据读取内容的可靠性,以及有效地将数据传送到后端系统。传统的数据采集系统中数据采集与后端应用程序之间的数据分发是通过中间件架构解决,并发展出各种应用服务器软件。

rfid工作原理讲解

Rfid 基本原理讲解草稿 主要内容: 1 rfid简单系统框架 2 物理原理简单介绍 3 以PHILPS公司芯片为例讲解一个简单RFID 系统 a mf1 ic s50 卡 b mf r c 500 读写器。

1 rfid简单系统框架 理解: energy:感应电动势产生门槛电压,使ic s50 芯片工作。工作过程符合国际标准 (当今世界上非接触式IC智能射频卡(内建MCU,ASIC等)中的主流主要为PHILIPS公司的MIFARE技术,已经被制定为国际标准:ISO/IEC 14443 TYPE A标准) data:调制解调的双向过程。

2物理原理简单介绍 非接触性射频卡。 电磁感应。 法拉第电磁感应定律:感应电动势U =-k* d(磁通量)/d(t),k 比例系数。 数据的传输:(一是控制数据,即工作通讯协议数据二实际信息数据)工作频率,感应电动势正旋信号,调制解调,提供数据 调制: 工作信号1+数据信号2=合成信号―――》电磁信号发送 解调: ―――》数据信号2 卡的工作频率=发送信号的频率

3 以PHILPS 公司芯片为例讲解 一个简单RFID 系统 : mf1 ic s50 卡 如图所示为MIFARE 1 S50非接触式IC 智能射频卡的功能组成图。 的无线电调制频率接收,一方面送调制/解调模块,另一方面进行波形转换,将正弦波转换为方波,然后对其整流滤波,由电压调节模块对电压进行进一步的处理,包括稳压等,最 终输出供给卡片上的各电路。 POR 模块主要是对卡片上的各个电路进行POWER-ON-RESET (上电复位),使各电路同步启动工作。 (二)。 在数字电路部分模块中: 1. ATR 模块:Answer to Request(“请求之应答“) 2.AntiCollision 模块:防止(卡片)重叠功能 3. Select Application 模块:主要用于卡片的选择。 4. Authentication & Access Control 模块: 认证及存取控制模块 三遍认证: 如图所示为三遍认证的令牌原理框图。 (A )RB (E) (B )TOKEN AB (C) (D)TOKEN BA 5. Control & Arithmetic Unit 控制及算术运算单元: 6. RAM/ROM 单元: 非接触式卡片读写器 Mifare 1 卡片

射频识别技术原理分析及结构原理图

射频识别技术原理分析及结构原理图 系统组成和工作原理 最基本的RFID系统由三部分组成: 1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。 2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。 3. 天线:在标签和读取器间传递射频信号。 有些系统还通过阅读器的RS232或RS485接口与外部计算机(上位机主系统)连接,进行数据交换。 系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。 在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接口原理图如图1所示。

阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的 命令;控制与射频卡的通信过程(主-从原则);信号的编解码。对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。 射频识别系统的读写距离是一个很关键的参数。目前,长距离射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。影响射频卡读写距离的因素包括天线工作频率、阅读器的RF输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的Q值、 天线方向、阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的40%~80%。 射频卡的标准及分类 目前生产RFID产品的很多公司都采用自己的标准,国际上还没有统一的标准。目前, 可供射频卡使用的几种标准有ISO10536、ISO14443、ISO15693和ISO18OOO。应用最 多的是ISO14443和ISO15693,这两个标准都由物理特性、射频功率和信号接口、初始化和反碰撞以及传输协议四部分组成。 按照不同得方式,射频卡有以下几种分类: 1. 按供电方式分为有源卡和无源卡。有源是指卡内有电池提供电源,其作用距离较远,但寿命有限、体积较大、成本高,且不适合在恶劣环境下工作;无源卡内无电池,它利用波束供电技术将接收到的射频能量转化为直流电源为卡内电路供电,其作用距离相对有源卡短,但寿命长且对工作环境要求不高。 2. 按载波频率分为低频射频卡、中频射频卡和高频射频卡。低频射频卡主要有125kHz 和134.2kHz两种,中频射频卡频率主要为13.56MHz,高频射频卡主要为433MHz、915MHz、2.45GHz、5.8GHz等。低频系统主要用于短距离、低成本的应用中,如多数的门禁控制、校园卡、动物监管、货物跟踪等。中频系统用于门禁控制和需传送大量数据的应用系统;高频系统应用于需要较长的读写距离和高读写速度的场合,其天线波束方向较窄且价格较高,在火车监控、高速公路收费等系统中应用。 3. 按调制方式的不同可分为主动式和被动式。主动式射频卡用自身的射频能量主动地发送数据给读写器;被动式射频卡使用调制散射方式发射数据,它必须利用读写器的载波来调

