二氧化碳吸收塔设计(可编辑修改word版)

二氧化碳吸收塔设计(可编辑修改word版)
二氧化碳吸收塔设计(可编辑修改word版)

《化工原理》课程设计水吸收二氧化碳填料塔设计

学院医药化工学院

专业精细化工

班级

姓名

学号

指导教师

年月日

目录

概述 (1)

1.设计题目 (1)

2.操作条件 (1)

3.填料类型 (1)

4.设计内容 (1)

4.1吸收剂的选择 (1)

4.2装置流程的确定 (1)

4.3填料的类型与选择 (2)

5.填料吸收塔的工艺尺寸的计算 (2)

5.1基础物性数据 (2)

5.1.1液相物性数据 (2)

5.1.2气相物性数据 (2)

5.1.3气液相平衡数据 (2)

5.2物料衡算 (2)

5.3填料塔的工艺尺寸计算 (3)

5.3.1塔径计算 (3)

5.3.2填料层高度计算 (4)

6.填料层压降计算 (6)

7.液体分布器建简要设计 (7)

7.1液体分布器的选型 (7)

7.2分布点密度计算 (7)

7.3布液计算 (7)

8.吸收塔接管尺寸计算 (8)

9.要符号说明 (8)

9.1料的特性参数 (8)

9.2符号说明 (8)

.

附图(工艺流程简图、主体设备设计条件图)

概述

填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气

体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传

质设备。吸收操作在化学工业中是一种重要的分离方法,本次设计采用水吸收空气中的二氧化碳,处理流量为 3800m3/h,其中进塔二氧化碳的体积分数为

7%,二氧化碳的吸收率达到 95%。吸收效果以减少对大气的污染,属于物理吸收。影响吸收的因素主要为溶质在吸收剂中的溶解度, 其吸收速率主要

决定于气相或液相与界面上溶质的浓度差,以及溶质从气

相向液相传递的扩散速率。本设计本设计采用 4 个同类型的吸收塔并联,塔高 8.4m,塔径 2.9m,采用聚丙烯阶梯填料,具有通量大、阻力小、传质效率高等优点,可以达到较好的通过能力和分离效果。一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。

1.设计题目

试设计一座填料吸收塔,采用清水吸收混于空气中的二氧化碳气体。混合气体的处理量为3800 m3/h,其中含二氧化碳为7%(体积分数),混合气体的进料温度为25℃。要求:

二氧化碳的回收率达到95% 。

2.操作条件

(1)操作压力:常压(2)操作温度:20℃

(3)吸收剂用量为最小用量的 1.5 倍。

3.填料类型

公称直径为50mm 的聚丙烯塑料阶梯环

4.设计内容

设计方案的确定

4.1吸收剂的选择

因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。

4.2装置流程的确定

用水吸收CO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆

. 流吸收流程。由于处理的流量较大,所以用 4 个同类型的吸收塔并联工作。 4.3 填料的类型与选择

用不吸收 CO 2 的过程,操作温度低,但操作压力高,因为工业上通常选用 塑料散装填料,在塑料散装填料中,塑料阶梯填料的综合性能较好,故此选用 D N 50 聚丙烯塑料阶梯环填料。 4.4 操作温度与压力的确定

20℃,常压

5. 填料吸收塔的工艺尺寸的计算

5.1 基础物性数据

5.1.1 液相物性数据

对于低浓度吸收过程,溶液的物性数据可近似取水的物性数据 查得,293K 时水的有关物性数据如下:

密度 ρL =998.2kg/m

粘度 μL = 1?10-3 Pa·s=3.0kg/(m·h)

表面张力 σL =72.6 dyn/cm=940896 kg/h 3 CO 2 在水中的扩散系数为 D L = 1.77×10-9 m 2/s=6.372×10-6 m 2/h 5.1.2 气相物性数据

混合气体的平均摩尔质量为

M vm =∑y i M i =0.07×44+0.93×29=30.05

混合气体的平均密度为 ρvm =

PMvm RT = 101.3 ? 30.05

8.314 ? 298

= 1.23kg/m 3 混合气体粘度近似取空气粘度,手册 20℃空气粘度为

μv =1.81×10-5Pa·s=0.065kg/(m?h) 查手册得 CO 2 在空气中的扩散系数为

D v =1.8×10-5m 2/s=0.044m 2/h 5.1.3 气液相平衡数据

由手册查得,常压下 20℃时 CO 2 在水中的亨利常数为

E=144MP

相平衡常数为

m = E P

= 1.44 ?103 101.3 =1421.5 溶解度系数为 H= E s

= 998.2 1.44 ?103 ?18.02 =0.03845kmol/(m 3·kPa)

