钛及钛合金机械加工要求综述

钛及钛合金机械加工要求综述
钛及钛合金机械加工要求综述

钛及钛合金机械加工要求

一、钛及钛合金切削特点:

1、变形系数小:变形系数小于或接近于1,切削在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。

2、切屑温度高:在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。

3、单位面积上的切削力大:容易造成崩刃,加大刀具磨损并影响零件的精度。

4、冷硬现象严重:降低零件的疲劳强度,加剧刀具磨损。

5、刀具磨损:在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。

二、刀具选择

1、切削加工钛及钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好,抗弯强度高,导热性能好,与钛合金金亲和性差的刀具材料。

2、常选用YG类硬质合金刀具比较适合,常用的硬质合金刀具材料为:YG8、YG

3、YG6X、YG6A、813、643、YS2T和YD15等。

3、也可以选用金刚石和立方氮化硼作刀具。

三、加工设备要求

1、设署专用加工场地,确定专用加工钛及钛合金的机床。

2、工作区域辅设橡胶板或木地板,以免碰伤、擦伤钛材表面。

3、与钛及钛合金接触的所有工具、夹具、机床或其它装置必须洁净。

4、经清洗过的钛合金零件,要防止油脂或指印污染,否则以后可能造成盐(氯化钠的应力腐蚀。

5、禁止使用铅、铜、锡、镉及其合金,锌基合金制作的工具,夹具与钛,钛合金接触。

四、切削加工的要求

1、由于钛及钛合金的弹性模量小,工件在加工中的夹紧变形和受力变形大,会降低工件的加工精度,工件安装时夹紧力不宜过大,必要时可增加辅助支承。

2、切削液选用不含氯化物的切削液。

3、切削时,应大量浇注切削液,使钛及钛合金加工时充分得到冷却。

4、加工时,应防止切屑在机床上堆积。

5、刀具用钝后立即进行更换,或降低切削速度,加大进给量以加大切屑厚度。

6、加工时如一旦着火,应采用滑石粉,石灰石粉末,干砂等灭火器材进行扑灭,严禁使用四氯化碳,二氧化碳灭火器,也不能浇水。

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

常用机械加工材料金属类

常用机械加工材料(金属类) 1、45号钢 最常用中碳调质钢,号钢的一种,数字“45”代表的是该钢材的平均含碳量为0.45%,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A 最常用的碳素结构钢,又称为A3钢。具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。“Q”是“屈”的拼音首字母,代表屈服极限的意思,“235”代表该钢材的屈服值,在235MPa左右,后面的字母代表质量等级,质量等级共分为A、B、C、D四个等级,Q235A钢的质量等级为A级。 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr 使用最广泛的钢种之一,属合金结构钢。经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如

钛合金热处理

第十三章有色金属及合金 内容提要: 有色金属的产量和用量不如黑色金属多,但由于其具有许多优良的特性,如特殊的电、磁、热性能,耐蚀性能及高的比强度(强度与密度之比)等,已成为现代工业中不可缺少的金属材料。 1.铝及铝合金; 2.钛及钛合金; 3.铜及铜合金; 4.轴承合金。 基本要求: 掌握和了解各种有色金属的牌号、成分、性能和用途。 13.1铝及铝合金 13.1.1铅及铝合金的性能特点及分类编号 纯铝:纯铝具有银白色金属光泽,密度小(2.72 ),熔点低(660.4℃), 导电、导热性能优良。 耐大气腐蚀,易于加工成形。 具有面心立方晶格,无同素异构转变,无磁性。 1 铝合金及其特点 铝合金常加入的元素主要有Cu、Mn、Si、Mg、Zn等,此外还有Cr、Ni、Ti、Zr 等辅加元素。 ①比强度高(>>高强钢)。可用于轻结构件,尤其航空。 ②突出理化性能。导电、抗大气腐蚀。 ③良好加工性。高塑性、易冷成形;某些合金铸造性能好,宜作压铸件。 2 铝合金分类及分类编号 13.1.2铝合金的强化 1 形变强化 2沉淀强化 3 固溶强化和时效强化: 13.1.3变形铝合金 变形铝及铝合金牌号表示方法:根据国标规定,变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号。GB 3190-82中的旧牌号仍可继续使用,表示方法为: ?防锈铝合金:LF+序号 ?硬铝合金: LY +序号 ?超硬铝合金:LC +序号 ?锻铝合金: LD +序号 常用变形铝合金 1 防锈铝合金:主要是Al-Mn和Al-Mg系合金。 Mn和Mg主要作用是提高抗蚀能力和塑性,并起固溶强化作用。 防锈铝合金锻造退火后组织为单相固溶体,抗蚀性、焊接性能好,易于变形加工,但切削性能差。不能进行热处理强化,常利用加工硬化提高其强度。常用的Al-Mn系合金有 LF21 ( 3A21 ),其抗蚀性和强度高于纯铝,用于制造油罐、油箱、管道、铆钉等需要弯曲、冲压加工的零件。常用的Al-Mg系合金有 LF5( 5A05 ),其密度比纯铝小,强度比Al-Mn合金高,在航空工业中得到广泛应用,如制造管道、容器、铆钉及承受中等载荷的零件。

