白藜芦醇固体脂质体制备工艺研究

白藜芦醇固体脂质体制备工艺研究
白藜芦醇固体脂质体制备工艺研究

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展 10072855 王剑磊高材075 摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。 关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素 脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。 1.pH敏感型脂质体(pH—sensitive Liposomes ) pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。 2.pH敏感型类脂组成的系统

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

白藜芦醇抗衰老研究新进展

网络出版时间:2012-08-29 15:14 网络出版地址:https://www.360docs.net/doc/016208623.html,/kcms/detail/51.1705.R.20120829.1514.002.html 白藜芦醇抗衰老研究新进展 楼旭丹1 汪海东1 夏世金2 (复旦大学附属华东医院:1.内分泌科;2.上海市老年医学研究所,上海 200040) 【摘要】白藜芦醇是一种植物抗毒素,主要来源于虎杖、葡萄及花生等植物中,具有抗肿瘤、 抗心血管疾病、抗炎、抗氧化、抗自由基、保肝、保护神经系统、调节雌激素及骨代谢等多 种药理学作用,还可以模拟热量限制(CR)的抗衰老效应,激活沉默信息调节因子1(SIRT1), 参与有机生物平均生命期的调控。白藜芦醇对衰老的干预主要表现为抗氧化、抗自由基,免 疫调节,抗炎作用以及对神经系统的影响,本文就白藜芦醇及其抗衰老干预研究进行综述。 【关键词】白藜芦醇;抗衰老 【中图分类号】R285 【文献标志码】A 衰老是自然界一切生命由遗传因素和内外环境互相作用下的生物学过程,这个过程从出生、发育、成长直到死亡,是机体功能退行性下降及紊乱的综合变化,具有累积性、普遍性、 渐进性、内生性、危害性5个生理特征[1]。白藜芦醇是广泛存在于自然界的一种植物抗毒素, 作为沉默信息调节因子1(SIRT1)最强的激活剂,白藜芦醇可以模拟热量限制(CR)的抗 衰老效应,参与有机生物平均生命期的调控[2,3]。已有报道指出[4]白藜芦醇能增加酵母、后 生动物和其他动物的寿命,其抗衰老作用的细胞学和分子生物学机制也因此成为国内外学者 研究的一个新热点。本文综述了白藜芦醇的一般性质、代谢途径以及近年来白藜芦醇抗衰老 机制的研究进展,展望了白藜芦醇在临床应用中的良好前景及所存在的问题,为进一步开展 白藜芦醇生理药理活性研究提供参考。 1 白藜芦醇的一般性质 白藜芦醇(Resveratrol, Res)化学名为3,5,4’-三羟基-1,2-二苯乙烯 (3,5,4’-trihydroxystilbene),分子式C14H12O3,相对分子质量228.25,为无色针状晶体, 难溶于水,易溶于乙醚、氯仿、甲醇、乙醇、丙酮等有机溶剂。早在1940年白藜芦醇首次 被发现存在于白藜芦(white hellebore)的根中,至20世纪70年代发现传统的中草药虎 杖(polygonum cupsidatum)中也含有该种物质,但受到越来越多学者的关注与青睐是源于 1992年Seimann和Creasy报道[5]在红葡萄酒中亦发现有白藜芦醇的存在,并提出白藜芦醇 是红葡萄酒中发挥心血管保护作用的主要功能因子。在对其自然资源进行广泛的研究后,白 藜芦醇被认为是一种重要的植物抗毒素,一种至少存在于包括葡萄、虎杖、花生、桑葚、松 树、朝鲜槐等12科、31个属的72种植物中含有芪类结构的非黄酮类多酚基化合物[6]。自然 界中白藜芦醇以顺式和反式两种同分异构体的形式存在,反式异构体可在紫外光照射下转化 为顺式异构体,这两种结构可分别与葡萄糖结合,形成顺式或反式白藜芦醇苷,发挥各自的 生物学功能。植物中白藜芦醇主要以反式形式存在,表明反式异构体的生理活性强于顺式异 构体,另有报道指出反式白藜芦醇才是红葡萄酒能抗动脉粥样硬化和冠心病的重要成分[7]。 2 白藜芦醇的代谢 无论在人类或者啮齿类动物,摄入的白藜芦醇吸收入血后70%以上具生物活性,其血浆 浓度一般在30min内达到高峰,但白藜芦醇及其他多酚类物质的生物利用度均较低,如口服 25 mg反式白藜芦醇其血浆浓度峰值仅为2 μmol/L,半衰期约8-14 min[8]。白藜芦醇的药 基金项目:上海市科委科技发展基金基础研究重点课题(No.10JC1404800);国家自然科学 基金面上项目(No.31171129)

