谈谈国内大型垂直轴风电机组的前景

谈谈国内大型垂直轴风电机组的前景
谈谈国内大型垂直轴风电机组的前景

谈谈国内大型垂直轴风电机组的前景

2010-04-30 12:09 —风语人生

1、行业现状

目前国内参与研究或制造大型垂直轴兆瓦级机组的主要厂家有我们已经熟知的和近期出现的一些,主要有:

厂商或研究机构风力机型式备注/安装地

国务院三峡办Φ型1500kW,H型50kW 内蒙化德、河北张家口(?)

上海举风Φ型1200kW 内蒙察右中旗辉腾希勒

深圳风发双H型300kW,1500kW 青海西宁

云南欧亚 H型300kW 云南昆明

温州华力风能 H型100kW 浙江温州

香港合和风电 H型300kW,6MW 广东阳西

福禄公司Φ型300kW 河北曹妃

常州温道斯 S型涡轮式兆瓦

济南齐鲁电机兆瓦级研究泉城学者计划,已有小型试验机

广州市花都区产学研结合计划兆瓦级研究科研计划申报中

中山亿雄磁悬浮兆瓦级研究已有小型试验机

上海模斯翼 300kW ,兆瓦级被国能风电收购

吉林祥风 1.5MW 只有网上图片

其他另有很多中小型的厂家称能做大型,实际上属于炒作,但也有值得学习的地方。

2007年~2010年间,这些企业的产品均处于试验阶段,几乎所有产品都未成熟,对这些公司的评价和观察:

2、三峡办

(1)三峡办是国内最早投入大型机研制的企业,2007年,原三峡办主任郭树言携中国风能协会贺德馨等赴美国,加拿大考察了4.2MW机型(高126m)和加州的flowwind风电场,并获得福禄公司鲍亦和先生的垂直轴Φ型技术,回到国内组建公司。

(2)2008~2010年间,三峡办在内蒙古化德安装了Φ型50kW2台,Φ型1500kW1台,H型50kW1台,双H型5kW一台,其中1台50kW飞车,1台1500kW在2008年10月飞车。双H型5kW不知道是不是该公司的产品。

(3)三峡办的失败在于,财大气初,国企模式,国内很多高校、企业、院所都参与了研制,但总工程师整合能力较差,技术并没有吃透。Φ型机组的效率、振动、制动和控制四大难关没有攻克。

(4)2009年后,未见该公司新闻,实际情况有待现场调研。2010年初,在内蒙又立起一台更大规模的2MW机型,运行情况未知。从经验和分析看,该机型失败的可能性大。

3、上海举风

(1)上海举风实际和三峡办的技术属同一家技术,来自鲍亦和的美国福禄公司。公司实际控制人是台湾一女企业家,总工程师理查兹以前是鲍亦和的财务和上市顾问。该公司结构紧密,人才实力雄厚,但成本较高。

(2)2008年末,三峡办1.5MW机组倒塌后,举风机型没有再装。2009年春,叶片在地面安装静态时,被吹坏,后更换。2009年下半年安装成功,开始了低速运行,但一直没放开。

(3)2009年该公司预计出现资金问题,办公地从豪华的生命人寿大厦迁出。2010年,从网上图片和搜集到的信息看,1.5MW机型仍然存在大量问题。如果和三峡办一样,问题不解决,飞车指日可待。

4、福禄公司

(1)2009年上半年,和鲍亦和先生交流,得知其进入中国,借中美能源合作之机,向河北曹妃甸开发区推出了近海机型,将原加州风电场的300kW机型引入。

(2)根据其商业计划,电价需0.98元/度才可收回投资。同时,机型安装在曹妃甸近海,主要是为工业供电,预计目前只是政治推动和政府盲目热情,不知道融资问题是否解决。

(3)三峡办、举风和福禄三家公司技术相同,但福禄拥有最深厚的技术积淀,从小机型做起,预计成功的可能性最大。

(4)从历史经验、研制实践和现场看,垂直轴Φ型具有致命的弱点:

a、效率问题。Φ型采用拉索,庞大的预紧力压在传动系统上,损失非常大。同时,无法自启动。

b、强度问题。复合材料叶片和金属件的连接依然没有解决,叶片自身材料强度也是问题。

c、振动问题。中间轴长度100m以上,拉索长达150m以上,振动非常厉害。

d、大风转速控制,也就是功率调节。大风时如何限速,无法变桨、无法主动失速,大风时能量巨大,对结构、电气设备造成巨大压力。此问题不解决,垂直轴永无光明。

e、成本。表面上垂直主要设备位于地面,成本低。实际不是这样,如何降低成本是垂直轴未来特别需要考虑的问题。

5、香港和合

(1)香港和合集团背靠著名的基建大王胡应湘,财力巨大,推出了一个大型的H型6MW的机型概念。

(2)2009~2010年在广东阳西安装了一台300kW的H型,中间支撑系统采用一个巨大的水泥柱子(这点与和合的背景极为吻合),曾运行过,但最近一直在调试,叶片出现了褶皱现象(强度问题)。

(3)该公司的6MW机型与国能风电的叠形结构极为类似。中间水泥支撑柱高达200m,四周叠几层H 型风轮形成。

6、深圳风发

(1)深圳风发2009年号称下线了第一台兆瓦级半直驱开关磁阻风电专用发电机,只是发电机。2008年在媒体上出现过其安装在青海的H型300kW机组,有双H型和单H型。