无源RFID标签结构组成以及工作原理

无源RFID标签结构组成以及工作原理 2007-11-6网友评论0条点击进入论坛 无源RFID标签本身不带电池,依靠读卡器发送的电磁能量工作。由于它结构简单、经济实用,因而获得广泛的应用。无源RFID标签由RFID IC、谐振电容C和天线L组成,天线与电容组成谐振回路,调谐在读卡器的载波频率,以获得最佳性能。 生产厂商大多遵循国际电信联盟的规范,RFID使用的频率有6种,分别为135KHz、13.56MHz、43.3-92MHz、860-930MHz(即UHF)、2.45GHz以及5.8GHz。无源RFID主要使用前二种频率。 RFID标签结构 RFID标签天线有两种天线形式:(1)线绕电感天线;(2)在介质基板上压印或印刷刻腐的盘旋状天线。天线形式由载波频率、标签封装形式、性能和组装成本等因素决定。例如,频率小于400KHz时需要mH级电感量,这类天线只能用线绕电感制作;频率在4~30MHz 时,仅需几个礖,几圈线绕电感就可以,或使用介质基板上的刻腐天线。 选择天线后,下一步就是如何将硅IC贴接在天线上。IC贴接也有两种基本方法:(1)使用板上芯片(COB);(2)裸芯片直接贴接在天线上。前者常用于线绕天线;而后者用于刻腐天线。CIB是将谐振电容和RFID IC一起封装在同一个管壳中,天线则用烙铁或熔焊工艺连接在COB的2个外接端了上。由于大多数COB用于ISO卡,一种符合ISO标准厚度(0.76)规格的卡,因此COB的典型厚度约为0.4mm。两种常见的COB封装形式是IST采用的IOA2(MOA2)和美国HEI公司采用的WorldⅡ。 裸芯片直接贴接减少了中间步骤,广泛地用于低成本和大批量应用。直接贴接也有两种方法可供选择,(1)引线焊接;(2)倒装工艺。采用倒装工艺时,芯片焊盘上需制作专门的焊球,材料是金的,高度约25祄,然后将焊球倒装在天线的印制走线上。引线焊接工艺较简单,裸芯片直接用引线焊接在天线上,焊接区再用黑色环氧树脂密封。对小批量生产,这种工艺的成本较低;而对于大批量生产,最好采有倒装工艺。 基本工作原理 无线RFID标签的性能受标签大小,调制形式、电路Q值、器件功耗以及调制深度的极大影响。下面简要地介绍它的工作原理。