5.2 物料衡算

M

V Y V Y L 进塔气相摩尔比为Y 1 =

y 1

1 - y 1 = 0.07 1 - 0.07

= 0.075 回收率为 η=95%

出塔气相摩尔比为 Y 2= Y 1(1-η)=0.075×(1-0.95)=0.00375 进塔惰性气相流量为 V=

950 ? 273

(1 - 0.07) =36.13kmol/h 22.4 298

该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即

L

Y 1 - Y 2

( )min = 1

- X m 2

对于纯溶剂吸收过程,进塔液组成为 X 2=0

L

Y 1 - Y 2 0.075 - 0.00375

( )min = = 1 - X m 2

取操作液气比为 L = 1.5 L

0.075 - 0

1421.5 = 1350.425 V L=1.5 L

(V )min V=73186.28kmol/h

(V )min

因为 V(Y 1-Y 2)=L(X 1-X 2)

所以 X = 36.13 ?(0.075 - 0.00375)= 3.52 ?10-5

1

73186.28

5.3 填料塔的工艺尺寸计算

5.3.1 塔径计算

气相质量流量为 W V =950×1.23=1180.8kg/h 液相质量流量可近似按纯水的流量计算即 W L =73186.28×18.02=1318816.77kg/h

Eckert 通用关联图横坐标为W L (V )0.5 = 1318816.77 ? ( 1.23 )0.5

= 1040.78

W V L

1180.8 998.2 因为数值太大,不适宜用 Eckert 通用关联图计算泛点气速

用贝恩-霍根关联式计算泛点气速:

?u 2 a ? W 1 1 lg ? F ( t )( V ) 0.2 ? = A - K ( L ) 4 ( V ) 8

? g 3

L

? W V L 其中 A=0.204 K=1.75

? u 2 114.2 1.23 0.2 ? 1318816.77 1 1.23 1 lg ? F ? ( ??9.81 0.9273

) ? ( 998.2 ) ?1 ? = 0.204 - 1.75 ? ( ??

1180.8 ) 4 ( ) 8 998.2 计算得 u F =0.063m/s

取 u=0.7u F =0.7×0.063=0.044m/s

4V S u

4 ?

950

3600 3.14 ? 0.0441 1 2 ( ) + 2 2

由 D = = = 2.76 m

泛点率校核:

u = 0.043

=68.25%(在允许范围内) u F 0.063

液体喷淋密度校核,取最小润湿速率为(L W )min =0.08m 3/m·h 查塑料阶梯环特性数据表得:

型号为 D N 50 的阶梯环的比表面积 a t =114.2 m 2/m 3

U min =(L W )min a t =0.08×114.2=9.136m 3/m 2·h

1318816.77

U= 998.2 = 214.67 > U min 0.785 ? 2.82

经校核可知,塔径 D=2.8m 合理。

5.3.2 填料层高度计算

Y * =mX 1=1421.5×3.52×10-5=0.05

Y * =mX 2

=0 脱因系数为 S=

mV = 1421.5 ? 36.13 =0.702

L 73186.28

气相总传质单元数:

1

? N = ln ? 1 - S Y * - Y * ? 1 2 ? S OG 1 - S ? 1

?

Y - Y * ?

0.075 - 0 ? = 1 - 0.702 ln ??(1 - 0.072) ? 0.00375 - 0 ??

+ 0.702 =3.796

气相总传质单元高度采用修正的恩田关联式计算:

a ?? ? ?0.75

? U ?0.1 ? U 2 a ? -0.05 ? U 2 ?0.2 ?? w = 1- exp ?-1.45 c ?

L ?

L t ? L ? ? a t

??

?

L

?

? a t L ? ? L L a t ?

? L L a t ? ??

查常见材质的临界表面张力值表得

σc =33dyn/cm=427680kg/h 2

材质

碳 瓷 玻璃 聚丙烯 聚氯乙烯 钢 石蜡

表面张力, mN /m 56 61 73

33

40

75 20

液体质量通量为

U L =214288.44kg/(m 2·h)

a ?? ? 427680 ?0.75? 214288.44 ?0.1? 214288.442 ?114.2 ?-0.05

? 214288.442 ?0.2 ?? w = 1 - exp ?-1.45 ? ? ? ? ? a t ? 940896 ? ?