(2)该H型机组是塔式高耸支撑,悬臂预计在10m以上。塔式支撑,扭转、振动更厉害,不能做大。

(3)2010年4月该公司发布了双H型兆瓦级机组,如果继续采用塔式支撑,估计方案不可行。转轴地面端和空中端预计都有固定,是否采用拉索未知。

7、国能风电

(1)国能风电实际上就是上海模丝,后改名上海模丝翼,该公司善于宣传,网上发表文章很多。但机型并未有很大创新之处。

(2)预计在2009年某时,该公司被国能收购(猜测),国能被靠中国最大电老虎——国家电网公司。国网老总刘振亚曾亲自过问此事,可见公司的公关文宣能力。

(3)2009年与电科院合作开发兆瓦级,2010年初下线。现场情况有待调研,从已知信息看,其兆瓦级如果是多台小型机集成,则成功可能性大,但成本是否能下降未知。如果采用与和合相同的方案,问题比较大。

8、云南欧亚

……(以下内容省略,欢迎有兴趣的朋友邮件交流:windwordchina@https://www.360docs.net/doc/013106457.html,)

小弟对国内垂直轴略知一二,考察过几乎所有的垂直轴风场,

垂直轴发展任重道远,不过从各家的方案对比看,有的企业已经弄清了垂直轴的固有缺陷和解决方案,光明已现!

我是https://www.360docs.net/doc/013106457.html,站长,本站公布了沈阳航空工业学院在垂直轴方面的工作:

欢迎访问:https://www.360docs.net/doc/013106457.html,,有关于阻力型垂直轴和水平轴的一些新技术,含图例、实验视频等。

与贝兹极限类似,已经有人研究了垂直轴风力机功率系数的理论极限,称其为0.64,超过了贝兹极限的0.593!然而目前报道的垂直轴风力机Cp 值一般比水平轴要低,这主要是因为垂直轴风力机的空气动力学比水平轴要复杂得多,因此人们对于垂直轴风力机的研究相对也要少得多的缘故。不过与水平轴风力机相比,垂直轴风力机却有着突出的优势,主要是结构简单、成本低,垂直轴风力机无需对风装置,因而制造和维护成本将进一步大幅度下降。

垂直轴风力机分两大类,一是升力型风力机,如Darrieus风力机,另一个就是阻力型风力机,如Savonius型风力机。然而升力型垂直轴风力机有两大缺点限制了其应用,一是其空气动力性能较低,再一个“致命”的缺点就是没有“自启动能力”了。而阻力型风力机天然具有良好的“自启动能力”;如果采用这种阻力型风力机,就只需解决空气动力性能低的一个问题就行了。

阻力型风力机的Cp值低的主要原因是:风力机运行时在逆风侧遭遇了巨大的阻力;为了减小这个阻力,人们在逆风侧的上游装上挡风装置或挡风板,产生了很好的效果;实际上,升力型风力机所以有较高的效率,在于它利用的是叶片的升力,即叶片压力面与吸力面上的压力差,或压力能;而阻力型则是直接利用风的动能。这一点,有着操纵船帆经验的海员都有深刻的体会。利用压力能比起直接利用动能的潜力要大得多,充分利用风的压力差产生升力是提高阻力型风力机效率的根本途径!

另外,升力型垂直轴风力机一般仍有较高的尖速比(3~5),其叶片的切线速度一般可达40~50m/s;而阻力型的尖速比则最大为1,这就是说,阻力型风力机的叶片最大切线速度不可能超过风速,所以它可以在强风中工作,这正是阻力型风力机的最大优点,同时由此产生的低噪声也带来其另一大优点。一般来说,尽管各种风力机的启动风速各不相同,但截止风速却一般都是25m/s;而风能大小与风速的3次方成正比,这就是说,我们仅仅利用了较低风速的能量,而不得不放弃高风时的可观的风能,这对于如甘肃、新疆等大风区和海上的多风区来说无疑是一种极大的浪费!因此如果能有效地提高其功率系数,则毫无疑问,在大风区采用阻力型垂直轴风力机将是未来市场的唯一明智的选择!

阻力型垂直轴风力机提高性能后,作为中、小型机,即低噪声产品,将成为城市楼顶及其它离网型应用的最佳选择;由于整机重心很低,更适于放大成多兆瓦大型机,则将在多风区及海上风场成为性价比更高的优选机型;而在大风区(特别是在风速25m/s以上多发的大风区),例如新疆、甘肃的百里风区等,该机种将是能够高效、可靠工作的唯一选择!可以预料,垂直轴风力机在性能上且不说超越,只要能与水平轴风力机性能相当,则可能拥有与水平轴风力机争夺市场的竞争力!

我国扶持风电发展的有关政策汇总

我国扶持风电发展的有关政策汇总 摘要:由于石油价格连创新高,在政策的大力扶持下,近年来国内外风电行业飞速发展。风力发电是目前最为成熟的新能源,市场竞争力远超越于太阳能,并有着广阔的发展前景。我国近年来扶持政策一个连着一个,使我国风电行业以超预期的速度迅猛发展,风电总装机容量已排名世界第五位,跻身风电大国之列。目前我国仍处于风电开发的初期,未来前景不可限量。 中国在2007年新增风电装机容量3,499MW,同比2006年增长156%,总装机容量6050MW排名世界第五位,中国可再生能源行业理事会(CREIA)预计到2015年,中国的风电装机容量将达到50,000MW,该协会秘书长表示:快速的风能市场增长刺激了中国国内企业生产风电设备的意愿,现在,在中国有超过40家本土企业参与生产电力设备。在2007年,本土产品占据56%的市场份额,而这一数字在2006年是41%。全球风能理事会会长泽沃斯认为:中国本土目前生产能力是:5,000MW,预计到2010年将达到10,000至12,000MW。风电行业取得的巨大成就是与各级政府的大力扶持分不开的。 一、可再生能源发展规划指明了方向 为加快我国能源结构的优化调整,近年可再生能源产业的规划和相关政策频繁出台,给新能源产业的发展提供了良好的政策支撑和前景。 2007年9月4日,国务院公告了《可再生能源中长期发展规划》。这是继2007年新能源法颁布实施后我国可再生能源发展里程的又一件大事。规划中进一步明确了我国可再生能源中长期具体发展目标。即:2010年可再生能源消耗量占全国能源消耗总量的10%,2020年达到15%。其中,风电总装机容量2010年500万千瓦。可再生能源产业未来15年将培育近2万亿元的新兴市场。其中,风电投资约1900亿元。 2008年3月18日,国家发改委对外公布《可再生能源发展“十一五” 规划》(以下简称“五年规划”)。与去年8月公布的《可再生能源中长期发展规划》(以下简称“中长期规划”)相比,“十一五”期间部分可再生能源的发展目标和发展重点进行了调整。《可再生能源中长期发展规划》与《可再生能源发展“十一五”规划》的基本目标及比较见表1。