白藜芦醇的提取工艺

白藜芦醇的提取工艺 专业:化学工程与技术学号:2010001220班级:生研1004班姓名:刘珊珊 摘要:从虎杖等植物中提取的白藜芦醇具有抗肿瘤、抗炎、抗菌、保护肝脏、保护心血管等功能,鉴于白藜芦醇的多种重要的应用价值,本文综述了白藜芦醇的提取方法,其中包括有机溶剂提取法、超声波及微波辅助萃取法等。通过对各种方法的综合比较,找出了最佳优化条件。 关键词:白藜芦醇;提取;正交实验 1.1白藜芦醇的理化性质 白藜芦醇分子式是C14H12O3,相对分子质量为228.25,化学名称为3,4,5’—三羟基—1,2—二苯乙烯,是一种蒽醌萜类化合物,熔点为256~257℃。它主要存在于葡萄、虎杖、花生、朝鲜槐等植物中,尤其在种皮中含量较高[1]。白藜芦醇易溶于甲醇、乙醇、丙酮、乙酸乙酯、氯仿等有机溶剂中。其存在形式主要有四种,分别是顺式-白藜芦醇、反式-白藜芦醇、反式-白藜芦醇糖苷及顺式-白藜芦醇糖苷,但只有反式异构体具有生物活性[2]。 图1反式白藜芦醇的结构式 白藜芦醇是一种天然的抗氧化剂,可降低血液粘稠度,抑制血小板凝结和血管舒张,保持血液畅通,可预防癌症的发生及发展,具有抗动脉粥样硬化和冠心病,缺血性心脏病,高血脂的防治作用。抑制肿瘤的作用还具有雌激素样作用,可用于治疗乳腺癌等疾病。它既是肿瘤疾病的化学预防剂,也是对降低血小板聚集,预防、治疗动脉粥样硬化,心脑血管疾病的化学预防剂。20世纪90年代,我国科技工作者对白藜芦醇的研究不断深入,并揭示其药理作用:抑制血小板非正常凝

聚,预防心肌硬塞、脑栓塞,对缺氧心脏有保护作用,对烧伤或失血性休克引起的心输出量下降有效恢复,并能够扩张动脉血管及改善微循环。 1.2白藜芦醇的提取方法 1.2.1溶剂提取法 溶剂法是国内外最广泛应用的提取方法。常用溶剂主要有水、甲醇、乙醇、乙酸乙酯、乙醚等。溶剂法对设备要求简单,产品得率较高,但缺点是成本高,杂质含量也高。常见报道的溶剂法有三种:浸提法、渗漉法、回流法[3]。浸提法对温度要求不高,但费时较长,效率不高;渗漉法由于保持一定的浓度差,所以提取率较高,浸液杂质较少,但费时较长,溶剂用量大,操作麻烦;回流法较前两种方法效率高,速度快,但容易对受热敏感的原料造成破坏,因此根据不同的原料应采取不同的提取方法。 1.2.2碱性水或碱性稀醇提取法 白藜芦醇具有弱酸性,在碱性条件下酚羟基可以被转变成盐而使水溶性显著增加。碱提取法的原理是利用白藜芦醇这一性质,使其在一定条件下和某些无机碱、碱性盐形成酚盐而从体系里溶解出来;再通过调节溶液pH值的方法使之沉淀而得以分离,从而富集提取白藜芦醇。常用的碱性溶液为NaOH、KOH、Na2CO3、NaHCO3 。 1.2.3超声波提取法 超声技术对中药有效成分提取分离有许多优点,如提高提取率、缩短提取时间、需求温度低等。超声波提取是一种物理破碎过程,对媒质主要产生独特的机械振动作用和空化作用,用超声波辅助提取白藜芦醇,有利于保持较高的白藜芦醇的相对含量[4]。 超声波提取的工艺流程:样品处理→加入适量的提取试剂→热水浸提→超声波提取→离心分离样液→浓缩过滤→固相萃取,富集白藜芦醇→提取物样品[5]。 1.2.4酶解法 近年来文献对白藜芦醇的提取工艺报道较多,但白藜芦醇的提取率和提取物中白藜芦醇的含量较低,生产成本高。如果直接提取,白藜芦醇苷不易转化为白藜芦醇;其次白藜芦醇包裹在细胞壁内,若直接用有机溶剂提取,白藜芦醇难以溶出,酶解作用可以使细胞壁疏松、破裂,减小传质阻力,加速有效成分的释放,从而

