高一数学简单的三角恒等变换1

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

人教版高中数学必修四三角恒等变换题库

(数学4必修)第三章 三角恒等变换 [基础训练A 组] 一、选择题 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .7 24- 2.函数3sin 4cos 5y x x =++的最小正周期是( ) A . 5π B .2 π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判定 4.设00sin14cos14a =+,00sin16cos16b =+,c = , 则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b << 5.函数)cos[2()]y x x ππ= -+是( ) A .周期为4π的奇函数 B .周期为4 π的偶函数 C .周期为2π的奇函数 D .周期为2 π的偶函数 6.已知cos 2θ= 44sin cos θθ+的值为( ) A .1813 B .1811 C .9 7 D .1- 二、填空题 1.求值:0000 tan 20tan 4020tan 40+=_____________。 2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα += 。 3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223 θ θ +=那么sin θ的值为 ,cos2θ的值为 。 5.ABC ?的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2 B C A ++取得最大值,且这个最大值为 。 三、解答题 1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值. 2.若,2 2sin sin = +βα求βαcos cos +的取值范围。 3.求值:0 010001cos 20sin10(tan 5tan 5)2sin 20 -+-- 4.已知函数.,2 cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合; (2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象. (数学4必修)第三章 三角恒等变换 [综合训练B 组] 一、选择题 1.设2132tan131cos50cos6sin 6,,,221tan 13a b c -=-==+则有( ) A .a b c >> B .a b c << C .a c b << D .b c a <<

高一数学三角恒等变换

高一数学 三角恒等变换 一、考点、热点回顾 1、诱导公试:奇变偶不变,符号瞧象限 2、同角三角函数得基本关系式: 22sin cos 1θθ+=,tan θ=θ θ cos sin ,tan 1cot θθ?= 3、与差角公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ○3β αβ αβαtan tan 1tan an )tan(?±=± t 4、倍角公式: ①θ θθθ2 tan 2cos sin 22sin ==②2222cos2cos sin 2cos 112sin θθθθθ=-=-=- 5、降次升角公式: ○121cos 2sin 2 θ θ-= ○22 2cos 1cos 2θθ+= ○31 sin cos sin 22θθθ= 6、万能公式: ○122tan sin 21tan θ θθ = + ○2 221tan cos21tan θ θθ -= + 7、半角公式:(符号得选择由2 θ 所在得象限确定) ①2cos 12sin θθ-±= ○22cos 12cos θθ+±= ○3sin 1cos tan 2 1cos sin θ θθ θθ -== + 8、辅助角公式: sin cos a b αα±)α?±,(tan b a ?= )、 ), tan )a b αγγ=(、 二、典型例题 1.已知角α得终边过点p(-5,12),则cos α= ,tan α= . 2.若cos θtan θ>0,则θ就是 ( ) A.第一象限角 B.第二象限角 C.第一、二象限角 D.第二、三象限角 3.sin 2150°+sin 2135°+2sin210°+cos 2 225°得值就是 ( ) A. 14 B. 34 C. 114 D. 94 4.已知sin(π+α)=-3 5 ,则 ( ) A.cos α= 45 B.tan α= 34 C.cos α= -45 D.sin(π-α)= 3 5

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

高一数学必修一三角恒等变换公式

三角恒等变换公式 教学目标: 1、掌握二倍角公式、和差公式的应用; 2、掌握拼凑法在求解角度三角函数值的应用。 重难点分析: 重点:1、和差公式、二倍角公式的记忆; 2、公式变换与求解三角函数值。 难点:1、二倍角公式的灵活使用; 2、整体代换思想与求解三角函数值。 知识点梳理 1、和差公式 sin()__________________±=αβcos()________________±=αβtan()___________ ±=αβ。 2、二倍角公式 sin 2_______________α=; cos 2___________________________________α===; tan 2____________α=。 3、半角公式[升(降)幂公式] 2sin ____________α=、2cos _________α=、sin cos _________αα=。 4、合一公式[辅助角公式] sin cos ____________a b αα+=(?由,a b 具体的值确定); )sin(cos sin 22?ααα++= +b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注意:公式中的α是角度代表,可以是α2、2 α 等。

知识点1:利用公式求值 (1)和差公式 【例1】cos79°cos34°+sin79°sin34°=【 】 A .2 1 B .1 C . 2 2 D . 2 3 【例2】sin 27cos63cos27sin63??+??=【 】 A .1 B .1- C . 22 D .2 2- 【随堂练习】 1、sin15°cos75°+cos15°sin75°等于【 】 A .0 B . 2 1 C . 2 3 D .1 2、cos12°cos18°-sin12°sin18°=【 】 (A )2 1- (B )2 3- (C )2 1- (D ) 2 3 3、sin70°sin25°+cos70°cos25°=________。 4、sin34sin 26cos34cos26??-??=【 】 A .12 B .1 2 - C .32 D .32- 5、式子cos cos sin sin 12 6 12 6 π π π π -的值为【 】

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

高一数学三角恒等变换-名校试题(答案)