风电的发展现状及展望

风电的发展现状及展望 Prepared on 24 November 2020

论文题目:我国风力发电的现状及展望

摘要 风是地球上的一种自然现象,全球的风能约为,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。其能量大大超过地球上水流的能量,也大于固体燃料和液体燃料能量的总和。在各种能源中,风能是利用起来比较简单的一种,它不同于煤、石油、天然气,需要从地下采掘出来;也不同于水能,必须建造大坝来推动水轮机运转;也不像核能那样,需要昂贵的装置和防护设备。另外,风能是一种清洁能源,不会产生任何污染。与其他新能源相比,风能优势突出:风能安全、清洁。而且相对来说,风能是就地取材,且用之不竭,在这一点上,风电优于其他发电。 关键词:风力资源丰富;风电安全且清洁;风能用之不竭 目录

第1章绪论 引言 气候变暖将对全球的生态系统、各国经济社会的可持续发展带来严重影响在尽量不影响生活水平的情况下,透过全球气候升高这个现象,我们现目前必须的意识到节能减排的重要性,而改变目前现状的最直接有效的方法就是选择清洁型(相对于煤石油等而言,对于植物动物等一系列生态环境污染相对而言较少甚至可以达到零的能源)能源来替代传统的火力发电。如:水能、太阳能、风能和核能等。风力发电是目前最快发现的最快的清洁能源,且风能是可再生能源。对它加以使用相对而言能使得时下大地所遭受的环境问题得到一定程度的改善,风力发电与传统发电进行相比较风力发电不会产生二氧化碳以及其他有害气体,所以对风能加以利用,这样能相对有效的改变目前世界所面临的环境问题,这样大大的避免造成臭氧空洞以及形成酸雨之类的自然危害,也有利于降低全球的气温。所以加大风力发电建设是改善现目前世界环境的一个有效途径。在国际上对于新能源的开发这一方面做了许多调查和研究,通过调查研究发现在这一方面德国是做的最好的,从上个世纪80年代末起至今,在德国的风电机组总功率即使已越过1万兆瓦的大关,并且已完成了近万个风力发电机组的安装,所占比例已达到了全球风力发电总量的1/3,然而数据研究表明德国近年来减少了约1700万吨的的温室气体排放,所以通过德国温室气体的排放量减少说明开发风力发电等新能源是减少全球气温升温和减少温室气体排放的有力途径。德国竭力用实际行动为《京都议定书》的减排目标迈出了一大步。我国在风力方面也有着相当丰富的资源,可被开发利用的风能储量约10亿kW左右。 本论文的研究背景及意义 根据气候变化专门委员会(IPCC)的调查研究并所给出的第三次评估报告提供的预测结果显示,预计到22世纪初大地平均气温或许会增高—℃。以及伴随着国民日常需求的的不断提高,经济的高速发展,国民的用电量也日益增长,伴随着电力结构的不断调整优化,技术装备水平的逐步提高,发电机组的不断增大以及技术装备水平的逐步提高。随着大自然给予我们不可再生能源的衰竭、对于用电量的不断升高、全球气温的升温以及生态环境的破坏,对于开发新能源发电已成为迫在眉睫的事情。而我国疆域广阔并且有着十分丰富的风力