脂质体的研究进展学

新型药物载体免疫脂质体的研究进展 08药剂3班乔宇 20080702067 免疫脂质体(immunoliposomes)是单克隆抗体(monoclonal antibody,mAb,简称“单抗”)或其片段修饰的脂质体的简称,这种新型药物载体对靶细胞具有分子水平上的识别能力,具有很多优势,包括对肿瘤靶细胞呈现明显的选择性杀伤作用,且杀伤活性比游离药物、非特异抗体脂质体、单独单抗等更强;在荷瘤动物体内呈特异性分布,肿瘤病灶药物浓度升高,药物毒副作用较小;体内循环半衰期长及运载药物量大等。免疫脂质体发展至今经历了数代:第一代是抗体或抗体片断直接与脂质体的脂膜相连,但由于巨噬细胞的吞噬很快被血液清除;第二代在第一代的表面引入了聚乙二醇(PEG)等亲水性大分子,延长了在血液中的循环时间,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低;第三代将抗体连接在PEG或其衍生物的末端,制成空问稳定性免疫脂质体(sterically stabilized immunoliposomes,SIL),延长了包含药物的脂质体的血液循环时问,且单抗伸展至脂质体外部发挥寻靶作用。 本文就免疫脂质体的分类、抗体连接脂质体的方法、临床应用及其发展现状进行综述。 1 免疫脂质体的分类 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类。 1.1 抗体介导的免疫脂质体 抗体介导的免疫脂质体是利用抗原一抗体特异性结合反应,将单抗与脂质体偶联。抗体有单克隆抗体和多克隆抗体之分,单抗因其专一性在抗体应用中占主导地位。现今,全世界已有超过1 50种单抗应用于临床或正处于临床研究阶段,且也已从原先的纯鼠单抗发展为人鼠嵌合抗体及人源化抗体,如已上市的人源化单抗Daclizumab、Palivizumab、Trastuzumab等;临床应用中,单抗从最初治疗器官移植排斥反应、降凝血发展到治疗癌症、HIV感染等疑难性疾病[2】。 1.1.1 两种抗体修饰的双靶向免疫脂质体 靶向物用两种不同的抗体修饰脂质体,可增加其结合特异性和细胞摄取率,并且抗体在靶向细胞时能产生协同作用【3】。Laginha等【4]假设脂质体通过抗体靶向到两种或多种受体时,由于受体密度增加,靶向效果会更好,并用荧光测定分析法验证了这一假设的正确性。这项实验中,分别制备了连接相同密度抗体的aCD19靶向脂质体、etCD20靶向脂质体、两种脂质体混合物(混合比例为1:1)及双靶向脂质体,证实了双靶向脂质体和混合脂质体较单个抗体修饰的脂质体和受体有更大的结合率和摄取率,且出现加和性;细胞毒性实验中,装载有阿霉素的双靶向脂质体较这两种脂质体混合物有更高的细胞毒性。Saul等【5]以阿霉素为模型药物,用叶酸和抗表皮生长因子的单抗修饰脂质体,同时靶向两种受体,使药物更多地聚集于肿瘤靶位,降低了对正常组织的毒性。 1.1.2 抗体片段修饰的免疫脂质体 虽然抗体对靶点具有高选择性,但持续给药时,患者往往会出现免疫反应,特别是应用外源性抗体f如鼠)时免疫反应加剧。而抗体片段Fab。(55kDa)、单链抗体可变区基因片段scFv(35kDa)产生的免疫原性比整个单抗低,且更易控制其性质