钛及钛合金的分类

钛及钛合金的分类 市场供货的钛产品主要有工业纯钛和钛合金两大类: 一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。由于存在着杂质,所以工业纯钛中也存在着少量的B相。基本上是沿着晶界分布。 工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。 表1 钛及钛合金牌号和化学成分

Ti-6Al-4V(TC4)及钛合金的性能

. T i -6A l -4V (T C 4) Ti-6Al-4V(TC4)钛合金是双相合金,具有良好的综合性能,组织稳定性好,有良 好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效 使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可 在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金[35]。 表3-2 钛合金Ti-6Al-4V 成分 钛合金 Ti6Al-4V 合金 碳(最大) 0.10% 铝 5.50至6.75% 氮 0.05% 氧气(最大) 0.020% 其他,合计(最大) 0.40% *其他,每个(最大)= 0.1% 钛 平衡 钒 3.50至4.50% 铁(最大) 0.40% 氢(最大) 0.015% 比重 0.160 弹性模量(E )的 15.2 x 10 3 ksi? 贝塔Transus 1800 to 1850 °F? 液相线温度 2976 to 3046 °F 固相线温度 2900 to 2940 ° F 电阻率 -418 °F 902.5 ohm-cir-mil/ft? 73.4 °F 1053 ohm-cir-mil/ft? 986 °F 1143 ohm-cir-mil/ft? 典型的室温强度计算退火钛6Al-4V 的: 极限承载强度1380年至2070年兆帕(200-300 ksi ) 压缩屈服强度825-895兆帕(120-130 ksi ) 极限剪切强度480-690兆帕(70-100 ksi ) Ti-6Al-4V 的线膨胀系数只有8.8×10-6K-1. 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,抗拉强度σb=539MPa ,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 钛的应用 应用领域 材料的使用特性 应用部位 元素 Al V Fe O Si C N H 其他 Ti 成分 5.5- 6.8 3.5- 4.5 0.3 0.2 0.15 0.1 0.05 0.01 0.5 余量