射频识别系统组成与工作原理

射频识别系统组成与工作原理1射频识别技术的简介 1.1射频识别系统的分类 2射频识别系统组成 2.1标签的组成 2.2阅读器的组成 3射频识别系统工作原理 3.1耦合方式 3.2通信流程 3.3标签到阅读器的数据传输方法 1射频识别技术的简介 射频识别技术(RadioFrequencyIdentification,RFID),射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。基本的RFID系统至少包含阅读器(Reader)和标签(Tag)。RFID标签由芯片与天线组成,每个标签具有唯一的电子编码。标签附着在物体上以标识目标对象。RFID阅读器的主要任务是控制射频模块向标签发射读取信号,并接受标签的应答,对标签的识别信息进行处理。 由于RFID技术巨大的应用前景,许多企业争先研发。目前,RFID己成为IT业界的热点。各大软硬件厂商,包括IBM、Motorola、Philips、TI、Oarclel、Sun、BEA、SAP在内的各家企业都对RFID技术及其应用表现出浓厚的兴趣,相继投入大量的研发经费,推出各自的软件和硬件产品机系统应用解决方案。在应用领域,以Wal-mart、UPS、Gielltte等为代表的大批企业己经开始准备采用RFID技术对实际系统进行改造,以提高企业的工作效率并为客户提供各种增值业务。 1.1射频识别系统的分类 RFID系统按照不同的原则有多种分类方法。依其采用的频率不同可分为低频系统、中频系统和高频系统三大类;根据标签内是否装有电池为标签通信提供能量,又可将其分为有源系统和无源系统两大类;从标签内保存的信息注入的方式可为分集成电路固化式、现场有线改写式和现场无线改写式三大类;根据读取电子标签数据的技术实现手段,可将其分为广播发射式、倍频式和反射调制式三大类。另外还可依据标签的材质、系统工作距离和阅读器的工作状态等方面对RFID系统进行分类。以下是各主要分类方法的简单描述: 低频系统,一般是指工作频率在100-500kHz之间的系统。典型的工作频率有:125KHz、134.2KHz和225KHz等。其基本特点是标签的成本较低、标签内保存的数据量较少、标签外形多样(卡状、环状、钮扣状、笔状)、阅读距离较短且速度较慢、阅读天线方向性不强等。其主要应用于门禁系统、家畜识别和资产管理等场合。 中频系统,一般是指工作频率在10-15MHz之间的系统。典型的工作频段有:13.56MHz。中频系统的基本特点是标签及阅读器成本较高、标签内保存的数据量较大、阅读距离较远且具有中等阅读速度、外形一般为卡状、阅读天线方向性不强。其主要应用于门禁系统和智能卡的场合。 高频系统,一般是指工作频率在850-950MHz和2.4-5.8GHz之间的系统。典型的工作频段有:915MHz、2.45GHz和5.08GHz。高频系统的基本特点是标签内数据量大、阅读距离远且具有高速阅读速度、适应物体高速运性能好,但标签及阅读器成本较高且阅读器与标签工作时多为视距

RFID原理与应用 许毅陈建军 知识点总结

《RFID原理与应用》-许毅陈建军-知识点总结 RFID原理和应用课程复习提纲第一章1、什么是RFID?无线射频识别作为一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。 常用的有低频(125k~134.2K)、高频(13.56Mhz)、超高频,微波等技术。 2、RFID技术特点1快速扫描2体积小型化、形状多样化3抗污染能力和耐久性4可重复使用5穿透性和无屏障阅读6数据的记忆容量大7安全性 3、RFID系统的组成RFID系统主要由阅读器、电子标签、RFID中间件和应用系统软件4部分构成。 4、阅读器的构成以及各部分的功能组成:射频接口、逻辑控制单元和天线天线:天线是一种能将接受到的电磁波转换为电流信号,或将电流信号转换为电磁波发射出去的装置。 射频接口模块:1产生高频发射能量,激活电子标签并为其提供能量2对发射信号进行调制,将数据传输给电子标签3接受并调制来自电子标签的射频信号逻辑控制模块:1与应用系统软件进行通信,并执行从应用系统软件发送来的指令2控制阅读器与电子标签的通信过程3信号的编码与解码4对阅读器和标签之间传输的数据进行加密和解密5执行防碰撞算法6对阅读器和标签的身份进行验证5、电子标签分类、组成及各组成部分功能根