脂质体在基因治疗中的应用研究及进展

脂质体在基因治疗中的应用研究及进展 摘要:脂质体作为基因载体较病毒载体具有安全性高,免疫原性小,毒性小,容易制备等优点已成功应用于很多体外及动物体内实验,但由于其转染效率低,靶向性低等缺点使其发展受到了很大限制。本文作者通过查阅大量文献回顾脂质体在基因治疗中的应用以及研究进展。得出结论为目前脂质体在基因治疗中的研究热点在于提高脂质体的转染效率,在靶细胞和靶器官达到治疗浓度才能有更好的治疗效果。 关键词:脂质体;基因;转染;靶细胞;靶器官;治疗浓度 引言:基因治疗是将外源基因导入靶细胞并使其有效表达,从而达到治疗的目的。基因治疗的关键在于将目的基因导入到靶细胞或靶器官。而基因一旦进入体内,就有可能被体循环以及胞浆中的核酸酶降解,失效。为了使目的基因在起效前保持结构和功能的完整性,需利用基因载体对其进行保护。因此,基因载体的研究、发展和应用对基因治疗的成功起到至关重要的作用。理想的基因载体应具备可保护基因,使其不被体内核酸酶降解,本身以及降解产物无毒性,无免疫原性,能高效的特异性的传递基因,在体内外均稳定,易大规模生产等条件。目前基因治疗的载体可分为病毒载体和非病毒载体两类[1]。病毒载体因其存在免疫原性、细胞毒性、潜在致瘤性等安全问题,且其容纳的目的基因较小、制作成本高,因而使用受到一定限制。非病毒载体具有免疫原性低,毒性低,可携带的较大目的基因,制备成本低等优点而被广泛应用,其中以脂质体的发展和应用最为广泛。本文将就脂质体在基因治疗中的应用及研究做一简要综述。 1.脂质体的定义以及分类脂质体是磷脂依靠疏水缔合作用在水中自发形成的分子有序组合体,多表现为多层囊泡结构,每一层都为类脂双分子层,层间以及脂质体的内核为水相,而双分子膜为油相。磷脂结构上包括极性部分(称极性头部)和非极性部分(非极性尾部)。在水相中,非极性疏水尾部因疏水作用力相互聚集在一起,并同时将极性的亲水头部暴露于水相中,形成稳定的结构[2]。脂质体按性能可分为一般脂质体、热敏感脂质体、光敏感脂质体、磁性脂质体以及pH 值敏感型脂质体等。按电荷性质则可分为中性脂质体、阴离子脂质体和阳离子脂质体。 2. 脂质体体介导的基因传递机制细胞主要通过内吞的方式摄取周围的大分子物质。大分子物质先被细胞膜的某一区域所包裹,之后胞膜凹陷入胞内,芽生形成囊泡。此过程由胞膜表面的受体介导,大分子物质先与细胞表面的特异性受体结合,这些受体可集中在细胞膜上称为网格蛋白包被小窝的区域中,这一区域可形成网格蛋白包被囊泡[3]。除了受体介导的内吞机制外,Anderson[4]的研究表明细胞还存在独立的网格蛋白内吞途径,其中一个途径是通过细胞膜上的称为包膜窟的一处小凹陷对大分子物质的摄取完成,这一包膜窟自身参与细胞的信号传导以及包括胞吞在内的各类运输过程。一些药物和大分子物质通常不能穿过细胞的脂质双分子层,脂质体可将此类药物和大分子物质封装于脂质体亲水的内核中,既可通过由网格包被蛋白小窝上的受体介导的细胞内吞作用,也可通过胞膜的直接融合作用将目的物质运输入胞内[5]。因为常规的脂质体最终都将被网状内皮系统从血液清除,或者是在内吞过程中被溶酶体降解。所以人们一直在寻找能提高其运输效率和防止其降解的方法。 3.各类脂质体作为基因载体在基因治疗的研究现状普通脂质体由于其易被内皮网状系统吸收,靶向性低,易被核酸酶以及溶酶体降解,传递基因的效率低,为