114.2 ? 3.6 ?

998.22 ?1.72 ?108 ? 998.2 ? 940896 ?114.2 ? ?? a w

=0.77

a t

? ? ? ? ??

吸收系数由下式计算:

0.7

1

? U V ? ? V

?3 ? a t

D V ?

K G = 0.237 ? a ? D ? RT ?

? t V ? ? V V ? ?

? 质量通量为U V =

950 ?1.23 =189.86 0.785 ? 2.82

kg /(m 2 ? h )

K = 0.237 ? ?

189.86 ?0.7 ? 0.065 1 ? 3 ? 114.2 ? 0.044 ?

? G 114.2 ? 0.065 ?

1.23 ? 0.044 8.314 ? 293 ?

? ? ? ? ? ? =5 ? 10-3kmol/(m 3·h·kPa)

吸收系数由下式计算:

2

-1

1

? U L

? 3 ?

L

? 2 ? L g ? 3

K L = 0.0095 a

? ? ? D ? W L ? ? L L ? ? L ?

2 -1 1

? 214288.44 ? 3 ? 3.6 ? 2 ? 3.6 ?1.27 ?108 ? 3 K L = 0.0095 0.77 ?114.2 ? 3.6 ? 998.2 ?1.78 ?10-9 ? ?

998.2 ? ? ? =1.189m/h

查常见填料的形状系数表得

= 1.45

? ? ?

料类型

球形 棒形 拉西环 弧鞍 开孔环

Ψ值 0.72 0.75 1 1.19 1.45

K G a = K G a W 1.1 = 5?10-3 ? 0.77 ?114.2 ?1.451.1

=0.66 kmol/(m 3·h·kPa)

K L a = K L a W

0.4

= 0.04 ? 0.77 ?114.2 ?1.450.4

=4.08 kmol/(m 3·h·kPa)

L

L

u/u F=66.17%>50﹪

'??u ?1.4 ?

由K

G

a =?1 + 9.5

u

- 0.5??K

G

a

??? F ???

'??u ?2.2 ?

K

L

a =?1 + 2.6

u

- 0.5??K

L

a

??? F ???

得K G

'a=[1+9.5?(0.6825-0.5)1.4]?0.66=1.24kmol/(m3·h·kPa)

得K

'a=[1+2.6?(0.6825-0.5)2.2]?4.08=4.18kmol/(m3·h·kPa)

K G a =

1

=

1

1

+

1 1

+

1

=0.142 kmol/(m3·h·kPa)

'HK ' 1.24 0.03845 ? 4.18

H OG= V =

K Y a

V

=

K G aP

36.13

0.142 ?101.3 ? 0.785 ? 2.82

=0.4m

Z=H OG N OG=0.4× 1.5m

得Z′=1.4×1.5=2.1m

取填料层高度为Z′=2m

查散装填料分段高度推荐值表

对于阶梯环填料

h

D

= 8 ~ 15 h max≤6m 取h = 8

D

则h=8×800=6400mm 计算得填料层高度为2100mm,故不需分段。

6.填料层压降计算

通过散装填料压降曲线查出压降查通用关联图得: △P/Z= 12 Pa/m

填料层压降为△P=12×2.1=25.2Pa

K

G

a

?

2 7. 液体分布器建简要设计

7.1 液体分布器的选型

由于该吸收塔液相负荷比较大,而气相负荷相对比较低,所以选择用槽式液体分布器。

7.2 分布点密度计算

按照 Eckert 建议值,D ≥ 1200 时,喷淋点密度为 42 点/m 2,因为该塔也想负荷

比较大,设计取喷淋点密度为 76 点/m 2。布液点数为

N= 0.785 ? 2.82 ? 76 ≈ 472 点

按分布点集合均匀与流量均匀的原则,进行布点设计。设计结果为二级槽

一共设置 13 道,在槽侧面开孔,槽宽度为 10cm 。槽高度为 20cm,两槽中心距离为 20cm 。分布点采用三角形排列。布液点示意图,如图。

7.3 布液计算

由 2

L s = d 0 n? 4

取 ?=0.6,△H=200mm

1

1

? 4 ?1318816.77 ? 2

?