风电信息化解决方案

1风电行业的特点 1.1风能资源丰富 我国幅员辽阔,海岸线长,风能资源丰富。根据第三次风能资源普查结果,我国技术可开发(风能功率密度在150瓦/平方米以上)的陆地面积约为20万平方千米。考虑风电场中风电机组的实际布置能力,按照低限3兆瓦/平方千米、高限5兆瓦/平方千米计算,陆上技术可开发量为6亿~10亿千瓦。2002年我国颁布了《全国海洋功能区划》,对港口航运、渔业开发、旅游以及工程用海区等作了详细规划。如果避开上述这些区域,考虑其总量10%~20%的海面可以利用,风电机组的实际布置按照5兆瓦/平方千米计算,则近海风电装机容量为1亿~2亿千瓦。综合来看,我国可开发的风能潜力巨大,陆上加海上的总量有7亿~12亿千瓦,风电具有成为未来能源结构中重要组成部分的资源基础。 1.2风资源具有相对集中分布的特点 中国的风电资源分布不平衡,主要的资源分布在北部和沿海地区,各省市之间资源也不平衡,风能分布比较丰富的省、市、自治区主要有内蒙古、新疆、河北、吉林、辽宁、黑龙江、山东、江苏、福建和广东等,有望超过1000万千瓦的省区主要有内蒙古、河北、吉林、甘肃、江苏和广东等。2015年将会形成10~20个百万千瓦的风电基地;2020年将会形成5~6个千万千瓦的超大型风电基地。 内蒙古:10米高度风功率密度大于150瓦/平方米的面积约10.5万平方千米,技术可开发量约1.5亿千瓦。风能资源丰富的地区主要分布在东起呼伦贝尔西到巴彦淖尔广袤的草原和台地上。 吉林省:10米高度风功率密度大于150瓦/平方米的面积约511平方千米,技术可开发量上千万千瓦。风能资源丰富的地区主要分布在西部的白城、通榆、长岭和双辽等地。 河北省:10米高度风功率密度大于150瓦/平方米的面积约7378平方千米,技术可开发量约4000多万千瓦。风能资源丰富的地区主要分布在河北省北部的张家口市坝上地区和承德市的围场县和丰宁县,沿海岸线的黄骅港附近风能资源也较为丰富。 甘肃省:甘肃地处河西走廊,10米高度风功率密度大于150瓦/平方米的面积约3万平方千米,技术可开发量上亿千瓦。风能资源丰富的地区主要分布在安西、酒泉等与新疆和内蒙古接壤的具有加大风速地形条件的地域。 新疆:10米高度风功率密度大于150瓦/平方米的面积约8万平方千米,技术可开发量上亿千瓦。风能资源丰富的地区主要分布在达坂城、小草湖和阿拉山口等具有加大风速地形条件的地域。 江苏省:全省风能资源分布自沿海向内陆递减,沿海及太湖地区风能资源较为丰富,尤其是沿海岸地区。 1.3风电处于黄金发展阶段 近年来,特别是《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速。“十五”期间,中国的并网风电得到迅速发展。2006年,中国风电累计装机容量已经达到260万千瓦,成为继欧洲、美国和印度之后发展风力发电的主要市场之一。2007年以来,中国风电产业规模延续暴发式增长态势。2008年中国新增风电装机容量达到719.02万千瓦,新增装机容量增长率达到108.4%,累计装机容量跃过1300万千瓦大关,达到1324.22万千瓦。2009年风电行业仍将保持高速增长。中国风电2010年很有可能达到2500万千瓦;国家制定的2020年风电装机3000万千瓦的目标,有可能在2011年实现。 1.4现处于“跑马圈地”阶段 现阶段风电行业,大量的风电业主当下的经营重心并未放在经营风电场上,而是到处跑马圈地,见到哪里风资源好,就先把风机竖起来,抢占好位置,为日后的发展打基础。

风电电能质量检测系统

风电电能质量检测系统 横河电机低电压穿越(LVRT)解决方案 低电压穿越(Low Voltage Ride Through, LVRT)是指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。 如果风电机组不具备LVRT能力,就会在电网故障导致电压跌落时,由于风机自身的保护系统动作使风机与电网断开,电网电压会降的更低,甚至有使系统崩溃的风险。 国际电工委员会(International Electro technical Commission,简称IEC)针对风力发电机组发布了IEC61400系列技术标准。其中的第21部分即IEC61400-21,内容是关于并网风力 发电机组电能质量特性测试,规定了风电电能质量的测试项目、测试原理以及测试指标等,是风力发电电能质量测试的基本依据。低电压穿越能力的标准就是之中的重要组成部分。 IEC61400-21主要测试项目包括: 1.低电压穿越 2.谐波、间谐波、高频谐波 3.闪变 4.有功功率、无功功率 5.电网保护、重连时间 不同国家(和地区)所提出的LVRT要求不尽相同。目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了基于IEC61400-21的新的电网运行准则。中国也已经发布了基于IEC61400-21的国内风力发电机组并网标准。 IEC61400-21定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。 图1 IEC61400-21标准中的风电系统离网的条件 ●红线所示程度以上的电网跌落,不能导致风机脱网或发电单元运行不稳定。 ●风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保持并网运行625 ms的低电压穿越能力。 ●风场电压在发生跌落后2s内能够恢复到额定电压的90%时,风场必须保持并网运行。 ●风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。 IEC61400-21标准中低电压穿越测试要求记录风力发电机输出端的有功功率、无功功率、有功电流、无功电流和电压随时间的变化。

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

风力发电现况以及未来发展趋势

风力发电现况以及未来发展趋势 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 一、国外发展状况 目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计,约占世界总装机容量的%。2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。 二、国内发展现状 经过前几年的低谷期,国内的风电市场正在迎来新的发展期,特别是在节能减排、环境治理的趋势下,国家出台的一系列政策,使得风电产业站上了风口。 (一)我国风电发展进入新阶段 风电是资源潜力大、技术基本成熟的可再生能源。近年来,全球资源环境约束加剧,气候变化日趋明显,风电越来越受到世界各国的高度重视,并在各国的共同努力下得到了快速发展。据世界风能协会统计,截至2013年年底,世界上开发风能的国家已经达到103个,年发电量达到6400亿千瓦时,占全球总电力需求的4%。我国可开发利用的风能资源十分丰富,在国家政策措施的推动下,经过十年的发展,我国的风电产业从粗放式的数量扩张,向提高质量、降低成本的方向转变,风电产业进入稳定持续增长的新阶段。2003年底,我国风电装机只有50万千瓦,排名世界第十。2013年我国新增风电装机容量1610万千瓦,占当年世界新增容量的45%;累计装机容量突破9000万千瓦,占世界累计装机容量的28%,两项指标均居世界第一?2013年我国新增风电并网容量1449万千瓦;累计并网容量达到7716万千瓦,占全国电源总装机容量的%。今年1至9月,我国风电新增并网容量858万千瓦;到9月底,累计并网容量8497万千瓦,同比增长22%。预计到今年年底我国风电累计并网容量可达到1亿千瓦,从而提前一年完成“十二五”规划目标,风电发电量占全国总发电量的比重也将由2008年的%增长到%,连续两年超过核电,成为国内继火电、水电后的第三大主力电源。 (二)财政优惠 根据财政部文件,为鼓励利用风力发电,促进相关产业健康发展,自2015年7月1日起,对纳税人销售自产的利用风力生产的电力产品,实行增值税即征即退50%的政策。中国可再生能源学会秘书长秦海岩对中国证券报记者表示,这项政策实际并非新政,2001年相关主管部门在对资源综合利用目录的增值税征收政策进行规范时,就提到了风电也是“减半征收”。但“减半征收”在操作层面比较复杂,因此,相关主管部门在2008年的文件中提出即征即退50%。现在只是为了重新梳理政策,把之前的资源综合利用的目录作废,并对风电提出来单独进行了规范说明。 分析人士表示,这实际上是之前风电增值税优惠政策的延续。今年以来,从国家发改委、国家能源局到国家电网公司,再到新能源装机大省的地方政府都在围绕风电发展给予多方面的支持。今年4月28日,国家能源局公布“十二五”第五批风电项目核准计划,项目共计3400万千瓦,超出业界预期;5月下旬,国家能源局发布了《关于进一步完善风电年度开发方案管理工作的通知》,对于弃风限电比例超过20%的地区、年度开发方案完成率低于80%的地区,不安排新项目。 (三)风电企业业绩逐步向好 近期,A股风力发电板块展示出了高景气度。截至7月1日,A股风力发电概念板块23家公司(以设备制造商为主)中,有9家已预告或发布中报业绩情况,除1家净利润变动幅度为负,其余8家净利润增幅在24%至350%之间。其中,