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

包覆脂质体的研究进展

?综述? 包覆脂质体的研究进展 吕青志,翟光喜*,王海刚,黄兴刚 (山东大学药学院,山东 济南250012) 摘要:包覆脂质体是一种新型的膜修饰脂质体,与普通脂质体相比,提高了脂质体体内外稳定性,延长了体内 循环时间,增加了药物的靶向性。现对各种包覆材料的特点予以评价,并对包覆脂质体的国内外研究进展作一综述。关键词:脂质体;包覆脂质体;壳聚糖;多糖中图分类号:Q946.4 文献标识码:A 文章编号:1672-979X(2007)02-0045-04 Research Advance on Coated Liposomes LV Qing-zhi,ZHAI Guang-xi*,WANG Hai-gang,HUANG Xing-gang( School of Pharmaceutical Sciences, Shangdong University,Jinan 250012, China) Abstract:Coated liposomes are a kind of surface modified liposomes which can improve the stability of liposomes either in vivo or in vitro, prolong the circulation time in vivo by reducing the uptake of the phagocytic cells in the reticuloen-dothelial system (RES) and increase the target detection. The advance of coated liposomes and the characters of coatingmaterials are reviewed in this paper.Key words:liposome; coated liposome; chitosan; polysaccharide 收稿日期:2006-11-28 作者简介:吕青志(1983-),女,山东烟台人,硕士研究生,药剂学专业 * 通讯作者:翟光喜,男,博士,副教授Tel:(0531)88382015E-mail:zhaiguangxi@yahoo.com.cn 脂质体(liposome)作为药物载体,具有一定的靶向性和缓释性,能降低药物给药剂量,减轻药物毒性,提高药物的稳定性[1]。但脂质体属微粒分散制剂,存在粒径变大、絮凝、药物渗漏等问题,口服后胃蛋白酶易吸附于磷脂表面,降解酸敏感的大分子药物;静注给药后网状内皮系统对其识别、吸收,导致体内循环时间缩短;磷脂与血中高密度脂蛋白发生脂交换并与白蛋白、调理素、抗体等作用,使脂质体破裂,包封的药物快速渗漏。包覆脂质体(coated liposome)是一种新型的膜修饰脂质体,与普通脂质体相比,它可增加脂质体双层膜的稳定性,提高脂质体的体内外稳定性,延缓脂质体中的药物释放;能够给脂质体外层周围提供一个亲水性屏障,阻止血浆蛋白对脂质体表面的吸附,静注给药可延长脂质体在体内的循环时间,增加药物的靶向性。常用的包覆材料有多糖(如壳聚糖、藻酸盐)及其衍生物、聚乙烯醇衍生物(PVA-R)、胶原蛋白、右旋糖苷衍生物等[2,3]。 1壳聚糖及其衍生物1.1 壳聚糖 壳聚糖(chitosan,CS)是甲壳素的部分脱乙 酰基产物,是自然界中唯一的碱性多糖,无毒,具 有生物黏附、吸收促进、酶抑制和生物可降解性。在酸性条件下,壳聚糖带正电荷易与黏膜发生静电 吸附,能打开消化道上皮间的紧密连接,增加药物的透膜吸收。用壳聚糖包覆脂质体,阳离子型的壳聚糖与阴离子脂质体发生电荷作用,壳聚糖未完全脱乙酰化的酰基插入脂质体的脂膜中,使分子镶嵌在脂质体的表面,形成壳聚糖脂质体复合物,增加了脂质体的稳定性和药物的靶向性[4-6]。 魏农农等[7]用旋转蒸发法制备氟尿嘧啶前体脂质体,然后用氟尿嘧啶前体脂质体0.5 g,加 pH 7.2的磷酸盐缓冲液(PBS)5 mL,缓慢振摇静置,即得脂质体混悬液,将2.5 mL置于10 mL玻璃离心管中,在漩涡搅拌器上缓慢滴加质量浓度为5 g/L的壳 聚糖溶液,持续搅拌10 min,得混悬状壳聚糖包覆