(完整版)钛合金铣削用量选择

TA15、TB6两种钛合金材料具有重量轻、强度高、耐热、耐腐蚀、疲劳性能好等一系列 优良的力学、物理性能,成为航空航天、核能、船舶等领域理想的结构材料之一。但由于该材料价格昂贵,难加工,尤其是铣削加工制造周期长、成本高,制约了它的应用。而新一代航空产品需要具备更优异的性能新材料、新结构、新工艺被广泛应用。同时,为了竞争的需 要,研制周期短和制造成本低是取胜的关键,因此,开展对TA15、TB6两种钛合金材料切削加工的研究是必要的,特别是铣削高效加工的探索尤其显得紧迫和重要。 TA15、TB6钛合金材料主要特征 TA15α钛合金是α相固熔体组成的单相合金。该合金室温强度在930MPa以上,耐热性高于纯钛,组织稳定,抗氧化能力强,500~600 ℃下仍保持其强度,抗蠕变能力强,但不能进行热处理强化。 TB6β钛合金是β相固熔体组成的单相合金。该合金室温强度在1105MPa 以上,但热稳定性较差,不宜在高温下使用。 TA15、TB6钛合金的切削加工工艺特性 摩擦系数大,导热系数低,刀尖切削温度高。钛合金热导率仅为钢的1/4 、铝的1/14 、铜的1/25 , 因而散热慢,不利于热平衡。切削时产生的切削热都集中在刀尖上,使刀尖温度很高,易使刀尖很快熔化或粘结磨损而变钝。 弹性模量小。钛合金的弹性模量只有30CrMnSi的56% ,这说明零件的刚性差,切削 时易产生弹性变形和振动,不仅影响零件的尺寸精度和表面质量,而且还影响刀具的使用寿命;同时造成已加工面的弹性恢复较大,刀具后面摩擦增加导致刀具过快磨损。 化学活性大。在300℃以上时有强烈的吸氢、氧、氮的特性,造成加工表面易产生脆 硬的化合物,切屑形成短碎片状,使刀具极易磨损。 钛合金化学亲和力较强,极易与其他金属亲和结合。在加工中切屑与刀具的粘结现象严重,使刀具的粘结和扩散磨损加大。 TA15、TB6钛合金零件切削用量和刀具参数的选择 主要加工方法 钛合金零件的加工余量比较大,有的部位很薄(2~3mm) ,主要配合表面的尺寸精度、 形位公差又较严,因此每项结构件都必须按粗加工→半精加工→精加工的顺序分阶段安排工序。主要表面分阶段反复加工,减少表面残余应力,防止变形,最后达到设计图的要求。其主要的加工方法有铣削、车削、磨削、钻削、铰削、攻丝等。

常用的传统机械加工方法(可编辑修改word版)

教案 课题:2.1 零件常用的传统机械加工方法 教学目的: 1.了解常用机械加工法的特点 2.掌握常用机械加工法的运用范围和能达到的精度 3.了解常用机械加工的机床 教学重点:掌握常用机械加工法的运用范围和能达到的精度 教学难点:掌握常用机械加工法的运用范围和能达到的精度 教学方法:讲授 教具:多媒体 课时:2 学时 2.1 零件常用的传统机械加工方法 机械加工方法广泛运用于模具制造。模具的机械加工大致有以下几种情况: (1)用车、铣、刨、钻、磨等通用机床加工模具零件,然后进行必要的钳工 修配,装配成各种模具。 (2)精度要求高的模具零件,只用普通机床加工难以保证高的加工精度,因 而需要采用精密机床进行加工。 (3)为了使模具零件特别是形状复杂的凸模、凹模型孔和型腔的加工更趋自动化,减少钳工修配的工作量,需采用数控机床(如三坐标数控铣床、加工中心、数控磨床等设备)加工模具零件。 2.1.1车削加工 1.车削加工的特点及应用 车削加工是在车床上利用车刀对工件的旋转表面进行切削加工的方法。它主要用来加工各种轴类、套筒类及盘类零件上的旋转表面和螺旋面,其中包括:内外圆柱面、内外圆锥面、内外螺纹、成型回转面、端面、沟槽以及滚花等。此外,还可以钻孔、扩孔、铰孔、攻螺纹等。车削加工精度一般为IT8~IT7,表面粗糙度为Ra6.3~1.6μm;精车时,加工精度可达IT6~IT5,粗糙度可达

Ra0.4~0.1μm。 车削加工的特点是: 加工范围广,适应性强,不但可以加工钢、铸铁及其合金, 还可以加工铜、铝等有色金属和某些非金属材料,不但可以加工单一轴线的零件,也可以加工曲轴、偏心轮或盘形凸轮等多轴线的零件;生产率高;刀具简单, 其制造、刃磨和安装都比较方便。 由于上述特点,车削加工无论在单件、小批,还是大批大量生产以及在机械 的维护修理方面,都占有重要的地位。 2.车床 车床(Lathe)的种类很多,按结构和用途可分为卧式车床、立式车床、仿形及多刀车床、自动和半自动车床、仪表车床和数控车床等。其中卧式车床应用最广,是其 他各类车床的基础。常用的卧式车床有C6132A,C6136,C6140 等几种。 2.1.2铣削加工 1.铣削加工的范围及其特点 1)铣削加工的范围 铣削主要用来对各种平面、各类沟槽等进行粗加工和半精加工,用成型铣 刀也可以加工出固定的曲面。其加工精度一般可达IT9~IT7,表面粗糙度为 Ra6.3~1.6μm。 概括而言,可以铣削平面、台阶面、成型曲面、螺旋面、键槽、T 形槽、燕 尾槽、螺纹、齿形等。 2)铣削加工的特点 铣削加工的特点具体如下: (1)生产率较高 (2)铣削过程不平稳 (3)刀齿散热较好 因此,铣削时,若采用切削液对刀具进行冷却,则必须连续浇注,以免产生较 大的热应力。 2.铣床 1)卧式铣床 卧式铣床的主轴是水平的, 2)立式铣床 立式铣床的主轴与工作台台面垂直。 2.1.3刨削加工 1.刨削加工的范围及其特点 刨削是使用刨刀在刨床上进行切削加工的方法,主要用来加工各种平面、沟 槽和齿条、直齿轮、花键等母线是直线的成型面。刨削比铣削平稳,但加工精