本特利风力发电机状态监测解决方案

本特利风力发电机状态监测解决方案 1

本特利内华达ADAPT.Wind TM风力发电机状态监测解决方案-实现对风电机组产品生命周期的有效延伸 随着中国市场对清洁能源需求的日益增长,在风电行业出现持续增长的同时,如何对制造后的产品实现在运行层面有效监测,提升风机的实际使用寿命周期,从而实现风力发电生产的持续竞争力等一系列需求,也逐渐成为了风机制造商,风场业主与运行人员最为关心的话题之一。 本特利内华达ADAPT.wind TM状态监测系统解决方案提供了从传感器到监测器和软件以及故障诊断服务的一体化可扩展的解决方案,经过主动预防性地检测风电机组传动系统早期的故障和问题,不但帮助风机制造厂商及时对安装机组进行故障预警及诊断,提升售后质保期内的产品安全可靠性,为高效率服务提供更加可视的平台,同时也极大的帮助运营商控制运行维护成本,更加优化管理风电场的资产,提高设备的可利用率并降低维护的费用,提升风场经济效益。ADAPT.wind TM系统不但已作为GE风电机组配置的标准状态监测解决方案在全球使用,同时它还能够根据整机制造商的要求,灵活配置在其它任何整机制造商生产的风电机组上。 为什么要振动状态监测?

风电机组会长期承受诸多无法预知的运行条件,这些都可能会对机组运行造成非常严重的不良影响。如果能尽早地发现这些问题并加以处理,那么必然会提高风机的可利用率,同时也能够降低维护成本。因此先进的状态监测技术与专业经验对于可靠地进行资产设备管理而言至关重要。 齿轮箱是首要问题 行星齿轮箱的故障是风电机组制造商和运行人员主要担心的问题。据统计仅与齿轮箱本身的故障问题直接相关的维护费用就占到了风电场运行与维护费用的25%-30%。本特利内华达风机状态监测系统让运行人员能够远程获知齿轮箱的运行状况。经过该系统获取的齿轮箱早期故障状态数据,使运行人员在齿轮箱出现轻微故障时,能够合理地改变运行方式,延长机组的运行时间,从而保证发电收益,而且能够降低被动式故障检修的风险,避免非计划停机或灾难性事故的发生。 对风场的所有风机实施主动预防性的状态监测还能够帮助运行人员有效地规划和合理地安排机组的停机维护计划。将所有需要停机维护的风机集中安排在一次检修计划中进行检修,只需使用一台吊车,这样便能节省近百万的维护费用。 为什么要使用本特利内华达ADAPT.wind TM系统? 它能使您从使用的第一天就对机组运行状况了如指掌。经过

风电机组结构及选型

第一节风电机组结构 1.外部条件 根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。 一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为s; 二类风场II:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 三类风场III:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。 对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构 总体描述 整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。 发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。 偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连

接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。 机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降低主机噪声。 机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。 载荷情况 - 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。 - 发电:风电机组处于运行状态,有电负荷。 - 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。 - 紧急关机:突发事件(如故障、电网波动等),引起的停机。 - 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。 - 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。 叶片

中国风电发展现状与潜力分析

中国风电发展现状与潜力分析 风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地 区丰富带”即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带”,即东部和东南沿海及岛屿地带。这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期 和丰水期有较好的互补性。 一、风电发展现状 据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国 以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较 瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业 风电投资企业包括开发商与风电装机制造企业。从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%, 其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎”,当年新增和累计在全国中的份额也很小。从风 电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和 发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。此外,中国华锐、金风、 东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。中国开始全面迈进多mw级风电机组研制的领域。2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两 年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理 目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风 的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。它们使 得风电发展受到严重影响。对于这种电力上网“不给力”的现况,国家和电网企业都在积极 努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海 等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电 量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;

荆竹山风电工程项目部测量方案.doc

临湘荆竹山风电场工程施工测量技术方案 集团有限公司 深能源翰嘎利风电工程项目部 2016年11月

编写:周衍旺 校核:刘强高 审核:柳建军 批准:易美康 目录

1.工程概况 (1) 1.1地形地貌 (1) 1.2交通条件 (1) 2.施工测量准备工作 (1) 2.1资料收集 (1) 2.2现场的勘察 (2) 2.3全面熟悉设计图表 (2) 2.4测量人员及仪器配备 (3) 3.建立测量制度 (3) 4.施工测量的复测和加密 (4) 5.风机中心桩放样、高程获取及预埋件、基础环安装测量 (4) 5.1风机中心桩的放样 (4) 5.2高程测量方法 (5) 5.3预埋件、基础环安装测量 (6) 6.基础土(石)方量的计算 (6) 7. 质量保证措施 (6) 7.1仪器鉴定 (6) 7.2原控制点的复测 (7) 7.3控制测量 (7) 7.4完善测量记录 (7) 8.安全保证措施 (7) 9.工程竣工验收 (7)