白藜芦醇制备方法及其生物活性研究进展

食品科学 H A I X I A K E X U E 年第期(总第6期)5 海峡科学 白藜芦醇制备方法及其生物活性研究进展 福建农林大学食品科学学院 冯瑞陈继承林好薛丽华赖明耀庞杰 [摘要]白藜芦醇是蒽醌萜类化合物,一种植物体内产生的天然二苯乙烯类活性多酚物质。该文通过查阅国内外相关文献,从提取方法和生理活性方面对白藜芦醇的制备技术进行了综述,以期对白藜芦醇制备研究和开发利用提供参考。 [关键词] 白藜芦醇 提取方法 生理活性 研究进展 0引言 白藜芦醇(Resveratrol ,简称Res )又称芪三酚,化学名称为3,4,5-三羟基二苯乙烯(3,4,5-trihy-drolystilbence ),是含芪类结构的二苯乙烯芪类、非黄酮类多酚物质[1-2]。白藜芦醇首次从毛叶藜芦(Veratrum grandiflorum)的根部分离得到 [3] ,研究表明,它在抗菌、抗氧化、抗肿瘤、治疗炎症、脂 质代谢紊乱、心脏疾病等方面发挥重要作用[4]。目前发现在虎杖、葡萄、花生、桑葚等72种植物中均含有白藜芦醇。白藜芦醇在自然界中的存在形式有:顺式、反式白藜芦醇和顺式、反式白藜芦醇苷,在紫外光照射下,白藜芦醇苷反式异构体能够转化为顺式异构体,其中反式异构体的生理活性大于顺式异构体,单体活性大于糖苷,植物中白藜芦醇通常以稳定的反式糖苷形式存在[5] 。随着白藜芦醇提取纯化技术和生理、药理活性研究的不断深入,在食品、药品和化妆品等方面的应用前景更为广阔。 1白藜芦醇的提取 白藜芦醇为无色针状结晶,熔点:256℃~258℃,较难溶于水,易溶于丙酮、乙醇、甲醇、乙酸乙酯等有机溶剂。在366nm 激发产生紫色荧光,遇氨水等碱性溶液显红色,遇醋酸镁的甲醇溶液显粉红色,并能和三氯化铁-铁氰化钾起显色反应[6]。白藜芦醇应在低温、避光条件下保存,碱性环境中不稳定。在紫外光210nm 处有强吸收,次强吸收峰分别在305nm~330nm 和280nm~295nm 处[6-7]。 从天然植物中提取白藜芦醇的传统方法为有机溶剂提取法和加热回流法。有机溶剂浸提法所需时间较长,溶剂用量大,生产成本高;而加热回流法所需的温度较高,易造成活性成分的分解或挥发,提取效率低[8] 。随着对白藜芦醇研究的深入和高新提取技术的应用,从植物中提取白藜芦醇的先进工艺不断涌现。新工艺不仅大大提高了白藜芦醇的提取率,而且减少提取时间,缩短生产周期。 1.1有机溶剂提取法 有机溶剂提取法是利用白藜芦醇易溶于有机溶剂的特性,包括:浸渍、回流、索氏抽提及恒温水浴等方法。提取溶剂主要有水、乙醚、甲醇、乙醇、正丁醇、乙酸乙酯和丙酮等。酸性醇法提取白藜芦醇效率较高,一般采用60%~80%酸性乙醇进行回流提取。俸灵林等[9]研究发现甲醇提取效果最好,提取率最高,且用高效液相色谱(HPLC )测定时,杂质峰干扰少。但由于有机溶剂提取时间长,对热不稳定成分易被破坏,杂质含量高,不易纯化,萃取溶剂消耗量大以及污染环境等缺点,许多学者都在研究开发新型提取方法。1.2酶法提取与转化 酶解提取法是天然产物提取的新兴技术,酶可作用于细胞壁,使之破裂、疏松,减小传质阻力,加速有效成分的释放。白藜芦醇酶法提取条件温和,并能够减少中间环节,因此可以提高原料利用率和产物得率。目前用于提取的酶主要有纤维素酶、半纤维素酶、果胶酶、鼠李糖苷酶、木聚糖酶、葡聚糖酶、葡萄苷酶等。在实际应用中一般都采用多种酶复合,以提高白藜芦醇得率,同时也促进白藜芦醇苷的转化。应用较多的是纤维素酶和糖苷酶,纤维素酶能够水解纤维,使植物细胞壁破坏,充分释放细胞内含物,而糖苷酶可水解白藜芦醇苷促进其转化。李梦青[10]将虎杖粗粉加入到纤维素酶和水中进行酶解,滤渣采取乙醇回流提取可获得白黎芦醇的收率高达1.5%。黄志芳等[11]采用纤维素酶、β-葡萄苷酶、复合酶提取虎杖中的白藜芦醇,得到复合酶的水解效果最佳,酶解后的提取物经分步溶解沉淀白藜芦醇粗品,含量可达65%,工艺稳定可行。1.3超临界C O 2萃取法 超临界CO 2萃取是以超临界状态下的CO 2流体为溶剂来提取分离混合物的过程,具有很强的溶解能力和渗透能力以及良好的流动性和传递性,正逐步应用于植物有效成分的提取分离及分析中。周锦珂等[12]采用超临界CO 2萃取虎杖中白藜芦醇,以95%乙醇作夹带剂,萃取物中白藜芦醇的含量可 2012884