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

钛及钛合金牌号和化学成分汇总

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

Ti-6Al-4V(TC4)及钛合金的性能

Ti-6Al-4V(TC4) Ti-6Al-4V(TC4)钛合金是双相合金,具有良好的综合性能,组织稳定性好,有良 好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效 使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可 在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金[35]。 表3-2 钛合金Ti-6Al-4V 成分 钛合金Ti6Al-4V 合金 碳(最大) 0.10% 铝 5.50至6.75% 氮 0.05% 氧气(最大) 0.020% 其他,合计(最大) 0.40% *其他,每个(最大)= 0.1% 钛 平衡 钒 3.50至4.50% 铁(最大) 0.40% 氢(最大) 0.015% 比重 0.160 弹性模量(E )的 15.2 x 10 3 ksi? 贝塔Transus 1800 to 1850 °F? 液相线温度 2976 to 3046 °F 固相线温度 2900 to 2940 ° F 电阻率 -418 °F 902.5 ohm-cir-mil/ft? 73.4 °F 1053 ohm-cir-mil/ft? 986 °F 1143 ohm-cir-mil/ft? 典型的室温强度计算退火钛6Al-4V 的: 极限承载强度1380年至2070年兆帕(200-300 ksi ) 压缩屈服强度825-895兆帕(120-130 ksi ) 极限剪切强度480-690兆帕(70-100 ksi ) Ti-6Al-4V 的线膨胀系数只有8.8×10-6K-1. 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,抗拉强度σb=539MPa ,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa ,硬度HB195。 钛的应用 元素 Al V Fe O Si C N H 其他 Ti 成分 5.5- 6.8 3.5- 4.5 0.3 0.2 0.15 0.1 0.05 0.01 0.5 余量

钛合金的铣削加工技术

钛合金的铣削加工技术 钛及钛合金因密度小、比强度高、耐腐蚀、耐高温、无磁、焊接性能好等优异综合性能,在航空航天等领域得到越来越广泛应用。但是,钛合金的一些物理力学性能给切削加工带来了许多困难。切削时钛合金变形系数小、刀尖应力大、切削温度高、化学活性高、粘结磨损及扩散磨损较突出、弹性恢复大、化学亲合性高等特点,因此在切削加工过程中容易产生粘刀、剥落、咬合等现象,刀具温度迅速升高,导致刀具磨损,甚至完全破坏。 正因为钛合金具有比强度高、耐腐蚀性好、耐高温等优点,从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波音777为7%,运输机C-74为10.3%,战斗机F-4为8%。但是由于钛合金价格高,耐磨性差等原因,限制了其使用领域。 近几十年以来,国内外针对航天航空应用所研究的钛合金等均取得了很大进步,许多合金也得到广泛应用。本文针对航天航空产品中钛合金铣削加工技术进行论述,供同行们参考。 1. 钛合金简介 钛是同素异构体,熔点为1 720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1)α钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2)β钛合金它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1 372~1 666MPa;但热稳定性较差,不宜在高温下使用。 (3)α +β钛合金它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α +β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α +β钛合金代号为2. 钛合金铣削加工时切屑的形成 由于钛合金工件材料有不同的种类,各种材料的切削加工性不同,切削条件不同,切削变形的程度也就不同,因而所产生的切屑形态也就多种多样。归纳起来,可分为以下四种类型:带状切屑、节状切屑(锯齿状切屑)、粒状切屑及崩碎切屑,如图1所示。锯齿状切屑