1.工程概况 1.1地形地貌 科右中旗东俯东北平原,西临蒙古高原,南通哲里木粮仓,北接呼伦贝尔草原。场址附近属于丘陵区,地表为草地,山头绝对高程多在300~350m间,相对高度多不足百米。山脊普遍较宽,山坡平缓。场址区地面高程约在263~340m之间。风电场的面积大约为25km2。 1.2交通条件 本工程项目位于内蒙古兴安盟科右中旗巴彦呼舒镇北部平原,科尔沁右翼中旗交通便利,目前已有111国道和省级大通道从风电场区附近通过,县级公路有6条,贯穿全旗各地。 2.施工测量准备工作 2.1资料收集 我部在施工复测之前,首先将设计单位移交的有关资料,如科右中旗翰嘎利湖风电场一期工程地形测量技术报告,翰嘎利风电场地形图,25个风机中心坐标,地勘报告等进行室内检核和现场核对。全面了解路线、风机位置及地形情况,以便确定相应的测量方法。对于设计单位提供的以上资料,我项目部工程管理部及测量队要全面的熟悉图纸并进行认真的审核,对于在审核中所发现错误或者表述不清之

风电机组联轴器

工作环境 风力发电机的工作环境较为恶劣,从中团当前的风能资源分布来看,中闺现有的和即将进行风能开发的地域,人致都处于沿海、山区和中国的西北部。沿海不但有常年的栽雾,环境异常潮湿,风机部件容易锈蚀或盐蚀,老化,还受到热带气旋影响;山区多有不稳定的沉降或上升气流,亦可能有因山谷环境造成的突发性强烈气流:西北部如新疆,冬夏温度差异极人,也有地形原因形成的极强突发性峡谷风等。这些对风机部件的耐蚀性能及耐冲击能力,都有很高的要求。 风力发电机组因为处于地面较高处,除了高速运转的传动系统,机组整体由于受风力影响振动,其发电机、齿轮箱、叶轮三部分的联接对中,由于各种原因,可能会造成一定偏差;这个偏差,就需要靠联轴器来进行调节。所以,在选择联轴器时,还应考虑联轴器的机械性能是否能够合理满足风机的功率、运转扭矩、动力机系数等。 荷载类别 载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷;不同的联轴器对于荷载的承受能力不同。在风力发电机组中的联轴器所承受荷载,主要有:叶轮通过齿轮箱所传递的扭矩;齿轮箱与发电机自身的振动所产生的振幅;联轴器自身的重力;联轴器由于种种原因使其质心或惯性主轴与其旋转轴线不重合,在运转时还将产生不平衡离心惯性力、离心惯性偶力等多样力或力偶,这些力或力偶极大的影响着联轴器的运行,是对联轴器进行选择时极其重要的指标。 传动精度 风力发电机内联轴器属于传递动力的轴系传动系统,对传动精度要求不高,但应避免选用非金属弹性元件弹性联轴器和可动元件之间有问隙的挠性联轴器,以免在高速旋转过程中,联轴器受到损坏。 所联两轴相对位移 联轴器所联两轴由于制造误差、安装误差、轴受载而产生的变形、基座变形、轴承磨损、温度变化(热胀、冷缩)、部件之问的相对运动等多种因素而产牛相对位移。在风力发电机巾,还可能存在较长时间运行后,弹性支撑失效或是部分失效,风速跃迁导致风机振动,这个振动对发电机和齿轮箱的影响不同,发电机与齿轮箱的对中受到影响,其轴线将发生无法控制的位移。一般情况下,两轴相对化移是难以避免的,但不同工况条件下的轴系传动所产生的位移方向,即轴向(X)、径向(y)、角向(a)以及位移量的大小有所不同。 在风力发电机组中对弹性联轴器的基本要求为: (1)强度高,承载能力大。由于风力发电机组的传动轴系有可能发生瞬时尖峰载荷,故要求联轴器的许用瞬时最大转矩为许用长期转矩的三倍以上。

中国风能发展前景广阔

中国风能发展前景广阔 中国目前正处在工业化和城市化发展阶段,现阶段经济增长需要有足 够的能源供应,同时还要满足环境约束。因此,开发新技术新能源,从而优化 能源结构,对中国是一个必须的选择。尤其是在中国石油对外依存不断增大(2010 达到55%),油荒、电荒、气荒等问题接连出现,中国政府提出在2005 年基础上减少40%-45%的碳强度目标的背景下,为了保障能源安全和应对气候变化问题,中国本身具有发展新能源产业的经济动力。 中国有非常丰富的可再生资源,新能源产业的规模迅速扩大。中国的风 能资源很丰富,发展潜力很大。如中国陆地风能(高度50 米)有23.8 亿千瓦,海洋风能大概有2 亿千瓦左右。近年在国家政策的支持下,发电产业取得 快速发展,2010 年底,中国投入运营的风电发电装机容量达到了41800 兆瓦,同比增长62%,超过美国,成为全球风电装机最大的国家。 中国成为风电大国,但还不是风电强国。 近年来,虽然中国风电产业取得了快速发展,但产业整体技术水平与市 场规模不相适应,自主研发不足,产品更新换代太慢等。虽然国内企业已基本 掌握兆瓦级风电机组的制造技术,许多主要零部件国内也能够自己制造。但 是,大功率风机的核心配件的核心技术基本上仍被国外厂商控制。中国的风电 设备制造业需要从技术上与风电规模相适应,做到大而强。 另外,电网接入技术也是制约中国风能发展的主要因素,风电间歇式发 电特点对电网容纳能力提出挑战。中国仅2010 年一年新增风电装机容量就达到1800 多万千瓦,累计装机容量突破了4400 万千瓦,而电网跟不上风电装机的快速发展。风电上网对电网的稳定、备用和长距离输送均有很高的要求,且具有