4L s ? 998.2 ? 3600 d 0= ? = ?

=0.028mm n 2g H

? 3.14 ? 472 ? 0.6 2 ? 9.81? 0.2 ? ?

? ?

? ?

2g H

设计取d0= 28mm。

8.吸收塔接管尺寸计算

一般工程计算时,水管路压力常见为0.0-0.6MPa,水在水管中的流速为1-

3m/s

水的质量流速:WL=1318816.77kg 水的流量: Q L= 1318816.77

998.2 ?3600

=0.367m3/s 取流速为u L=1.5m/s 0.785×D2 水管×1.5=0.367

计算得D

水管=0.558m 取D

水管

=0.56m

空气的流量为Q L=950m3/h 取流速为20m/s

0.785×D2 空气管×20= 950

3600

D 空气管=0.129m 取D 空气管=0.14m

9.要符号说明

设计中问题的评价:

(1)对于吸收塔基本尺寸的确定以及数据来源,物性参数,合适取值范围的确

定要按具体的实际设计情况来定。

(2)对于吸收塔填料装置的材料属性,以及经济效益要综合考虑工艺的可能

性又要满足实际操作标准。

(3)对于吸收塔的温度的确定,由吸收的平衡关系可知,温度降低可增加溶

质组分的溶解度,对于压力的确定,选择常压,减少工作设备的负荷。

设计体会

刚拿到任务说明书时,一脸茫然,大家都是第一次接触到这个陌生的东西,面对大量繁琐的计算,我的头都大了,其中我得了一个很不合理的数据,经过反复查找,才发现前面有个小数点弄错了,我深深体会到了科学需要的严谨性。在设计课程报告时,要输入大量的公式,我自学了一点公式编辑器的知识,感觉它非常有用,今后有时间还得好好学学。我会好好对待以后的每一次设计,让老师满意。

参考文献

(1)林大均,于传浩,杨静《化工制图》高等教育出版社 2007.8

(2)贾绍义,柴诚敬《化工原理课程设计》天津大学出版社 2002.8

(3)杨祖荣《化工原理》化学工业出版社 2009.6

流程简图

主体设备设计条件图

水吸收_低浓度二氧化硫_填料吸收塔_设计

水吸收低浓度SO2填料吸收塔设计 第一部分设计任务、依据和要求 一、设计任务及操作条件 1、混合气体(空气中含SO 2 气体的混合气体)处理量为90 kmol/h 2、混合气体组成:SO 2 含量为7.6%(摩尔百分比),空气为:92.4%(mol/%) 3、要求出塔净化气含SO 2为:0.145%(mol/%),H 2 O为:1.172 kmol/h 4、吸收剂为水,不含SO 2 5、常压,气体入塔温度为25°C,水入塔温度为20°C。 二、设计内容 1、设计方案的确定 2、填料吸收塔的塔径、填料层高度及填料层压强的计算。 3、填料塔附属结构的选型与设计。 4、填料塔工艺条件图。 三、H2O- SO2 在常压20 °C下的平衡数据

四、 气体与液体的物理性质数据 气体的物理性质: 气体粘度()0.0652/G u kg m h =? 气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ= 液体的物理性质:液体粘度 3.6/()L u kg m h =? 液体扩散系数625.310/L D m s -=? 液体密度 3998.2/L kg m ρ= 液体表面张力 4273/92.7110/L dyn cm kg h σ==? 五、 设计要求 1、设计计算说明书一份 2、填料塔图(2号图)一张

第二部分 SO2净化技术和设备 一、SO2的来源、性质及其危害: 1、二氧化硫的来源 二氧化硫的来源很广泛,几乎所有企业都要产生二氧化硫,最主要途径是含硫化石燃料的燃烧。大约一吨煤中含有5-50kg硫,一吨石油中含有5-30kg硫。这些燃料经燃烧都产生并排放出二氧化硫,占所有排放总量的96%. 二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要有自然来源和人为来源两大类: 自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。地球上57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这部分二氧化硫占地球上二氧化硫来源的43%。随着化石燃料消费量的不断增加,全世界认为排放的二氧化硫在不断在增加,其中北半球排放的二氧化硫占人为排放总量的90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二氧化硫和二氧化碳是造成我国大气污染的主要原因。由于我国部分地区燃用高硫煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈刺激性气味。分子量64.07 密度为1.4337kg/m3 (标准状况下),密度比空气大。溶解度:9.4g/mL(25℃)熔点-76.1℃(200.75K)沸点-10℃ (263K)