三角恒等变换习题详解 一、选择题 1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π 4),x ∈R ,则函数f (x ) 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2的偶函数 [答案] A [解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π 2=π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为3 2 ,则cos2α=( ) A .-1 4 B .-1 2 C.12 D.3 2 [答案] B [解析] ∵|a |2=cos 2α+?? ? ?222 =cos 2α+12=34, ∴cos 2α=14,∴cos2α=2cos 2α-1=-1 2. 3.已知tan α 2=3,则cos α=( ) A.45 B .-45 C.4 15 D .-35 [答案] B [解析] cos α=cos 2α2-sin 2α 2=cos 2α2-sin 2 α2cos 2α2+sin 2 α 2 =1-tan 2 α 21+tan 2 α2 =1-91+9=-4 5 ,故选B. 4.(2010·揭阳市模考)若sin x +cos x =1 3,x ∈(0,π),则sin x -cos x 的值为( ) A .± 17 3 B .- 173 C.13 D. 173 [答案] D

[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-8 9<0,∴x ∈????π2,π, ∴(sin x -cos x )2=1-sin2x =17 9 且sin x >cos x , ∴sin x -cos x = 17 3 ,故选D. 5.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( ) A .x ≤y B .x <y C .x ≥y D .x >y [答案] D [解析] ∵π>A +B >π 2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选 D. 6.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( ) A .向左平移π 2个单位长度 B .向左平移π 4个单位长度 C .向右平移π 2个单位长度 D .向右平移π 4个单位长度 [答案] D [解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x , 将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π 4个单位得,sin2????x -π4=sin ????2x -π2=-sin ??? ?π 2-2x =-cos2x ,故选D. 7.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( ) A .-2cos α 2 B .2cos α 2 C .-2sin α 2 D .2sin α 2 [答案] C [解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π 4. ∴1+sin α+1-sin α

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点 两角和差公式 ⒉两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ (α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公 式)sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1- 2sin^2(α)2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosα

sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2) sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 和差化积公式 ⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—--- 22

α+βα-β sinα-sinβ=2cos—----·sin—---- 22 α+βα-β cosα+cosβ=2cos—-----·cos—----- 22 α+βα-β cosα-cosβ=-2sin—-----·sin—----- 22 积化和差公式 ⒏三角函数的积化和差公式 sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=-0.5[cos(α+β)-cos(α-β)] 9解三角形 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点DCH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

(完整版)高一数学必修四三角恒等变换单元测试题(含答案)

三角恒等变换单元测试题(含答案) 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、16 65 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( )

A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移 6π个单位B 、向右平移12π个单位C 、向左平移6π个单位D 、向左平移12π 个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113 π B 、x = 53π C 、53x π=- D 、3x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上) 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数()cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

高中数学必修 三角恒等变换知识点归纳

高中数学必修4第三章三角恒等变换知识点 1、同角关系:⑴商的关系:①sin tan cos y x θθθ= =②cos cot sin x y θθθ==③sin cos tan y r θθθ==?④cos sin cot x r θθθ==?⑵倒数关系:tan cot 1 θθ?=⑶平方关系:22sin cos 1 θθ+=2、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ +=-⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ +=+⑸()tan tan tan 1tan tan αβ αβαβ --=+?(()()tan tan tan 1tan tan αβαβαβ-=-+)⑹()tan tan tan 1tan tan αβ αβαβ++=-? (()()tan tan tan 1tan tan αβαβαβ+=+-)3、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=2 22)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±?⑵2222cos 2cos sin 2cos 112sin ααααα =-=-=-?升幂公式 21cos 2cos 2αα+=,21cos 2sin 2αα-=?降幂公式 2cos 21cos 2αα+=,21cos 2sin 2αα-=⑶22tan tan 21tan α αα =-4、半角公式 1cos cos 22 α α +=±1cos sin 22 αα -=±1cos sin 1cos tan 21cos 1cos sin α αααααα--=± ==++?(后两个不用判断符号,更加好用)

3.2 简单的三角恒等变换

3.2 简单的三角恒等变换(3个课时) 一、课标要求: 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用. 二、编写意图与特色 本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 三、教学目标 通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断实用文档

实用文档 提高从整体上把握变换过程的能力. 五、学法与教学用具 学法:讲授式教学 六、教学设想: 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容. 例1、试以cos α表示222sin ,cos ,tan 222α α α . 解:我们可以通过二倍角2 cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2 cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三

人教版必修高一数学第三章三角恒等变换测试题及答案

高中数学必修4第三章《三角恒等变换》测试题A 卷 考试时间:100分钟,满分:150分 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.计算1-°的结果等于 ( ) 2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( ) C .-12 D .-3 2 3.已知cos ? ????α-π4=14,则sin2α的值为 ( ) B .-78 D .-3 4 4.若tan α=3,tan β=4 3,则tan(α-β)等于 ( ) A .-3 B .-1 3 C .3 5.cos 2 75°+cos 2 15°+cos75°·cos15°的值是( ) D .1+ 23 6.y =cos 2 x -sin 2 x +2sin x cos x 的最小值是 ( ) B .- 2 C .2 D .-2 7.已知sin ? ????α-π3=13,则cos ? ????π6+α的值为 ( ) B .-1 3 D .-233 等于 ( ) C .2 9.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π 12+2θ)化简,可得 ( ) A .sin2θ B .-sin2θ C .cos2θ D .-cos2θ 10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( ) A .±4 B .4 C .-4 D .1 二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________. 12.化简3tan12°-3 sin12°·4cos 2 12°-2 的结果为________. 13.若α、β为锐角,且cos α=110,sin β=2 5 ,则α+β=______. 14.函数f (x )=sin ? ????2x -π4-22sin 2 x 的最小正周期是________.