风电技术现状及发展趋势

风电技术现状及发展趋势 Current Situation and Developing Trend of Wind Power Technique The paper mainly discusses the current situation and developing trend of wind power technique. Abstract: Key words: anemo-electric generator ; current situation ; developing trend 0 引言 风电古老而现代,但之所以到近代才得以发展,是因为在这方面存在许多实际困难。主要表现在:(1)风本身随机性大且不稳定,对其资源的准确测量与评估存在误差;(2)风速大小、风力强弱、风的方向都随时间在变化,设计制造在不同风况下都能保持稳定运行的风电系统,并使其风电输出功率效率高且理想平滑十分困难;(3)风为间歇式能源,有功功率与无功功率都将随风速的变化而变化,在与电网连接时,需要考虑输出功率的波动对地区电网的影响。此外,在降低制造成本和运行维护费用的前提下如何提高系统运行的安全性与可靠性、如何延长的寿命以及改善系统储能措施使其容量更大、体积更小、效率更高且寿命更长等问题上尚有待于得到更完善的解决。 1 风力发电技术发展现状 现代风力发电系统由风能资源、组、控制装置及检测显示装置等组成。组是风电系统的关键设备,通常包括风轮机、发电机、变速器及相应控制装置,用来实现能量的转换。完整的并网风力发电系统结构示意图见图1。

率曲线比较 长期以来风力发电系统主要采用恒速恒频发电方式( Constant Speed Constant Frequency 简称CSCF)和变速恒频发电方式(Variable Speed Constant Frequency 简称VSCF)两种。 恒速恒频发电方式,概念模型通常为“恒速风力机 +感应发电机”,常采用定桨距失速或主动失速调节实现功率控制。在正常运行时,风力机保持恒速运行,转速由发电机的极数和齿轮箱决定。由于风速经常变化,功率系数C p不可能保持在最佳值,不能最大限度地捕获风能,效率低。 变速恒频发电方式, 概念模型通常为“变速风力机+变速发电机(双馈异步发电机或低速永磁同步发电机)”,采用变桨距结构,启动时通过调节桨距控制发电机转速;并网后,在额定风速以下,调节发电机反转矩使转速跟随风速变化以保持最佳叶尖速比从而获得最大风能;在额定转速以上,采用变速与桨叶节距的双重调节限制风力机获取的能量以保证发电机功率输出的稳定性。 前者结构简单、运行可靠,但其发电效率较低,而且由于机械承受应力较大,相应的装置成本较高。后者可以实现不同风速下高效发电从而使得系统的机械应力和装置成本都大大降低。两者运行功率曲线比较如图 3所示。可以看出,采用变速恒频发电方式, 能在风速变化的情况下实时调节风力机转速,使之始终在最佳转速上运行,捕获最大风能[2]。 2 风力发电技术发展趋势

风电综合信息化系统解决方案

风电综合信息化系统解决方案 1 项目概述 伴随我国国民经济的快速发展和人民生活水平的提高,人们对电力的依赖程度越来越高,同时电力生产也越来越受到资源和环境的制约。为了实现可持续发展战略,提高电能使用效率已成为我国能源战略的一项重要内容。由于我国资源的严峻形势,发展可持续资源是长久之计,风能是一种有巨大发展潜力的无污染可再生能源。发展可再生能源是最理想的能源,可以不受能源短缺的影响,但也受自然条件的影响,如需要有水力、风力、太阳能资源,而且最主要的是投资和维护费用高、效率低,所以发出的电成本高。现在许多国家都在积极寻找提高利用可再生能源效率的方法,相信随着地球资源的短缺,可再生能源将发挥越来越大的作用。 为了加强对各个风电场的管理,使风电集团能够直观、动态、综合地掌握下属各风电场生产一线的情况,杜绝风电机组运行和生产经营数据的错报、迟报、漏报,同时便于进行数据统计、分析以及提供技术支持,力控科技为许继许昌风电科技有限公司在总部建设一套风电场生产数据采集、监测、储存、分析、展现系统,以便风电集团能及时获取风电场生产及风电机组运行状态的信息,为集中监测、故障分析、技术支持、经营决策等提供及时、准确的数据基础。 2 系统整体拓扑结构介绍 2.1 集团调度中心系统建设 2.1.1 调度中心系统平台 调度中心信息化平台由实时服务器、历史服务器、关系数据库服务器、报警服务器、GIS地理信息系统服务器、WEB服务器以及各种辅助系统组成。 1) 实时服务器 实时数据服务器主要为系统提供实时数据管理支撑,主要负责处理、存储、管理电站采集传送来的实时数据,并为网络中的其它服务器和工作站提供实时数据。实时数据存放在

风电叶片监控系统解决方案

风电叶片监控系统解决方案

为什么要对叶片进行状态监测? ?叶片是风机中受压最大的部件之一 -面临着极端的外部条件,而且动态载荷大。 ?叶片更换费用非常昂贵 ?在极端损坏情况下,风机必须立刻停机减少直接或二次损害。 ?如果能提早发现损伤,叶片可以很好地被修复。 ?目前,主要检测手段是视觉,但这种方法时间间隔长,非实时,且花费巨大。 →完全不适用于海上风机 ?状态监测系统的两大功能 -提高可利用小时数 ?覆冰检测 ?静态和动态载荷评估 -叶片损伤检测 ?雷击检测 ?叶片内部和外部损伤