钛合金的特性

钛合金的特性 钛合金具有电、磁、声、光、热等方面的特殊性质,或在其他作用下表面处理特殊功能的材料。 1、密度小,比强度高 金属钛的密度为 4.51g/cm3,高于铝和镁,而低于钢、铜、镍,但比强度高于铝合金和高强合金钢。 2、弹性模量低 钛的弹性模量在常温时为106.4GPa,为钢的57%,而且与人体骨骼的弹性模量接近。3、导热系数小 金属钛的导热系数小,是低碳钢的1/5,铜的1/25。 4、抗拉强度与其屈服强度接近 钛的这一性能能说明了其屈强比高,表示了金属钛材料在成型时塑性变形差。由于钛的屈服极限与弹性模量的比值大,使钛成型时的回弹能力大。、 5、无磁性、无毒性 钛是无磁性金属,在很大的磁场中也不会被磁化,无毒且与人体组织及血液有好的相容性,所以被医疗界所采用。 6、抗阻尼性能强 金属钛收到机械振动、电振动后,与钢、铜金属相比,其自身振动衰减时间最长。利用钛的这一性能可做音叉、医学上的超声粉碎机振动元件和高级音响扬声器的振动薄膜等。 7、耐热性好 新型钛合金可在600℃或更高的温度下长期使用。 8、耐低温性能好 钛合金TA7,TC4和半TA18等为代表的低温钛合金,其强度随温度的降低而提高,但塑性变化却不大。在-196℃~253℃低温下保持较好的延展性及韧性,避免了金属冷脆性,是低温容器和存储等设备的理想材料。 9、吸气性能 钛是一种化学性质非常活泼的金属,在高温下可与许多元素和化合物发生反应。钛的吸气性主要指高温下与碳、氢、氮、氧发生反应。 10、耐腐蚀性能 钛是一种非常活泼的金属,其平衡电位很低,在介子中的热力学腐蚀倾向大。但实际上钛在许多介子中很稳定,如钛在氧化性、中性和弱还原性等介子中式耐腐蚀的。这是因为钛和氧有很大的亲和力,在空气中或含氧介子中,钛表面生成一层致密的、附着力强、惰性大的氧化膜,保护了钛基体不被腐蚀。即使由于机械膜层也会很快自愈或重新再生。“卡乐钛制品”经营产品有: 1、建筑装饰用纯色抛光钛板、双色拼接钛板、炫彩钛板、各种花纹彩色钛及钛合金装饰板;蚀刻钛板,精雕各种花纹图像,支持定制。 2、金属钛装饰品有彩色钛壁画与壁饰、各色彩色钛制器皿与餐具、金属钛首饰; 3、定制高端金属钛制名片、标牌、挂牌等; 4、钛及钛合金制品表面抛光、着色、硬化处理代加工服务。

钛合金的切削加工及刀具设计

钛合金的切削加工及刀具设计 核心提示:分析了钛合金的相对可切削性,阐述了钛合金切削加工条件;以钛合金车加工和孔加工为例介绍了钛合金加工刀具的设计. 1.引言 钛及钛合金不仅是制造飞机、导弹、火箭等航天器的重要结构材料,而且在机械工程、海洋工程、生物工程及化学工程中的应用也日益广泛。如在阀门制造中,将不锈钢阀门与钛制阀门同时在酸性介质中使用,钛制阀门具有更好的使用寿命。 在钛中加入合金元素形成钛合金,其强度显着提高,σb可从350~700MPa提高到1200 MPa,因此在工业上应用钛合金的意义更具重要性。通常按使用状态下的组织将钛合金分为α钛合金(以TA表示)、β钛合金和(α+β)钛合金(以TC表示)三类,三种钛合金中最常用的是α钛合金和(α+β)钛合金。由于钛合金可切削性极差,因此给实际应用带来很多困难。笔者从钛合金的相对可切削性研究出发,根据多年生产经验提出较实用的刀具,供读者应用时参考。 2.钛合金可切削性的研究 若以45号钢的可切削性为100%,则钛合金的可切削性约为20~40%,其可切削性比不锈钢差,但比高温合金稍好。在钛合金中又按β型钛合金、α+β型钛合金、α型钛合金为序其可切削性逐步改善,而纯钛的可切削性最好。即在一般情况下,材料硬度愈高,加入合金元素越多,材料的可切削性越差。加工钛合金时,若材料硬度小于HB 300将会出现强烈粘刀现象,而硬度大于HB370时加工又极其困难,因此最好使钛合金材料的硬度在HB300~370之间。 2.1 钛合金切削机理的研究 (1)气体杂质的影响 各种气体杂质对于钛合金的可切削性有很大影响,其中最显着的是氧、氢和氮;钛合金的可切削性随着气体在钛合金中的含量增加而恶化。