脂质体的研究新进展_杨鹏波

JOURNAL OF ZHEJIANG CHINESE MEDICAL UNIVERSITY VOL. 37 NO.7 Jul . 2013 硕博之窗脂质体的研究新进展 杨鹏波张华 山东中医药大学济南250355 摘要:[目的]综述脂质体的应用和研究进展,为药物制成脂质体提供更多的选择。[方法]查阅近几年国内相关的文献资料并总结脂质体在各方面的应用、新的制备方法和修饰方法及其各自的优点。[结果]从脂质体的的应用、制备方法、修饰、质量评价等方面,可看脂质体与生物膜有着极好的相容性,作为载体有很大的优势,修饰后,能增强靶向性,提高药物的疗效,降低毒副作用。[结论]随着新材料的产生和新技术的发展,脂质体的优势将更加显现脂质体作为一种新型的药物载体,与生物膜具有相似性,具有多种优良特性,改变了传统的给药方式。经过近40年的研究,已到广泛的应用。 关键词:脂质体;分类;制备方法;联用技术;质量评价 中图分类号:R282.71文献标识码:A文章编号:1005-5509(2013)07-0936-04 New Progress of The Research of Liposome Yang Pengbo,Zhang Hua Shandong University of TCM Shandong,Jinan(250355) Abstract:[Objective]This paper summarizes the latest literature,which can offer more choices for making liposome drug.[Methods]This article summarizes the application of liposomes in all aspects and new preparation methods and modification methods and their respective advantages.[Results]Liposome as a new type of drug carrier,which has similarity with biological membrane,has many good qualities and changes the traditional way to give medicine.[Con-clusion]Liposome has the broad application after nearly forty years of research. Key words:liposome;classification;preparation;combination technology;quality accessment 脂质体是由脂质双分子层(由磷脂和胆固醇组 成)构成的封闭囊泡,它具有很多的优良性质,如具 有细胞的亲和性和靶向性、缓释性、减低药物毒性、 提高药物稳定性、透皮吸收效率高、可以携带药物进 入细胞、避免耐受性、改变给药途径等[1]。近年来随着 新材料,新技术的产生,又出现了一些新型的脂质体。 1分类 依据载药脂质体给药途径不同,可分为以下几种。 1.1口服脂质体主要用于粘膜免疫和抗肿瘤两个 方面。王刚[2]等将槲皮素制成脂质体,通过研究槲皮 素口服给药后在胃组织中的药物浓度和吸收百分率 得出:槲皮素脂质体有较强的胃肠粘附性,可以延长 药物在胃中的滞留时间,从而提高了药物在胃肠道 的吸收率。 1.2非口服脂质体 1.2.1透皮给药脂质体脂质体透过皮肤的机理: 水合作用、穿透机制、融合机制等。吴青青[3]等采用乙 醇注入法制备姜黄素脂质体,对姜黄素的溶液和其脂 质体经小鼠离体皮肤的累积渗透量及皮肤滞留量进 行比较发现,姜黄素脂质体在皮肤中的滞留量和皮肤 累积透过量都比较大,提高了疗效,降低了毒性。 1.2.2眼用载药脂质体目前主要应用于滴眼剂、玻 璃体内注射给药及眼用喷雾剂等。作用机制:与生物 膜融合作用、通过角膜细胞实现跨角膜转运和脂质体 与眼角膜的吸附作用。郑建灵[4]等采用无膜溶出法研 究西罗莫司壳聚糖包覆脂质体-原位凝胶的释放机 制,对释放曲线进行拟合分析,与传统眼用药物相比, 提高了西罗莫司的生物利用度,降低了对眼睛的刺激 性,具有很好的生物安全性。 1.2.3肺部给药脂质体包括抗感染药物、抗哮喘药 物、抗肿瘤药物、多肽蛋白类药物、基因药物、抗氧剂 [5]。刘洁[6]等从细胞免疫水平考察流感疫苗脂质体干 粉肺部免疫的免疫原性,流感疫苗脂质体肺部免疫产 生的细胞免疫效果比较高,并具有良好的物理稳定性 和生物学稳定性。 1.2.4注射用脂质体有抗肿瘤药物和抗感染药物 及局部用药。钱隽[7]等对注射用紫杉醇脂质体和常规 紫杉醇注射液在肿瘤患者中的药动学进行了比较。注—— —— —— —— —— —— —— — 通讯作者:张华,E-mail:zhongyiyao77@https://www.360docs.net/doc/016208623.html,

相关文档
最新文档