损伤检测 ?更早检测到叶片的损伤 →降低维修成本 ?严重损伤给出自动停机信号→安全操作,避免灾难?经过DNV GL认证 →得到官方认可 覆冰检测 ?精确检测叶片覆冰 →安全操作 ?自动重启 →可获得更高收益 ?经过DNV GL认证 →得到官方认可 改善运营 ?检测动态不平衡 →提高收益 →降低载荷 ?动态载荷配准 →预防过载 ?显著的运行状态检测 →避免额外支出

覆冰检测DNV-GL证书/ 叶片状态监测系统DNV-GL 证书 ?BLADE control?覆冰检测,2008年获得了DNV-GL 的认证。 ?含自动启机功能的认证 ?BLADE control?在2013年获得了首个风机叶片状态监测 系统的GL认证。

BLADEcontrol?检测的叶片故障类型 ?气动表面壳体损伤 -裂痕和分层,尤其是前缘和尾缘 -雷击导致的叶尖开裂 ?结构支撑件的损伤(致命) -腹板分层或断裂 -梁/ 翼梁分层或断裂 -叶片轴承损伤 腹板 翼梁 气动表面 前缘 尾缘 ?松动部件 -叶片内 -轮毂内 -叶片外部 (防损保护层,扰流器)?气动不平衡 -变桨偏差 -变桨传感器故障

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

风力发电现状及发展趋势

风力发电机组控制技术研究报告 科目:风力发电现状及发展趋势教师: 姓名:学号: 专业:机械电子工程类别:() 上课时间:2013 年9 月至2013 年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

摘要: (1) 一、绪论 (1) 二、控制系统概述 (3) 三、变桨控制系统 (5) 四,变桨控制系统中的数学基础 (7) 五,变桨系统中的控制技术研究 (8) 六,总结 (12) 参考文献: (13)

风力发电机组控制技术研究报告 ——变桨距控制技术摘要: 20世纪70年代,在第一次石油危机发生之后,人们开始注意到风力发电,并把它作为一种后备能源来开发。到20世纪末,风能已成为一种最重要的可再生能源。在各国政府对风力发电研究开发的大力支持下,风电已成为当前开发速度最快的可再生能源。根据欧洲风能协会《关于2020年风电达到世界电力总量的12%的蓝图》报告,期望并预测2020年全球风电装机容量将达12.31亿千瓦。中国风能资源丰富,近十年来风电技术快速发展。按照《国家中长期科学和技术发展规划纲要(2006-2020年)》规划,未来15年,全国风力发电装机容量将达到2000万至3000万千瓦,尤其对“可再生能源低成本规模化开发利用”和“超大规模输配电和电网安全保障”提出迫切需求。[1-2] 自然界的风力大小,风向等都是在不断变化的。风力发电要解决的一个基本问题就是在风况可变的情况下,实现稳定可靠、高效经济的“风能-机械能-电能”的转化和输送。作为风电系统运转的中枢,机组的控制技术是保证整个机组正常、安全、高效运行的基础。本文首先针对风力发电控制问题,对国内外相关技术研究现状以及发展趋势进行了整理,其次对风力发电机组的控制系统的组成进行了概述,最后对风力发电控制系统中的变浆距控制进行了技术研究分析。 正文 一、绪论 随着石油、天然气及煤炭等可开采量日益衰减,其价格也不断攀升高升,同时传统能源的使用带来的气候变化也逐渐威胁到人类自身的生存与发展。在能源与环境两大难题困扰人类的严峻形势下,世界能源结构正在孕育着重大的转变,即由矿物能源系统向以可再生能源为基础的可持续能源系统转变。可持续能源包括太阳能、风能、生物质能、地热能、海洋能等。其中风能的发展速度最快也最

亚控风电集控中心解决方案

亚控风电集控中心解决方案 一、方案概述 风电场集控中心监控系统是为了实现风电公司对其地域分散的多个风电场进行远方监视与控制的要求,其目的是为了提升风力发电场综合管理水平,实现“无人值班、少人值守、区域检修”的科学管理模式,减少运行维护成本。 本系统的建设目标是采集、整理厂内各生产实时控制系统的各类生产实时数据,建立统一的厂级实时历史数据库平台,实现过程数据的统一、长期存储。并以此为基础,实现厂级生产过程信息远程实时监视控制、趋势分析、实时报警等功能;自动产生各类报表以满足风电场对于生产过程的管理要求,确保机组安全、高效运行。 二、方案亮点 接口丰富(比如Modbus、OPC、DL104、DL103、DISA等),可以采集不同厂家、不同协议的风机或远动设备的数据,所有风机或远动数据集中到一台计算机上,便于分析管理; 分布式系统架构,实现远程管理; 采用统一的数据平台,所有数据共享,维护成本低; 支持透过网闸的功能; 支持数据镜像和系统集群冗余; 纯分布式的结构平台,系统扩展十分方便; 数据库支持多种数据压缩方式; 支持历史回放,再现历史,方便查找故障及事故原因 设备故障预测大大提高设备的可靠性; 无限扩展的分析工具,有效提高风机的运行效率。 三、系统架构

亚控科技 的KingSCADA自动化软件产品为风电集中监控系统提供了灵活的软件解决方案。可靠的实时历史数据库KingHistorian存储风场的海量数据。计算软件KingCalculation和报警软KingAlarm&Event对数据库海量数据进行数据统计分析、预 警、设备管理、运行优化等数据挖掘提高设备的利用率及风机发电率。

相关文档
最新文档