机械加工方法(各种加工方法)

机械加工方法 一:车削 车削中工件旋转,形成主切削运动。刀具沿平行旋转轴线运动时,就形成内、外园柱面。刀具沿与轴线相交的斜线运动,就形成锥面。仿形车床或数控车床上,可以控制刀具沿着一条曲线进给,则形成一特定的旋转曲面。采用成型车刀,横向进给时,也可加工出旋转曲面来。车削还可以加工螺纹面、端平面及偏心轴等。车削加工精度一般为IT8—IT7,表面粗糙度为6.3—1.6μm。精车时,可达IT6—IT5,粗糙度可达0.4—0.1μm。车削的生产率较高,切削过程比较平稳,刀具较简单。 二:铣削 主切削运动是刀具的旋转。卧铣时,平面的形成是由铣刀的外园面上的刃形成的。立铣时,平面是由铣刀的端面刃形成的。提高铣刀的转速可以获得较高的切削速度,因此生产率较高。但由于铣刀刀齿的切入、切出,形成冲击,切削过程容易产生振动,因而限制了表面质量的提高。这种冲击,也加剧了刀具的磨损和破损,往往导致硬质合金刀片的碎裂。在切离工件的一般时间内,可以得到一定冷却,因此散热条件较好。按照铣削时主运动速度方向与工件进给方向的相同或相反,又分为顺铣和逆铣。 顺铣 铣削力的水平分力与工件的进给方向相同,工件台进给丝杠与固定螺母之间一般有间隙存在,因此切削力容易引起工件和工作台一起向前窜动,使进给量突然增大,引起打刀。在铣削铸件或锻件等表面有硬度的工件时,顺铣刀齿首先接触工件硬皮,加剧了铣刀的磨损。 逆铣 可以避免顺铣时发生的窜动现象。逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化的已加工表面上挤压滑行的阶段,加速了刀具的磨损。同时,逆铣时,铣削力将工件上抬,易引起振动,这是逆铣的不利之处。 铣削的加工精度一般可达IT8—IT7,表面粗糙度为6.3—1.6μm。 普通铣削一般只能加工平面,用成形铣刀也可以加工出固定的曲面。数控铣床可以用软件通过数控系统控制几个轴按一定关系联动,铣出复杂曲面来,这时一般采用球头铣刀。数控铣床对加工叶轮机械的叶片、模具的模芯和型腔等形状复杂的工件,具有特别重要的意义。 三:刨削 刨削时,刀具的往复直线运动为切削主运动。因此,刨削速度不可能太高,生产率较低。刨削比铣削平稳,其加工精度一般可达IT8—IT7,表面粗糙度为Ra6.3—1.6μm,精刨平面度可达 0.02/1000,表面粗糙度为0.8—0.4μm。 四:磨削 磨削以砂轮或其它磨具对工件进行加工,其主运动是砂轮的旋转。砂轮的磨削过程实际上是磨粒

钛合金切削加工知识

首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-上海500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配 厂徐州-扩大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过%,但其强度低、塑性高。%工业纯钛的性能为:密度ρ=cm3,熔点为1800℃,导热系数λ=,抗拉强度 σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。 (2)热强度高:对于α钛合金,在350℃时TA6的巩达422MPa、TA7的σb达491MPa,在500℃时TA8的σb达687MPa;对于α+β钛合金,在400℃时TC4的σb达618MPa、TC10的σb达834 MPa,在450℃时TC6和TC7的σb均达589MPa、TC8的σb达706MPa,在500℃时TC9的σb达785MPa。这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。