电子标签分为利用物理效应进行工作的数据据工作原理的不同,载体和以电子电路为理论基础的数据载体6、RFID中间件的主要功能1阅读器协调控制2数据过滤与处理3数据路由与集成4进程管理7、RFID系统能量耦合方式和数据传输原理根据射频识别系统作用距离的远近情况,标签天线与读写器天线之间的耦合可以分为密耦合系统、遥耦合系统和远距离系统三类。 数据传输原理P108、RFID系统的工作原理阅读器通过天线向周围空间发送一定频率的射频信号;标签一旦进入阅读器天线的作用区域将产生感应电流,获得能量被激活;激活标签将自身信息编码后经天线发送出去;阅读器接收该信息,经过解码后必要时送至后台网络;后台网络中主机鉴定标签身份的合法性,只对合法标签进行相关处理,通过向前端发送指令信号控制阅读器对标签的读写操作;9、RFID系统的性能指标1射频标签的存储容量2工作方式3数据传输速度4读写距离5多个标签识别能力6射频标签与天线间的射频载波频率7RFID系统的连通性8数据载体9状态模式10能量供应10、RFID系统的频率划分和作用距离射频识别系统读写器发送的频率基本上划归4个范围:低频(30~300KHZ)、高频(3~30MHZ)、超高频(300MHZ)和微波(2.5GHZ以上)。 根据作用距离,射频识别系统的附加分类:密耦合(0~1cm)、遥耦合(0~1m)和远距离系统(1~10m)。 11、RFID技术现状和面临的主要问题问题:1.标签成本问题

rfid系统的工作原理_rfid系统的组成

rfid系统的工作原理_rfid系统的组成 RFID系统工作原理阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。 在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。 rfid系统的组成RFID系统在具体的应用过程中,根据不同的应用目的和应用环境,RFID 系统的组成会有所不同,但从RFID系统的工作原理来看,系统一般都由信号发射机、信号接收机、发射接收天线几部分组成。 1)信号发射机在RFID系统中,信号发射机为了不同的应用目的,会以不同的形式存在,典型的形式是标签(TAG)。标签相当于条码技术中的条码符号,用来存储需要识别传输的信息,另外,与条码不同的是,标签必须能够自动或在外力的作用下,把存储的信息主动发射出去。标签一般是带有线圈、天线、存储器与控制系统的低电集成电路。 2)信号接收机在RFID系统中,信号接收机一般叫做阅读器。根据支持的标签类型不同与完成的功能不同,阅读器的复杂程度是显著不同的。阅读器基本的功能就是提供与标签进行数据传输的途径。另外,阅读器还提供相当复杂的信号状态控制、奇偶错误校验与更正功能等。标签中除了存储需要传输的信息外,还必须含有一定的附加信息,如错误校验

射频识别技术的原理和意义

射频识别技术的原理和意义 课题名称RFID技术的原理和应用姓名青伟 学号22 班级2012级5 专业通信工程(3G) 完成日期2016年5月15号

目录 一、绪论 1.射频识别技术简介 二、射频识别系统 2.1 RFID系统的构成 2.2 RFID的技术特点 2.3 RFID技术发展现状 2.4 RFID标签的制作

三、RFID技术的应用 四、RFID技术应用的发展和市场应用趋势 4.1RFID系统标签的发展趋势 4.2 RFID系统低频化逐步向高频化发展 4.3 提高RFID系统的大数据处理能力 4.4 RFID技术的市场应用趋势 五、对RFID技术的展望和总结 一、绪论 1.关于射频识别技术的简介 射频识别技术,英文全称是Radio Frequency Identification,简称是RFID技术,是自动识别技术的一种。RFID技术是通过无线射频方式进行非接触双向数据通信,自动对目标物体加以识别然后获取相关信息的一种无线通信技术。从20世纪90年代开始,我国的RFID技术开始慢慢起步,它将射频识别技术、

微电子及IC卡技术相互结合,利用无线射频的方式对记录媒体进行读写,从而达到识别目标然后完成数据交换。 RFID技术可以完成对运动中的物体的快速识别和多个物体识别,识别的距离从几十厘米到几十米;因为RFID技术独特的读写方式,可以输入数千字节的自定义信息到电子标签,间接管理产品上附带的电子标签所包含的信息。RFID技术不需要接触,识别工作不需要人工的参与,因此保密程度非常高。RFID电子标签和人们一般生活中的使用的卡(例如普通磁卡或IC卡)不同,很容易隐藏,不容易被损坏,因此使用寿命极长,可以适应各种复杂的环境并能很好的发挥作用。 正因为上述的诸多特点,RFID技术在世界范围内得到了广泛的应用。主要是商品防伪领域、交通运输行业、工业、人脸及指纹识别、管理行业(如小区安全管理、后勤仓库管理、图书管理、医疗卫生管理等)、国防和军事等诸多方面。它涉及到电子通信技术、材料科学、微波技术、计算机软件、印刷技术、芯片制造等许多领域,综合性强,可广泛应用,与我们的生活有千丝万缕的关系。 二、射频识别系统 2.1 RFID系统的构成 射频识别系统一般都是由读写器、电子标签、天线和主机四部分组成。 (1)读写器:

RFID系统工作原理及其结构

RFID系统工作原理及其结构 一套完整的RFID系统, 是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成, 其工作原理是Reader 发射一特定频率的无线电波能量给Transponder, 用以驱动 Transponder电路将内部的数据送出,此时Reader 便依序接收解读数据, 送给应用程序做相应的处理。 图系统的基本组成 以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成, 感应偶合(Inductive Coupling) 及后向散射偶合(Backscatter Coupling)两种, 一般低频的RFID大都采用第一种式, 而较高频大多采用第二种方式。 图卡片阅读器及电子标签之间的通讯及能量感应方式 阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是RFID系统的信息载体,目前应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。 应答器通常包含: a.天线:用来接收由阅读器送过来的信号,并把所要求的数据送回给阅读器。 /DC电路:把由卡片阅读器送过来的射频讯号转换成DC电源,并经大电容储存能量,再经稳压电路以提供稳定的电源。 c.解调电路:把载波去除以取出真正的调制信号。 d.逻辑控制电路:译码阅读器所送过来的信号, 并依其要求回送数据给阅读器。 e.内存:做为系统运作及存放识别数据的位置。 f.调制电路: 逻辑控制电路所送出的数据经调制电路后加载到天线送给阅读器。 图3.标签结构 阅读器通常包含: a.天线:用来发送无线信号给Tag,并把由Tag响应回来的数据接收回来. b.系统频率产生器:产生系统的工作频率. c.相位锁位回路(PLL):产生射频所需的载波信号 d.调制电路:把要送给Tag的信号加载到载波并送给射频电路送出. e.微处理器:产生要送给Tag信号给调制电路,同时译码Tag回送的信号, 并把所得的数据回传给应用程序,若是加密的系统还必需做加解密操作. f.存储器:存储用户程序和数据 g.解调电路: 解调tag送过来的微弱信号,再送给微处理器处理. h.外设接口:用来和计算机联机 图4.阅读器系统方块图

射频识别技术的工作原理

射频识别技术的工作原理 社会自进入互联网时代后,发展迅速,尤其是科技的发展,人类文明已经进入到智能化时代;智能化时代不仅是指机器人的诞生,更多的是表现在工业上的智能化管理、军事上的智能化训练等。今天柯瑞德重点要讲的是仓库的智能化发展。 仓储不单是指物流行业的货物存储,一般的生产加工企业都会有自己的仓储,甚至是商场、有一定规模的零售商等都会需要用到仓储,只是规模的大小问题。仓储不是简单的一个房间,将东西堆放在房间就可以,仓储是一系列流程,因为仓储的本质是希望通过仓储是货物整理更方便,分类更清楚,货物的完整性更高,并且能够记录货物的具体位置、数量以及去向等,方便管理者全面掌握货物的各个方面的资料。科技的进步带来的不单是人类的文明的进化,还有仓储的高效能化。 RFID手持式读写器 现代社会是讲求效率的社会,作为仓储这一关键环节,尤其是需要高科技化,中国在这一方面发展的还不是很全面,以往仓储的低效率严重的影响到了企业的发展,制约了企业的发展。随着我们的不断学习,逐步将仓库智能化引进国内的仓储行业。越来越多的智能化设备被运用到了仓储业中,智能化仓库的使用大大的提高了仓储的存储效率,加强了企业的存货管理,随着货架的不断使用,传统的手记式登记货物已经很难满足发展的需要,射频识别技术应运而生。 什么是射频识别技术呢? 射频识别即RFID(Radio Frequency IDentification)技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频 (125k~134.2K)、高频(13.56Mhz)、超高频,无源等技术。RFID读写器也分移 动式的和固定式的,目前RFID技术应用很广,如:图书馆,门禁系统,食品安 全溯源等。

相关文档
最新文档