高中数学三角恒等变换习题及答案

第三章 三角恒等变换 一、选择题 1.函数y =sin +cos ??? ? ? 2π < < 0α的值域为( ). A .(0,1) B .(-1,1) C .(1,2] D .(-1,2) 2.若0<<<4π ,sin +cos =a ,sin +cos =b ,则( ). A .a <b B .a >b C .ab <1 D .ab >2 3.若θθtan +2tan 1-=1,则θθ 2sin +12cos 的值为( ). A .3 B .-3 C .-2 D .- 2 1 4.已知 ∈??? ? ?2π3 ,π,并且sin =- 2524,则tan 2α等于( ). A .34 B .43 C .-43 D .- 3 4 5.已知tan(+)=3,tan(-)=5,则tan 2=( ). A .- 4 7 B . 4 7 C .- 7 4 D . 7 4 6.在△ABC 中,若cos A cos B >sin A sin B ,则该三角形是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .锐角或直角三角形 7.若0<<2π<<,且cos =-31,sin(+)=97 ,则sin 的值是( ). A . 271 B . 27 5 C .3 1 D . 27 23 8.若cos(+)·cos(-)=31 ,则cos 2 -sin 2 的值是( ). A .- 3 2 B .3 1 C .-3 1 D . 3 2 9.锐角三角形的内角A ,B 满足tan A -A 2sin 1 =tan B ,则有( ). A .sin 2A -cos B =0 B .sin 2A +cos B =0 C .sin 2A -sin B =0 D .sin 2A +sin B =0 10.函数f (x )=sin 2??? ??4π+x -sin 2??? ? ?4π-x 是( ). A .周期为 的偶函数 B .周期为的奇函数

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、] 五、 教学类型:新授课. 六、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示22 2 sin cos tan 2 2 2 α α α 、、 分析:观察α与 2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α 代 替α,即得2 cos 12sin 2 α α=-, | 所以2 1cos sin 22 α α -= ; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2 cos 2cos 12 α α=-, 所以2 1cos cos 22 α α += . ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos αα α -= +.

高一数学三角恒等变换复习题

高一数学三角恒等变换 复习题 Revised by Petrel at 2021

高一数学复习——三角恒等变换 班级 姓名 一、复习要点: 1.熟记以下公式: 等之间的差异及联系。 二、例题分析 1.ABC ?中,2cos sin sin 2 A C B =,试判断ABC ?的形状。 2.若31 )2cos 1)(2cos 1(,21)(cos )(cos 22=++=+--βαβαβα,求βαtan tan 。 3.化简)3 (cos )3(cos cos 222π απαα++-+。 4.已知02≤<<<αβγπ,0sin sin sin ,0cos cos cos =++=++γβαγβα,求 βα-。 5.已知βα,为锐角,且1sin 2sin 322=+βα,βα2sin 22sin 3=,求βα2+的值。 6.已知γβα,,为锐角,2 tan 2 tan 3 γ α =,γβtan tan 2=,求证:γβα,,成等差数列。 7.已知 )cos(sin sin βαα β +=,其中βα,为锐角,求βtan 的最大值。 8.求关于x 的函数)cos )(sin (x a x a y ++=(0>a )的最大值与最小值。 9.已知函数2 0,22sin 2cos )(2π ≤ ≤--+=x m x m x x f ,求:

(1))(x f 的最大值)(m g ;(2)求)(m g 的最小值。 三、巩固练习 1.锐角三角形ABC 中,有 ( ) (A )sin A >cos B (B )sin A >sin B (C )sin A (C )Q P ≤ (D )Q P ≥ 5.函数x x y 2cos )23 sin(+-=π 的最小正周期是 。 6.函数x x x x y 22cos 5cos sin 32sin 3+-=在]4,0[π 上的值域是 。 7.函数)552cos()102sin(2?++?+=x x y 的最大值是 。 8.化简)6(sin )3cos(cos sin 22α-π -α+π?α+α= 。 9.已知函数)cos(3)sin()(θθ-++=x x x f 为偶函数,求θ的值。 10.已知21)tan(= β-α,7 1 tan -=β,)0,(,π-∈βα,求β-α2的值。 11.△ABC 中,?=+120B A ,求函数B A y 22cos cos +=的值域。 12.求函数)20(2385cos sin )(2π ≤≤-++=x a x a x x f 的最大值)(a g ,并求)(a g 的最小 值。

相关文档
最新文档