纯钛及钛合金热加工性能全参数

纯钛热加工性能参数 1. 来料牌号及化学成分 注:合金牌号对应标准GB/T3620.1-2007 2.纯钛的物理性能 熔点1668±4℃ 密度ρ=4.5g/cm3 弹性模量E=1.17×105MPa、G=0.44×105Mpa(约为钢的54%)导热系数λ=19.3Wm-1K-1 热膨胀系数10.2×10-6/℃(室温-700℃) 泊松比υ=0.33

3.常温下力学性能 4. 加热规范 板坯在热轧前需要在加热炉中均匀加热, 为防止氧扩散,应限制加热温度和时间,因此,从成材率、表面质量考虑,该扩散层的厚度越薄越好,为此,热轧带卷加热温度的设定应在保证稳定轧制并可卷制成带的情况下,尽可能低。通常工业纯钛在加热炉内最好加热至800~920℃。 纯钛料轧制时的加热制度和终轧温度 5. 轧制过程控制 热轧分为粗轧和精轧。粗轧通常使用可逆式轧机,从厚板坯(80~300mm )的轧制到供精轧机轧制的板材厚度(25~40mm ),需经5~7个道次的轧制。纯钛的粗轧终轧温度为790℃。精轧工序在6~7台串列式轧机进行,可将25~40mm 的板坯连续加工成钛带材(厚3~6mm ),轧制速度可达

300~600m/min。 轧制过程温度控制参数为:钛板坯在加热炉中加热到800~920℃,在910℃出炉;粗轧终轧温度为790℃,连续热轧时钛坯温度控制在650~800℃范围,终轧温度为670℃;在470~490℃温度范围进行卷取。轧制后立即将钛带在输出辊道上用水冷或空冷的方法,以大于5~10℃/s的速度冷却,在低于500℃时卷取,以保证带卷材质均匀。 其它工艺要点有:严格控制初轧及连轧时各机架压下量和各机架上带材的温度;避免辊道对带材表面划伤;每轧3~4块清理一下辊道上的金属沾污;热轧带卷初始阶段,需要建立一个稳定的、大于4MPa/mm2的后张力,防止因带材卷乱或松卷引起划伤。 轧制温度对纯钛的单位压力的影响

钛合金加工性能

一,钛合金大类综述 钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。 钛合金是航空航天工业中使用的一种新的重要结构材料,比重、强度和使用温度介于铝和钢之间,但比强度高并具有优异的抗海水腐蚀性能和超低温性能。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。 室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 钛合金性能特点: ①使用温度高,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。②钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。③钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。 二,典型牌号分析 三,难加工原因 钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。 ①,变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑 在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。 ②,切削温度高:由于钛合金的导热系数很小,切屑与前刀面的接触长度极短,切削 时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。 在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。 ③,单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触 长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。 ④,冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的 氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。 ⑤,刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外 皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。 四,拟采取的措施 1,刀具材料 切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。2,刀具几何参数

钛合金在多领域的应用与发展完整版

钛合金在多领域的应用 与发展 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

上海大学 本科生课程论文 论文题目:钛合金在多领域的应用与发展 课程名称: 课程号: 学生姓名: 学生学号: 所在学院:材料科学与工程学院 日期 摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。 关键词:钛合金;航空;氢;发动机;生物医用材料 钛合金在航空方面的应用与发展 钛合金具有比强度高、耐腐蚀性好、耐高温等优点。从20世纪50年代开始, 钛合金在航空航天领域中得到了迅速的发展。钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。在飞机用材中钛的比例,客机波 音777为7%,运输机C-17为%,战斗机F-4为8%,F-15为%,F-22为39%。 高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐 步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃ ,经过IMI679和 IMI829提高到了以IMI834合金为代表的600℃。目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。表 2为600℃主要高温钛合金的成分及性能特点。 Ti-6242S钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。合金的最高使用温度为540℃,室温的σb=930 MPa。特点是具有强度、蠕变强度、韧性和热稳定性 的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构 板材零件,飞机机体热端零件。 BT36合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。合金中加入了5%W和约%Y。加入W对提高合金的热强性有明显作用。加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。 Ti60 合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。Ti60合金的特点之一是合金中加入

相关文档
最新文档