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书 天津大学化工基础实验中心 2013.06

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

二氧化碳吸收塔设计(可编辑修改word版)

《化工原理》课程设计水吸收二氧化碳填料塔设计 学院医药化工学院 专业精细化工 班级 姓名 学号 指导教师 年月日

目录 概述 (1) 1.设计题目 (1) 2.操作条件 (1) 3.填料类型 (1) 4.设计内容 (1) 4.1吸收剂的选择 (1) 4.2装置流程的确定 (1) 4.3填料的类型与选择 (2) 5.填料吸收塔的工艺尺寸的计算 (2) 5.1基础物性数据 (2) 5.1.1液相物性数据 (2) 5.1.2气相物性数据 (2) 5.1.3气液相平衡数据 (2) 5.2物料衡算 (2) 5.3填料塔的工艺尺寸计算 (3) 5.3.1塔径计算 (3) 5.3.2填料层高度计算 (4) 6.填料层压降计算 (6) 7.液体分布器建简要设计 (7) 7.1液体分布器的选型 (7) 7.2分布点密度计算 (7) 7.3布液计算 (7) 8.吸收塔接管尺寸计算 (8) 9.要符号说明 (8) 9.1料的特性参数 (8) 9.2符号说明 (8) . 附图(工艺流程简图、主体设备设计条件图)

概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气 体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传 质设备。吸收操作在化学工业中是一种重要的分离方法,本次设计采用水吸收空气中的二氧化碳,处理流量为 3800m3/h,其中进塔二氧化碳的体积分数为 7%,二氧化碳的吸收率达到 95%。吸收效果以减少对大气的污染,属于物理吸收。影响吸收的因素主要为溶质在吸收剂中的溶解度, 其吸收速率主要 决定于气相或液相与界面上溶质的浓度差,以及溶质从气 相向液相传递的扩散速率。本设计本设计采用 4 个同类型的吸收塔并联,塔高 8.4m,塔径 2.9m,采用聚丙烯阶梯填料,具有通量大、阻力小、传质效率高等优点,可以达到较好的通过能力和分离效果。一般说来,完整的吸收过程应包括吸收和解吸两部分。在化工生产过程中,原料气的净化,气体产品的精制,治理有害气体,保护环境等方面都要用到气体吸收过程。填料塔作为主要设备之一,越来越受到青睐。 1.设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的二氧化碳气体。混合气体的处理量为3800 m3/h,其中含二氧化碳为7%(体积分数),混合气体的进料温度为25℃。要求: 二氧化碳的回收率达到95% 。 2.操作条件 (1)操作压力:常压(2)操作温度:20℃ (3)吸收剂用量为最小用量的 1.5 倍。 3.填料类型 公称直径为50mm 的聚丙烯塑料阶梯环 4.设计内容 设计方案的确定 4.1吸收剂的选择 因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。 4.2装置流程的确定 用水吸收CO2属于中等溶解度的吸收过程,故为提高传质效率,选择用逆

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。 ΔP , k P a

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

水吸收二氧化碳填料塔课程设计

设计任务书 (一)设计题目 试设计一座吸收塔,用于脱除混于空气中的CO2,混合气体 的处理为3500m3/h,其中CO23﹪。要求二氧化碳吸收率为 90%,采用清水进行吸收。 (二)操作条件 常压,28℃ (三)填料类型 选用聚丙烯阶梯环填料,填料规格自选 (四)设计内容 1、吸收塔的物料衡算 2、吸收塔的工艺尺寸计算 3、填料层压降的计算 4、吸收塔接管尺寸的计算 5、绘制吸收塔的结构图 6、对设计过程的评述和有关问题的讨论 7、参考文献 8、附表

目录 一、概述 (4) 二、计算过程 (4) 1. 操作条件的确定 (4) 1.1吸收剂的选择 (4) 1.2装置流程的确定 (4) 1.3填料的类型与选择 (4) 1.4操作温度与压力的确定 (4) 2. 有关的工艺计算 (5) 2.1基础物性数据 (5) 2.2物料衡算 (6) 2.3填料塔的工艺尺寸的计算 (6) 2.4填料层降压计算 (11) 2.5吸收塔接管尺寸的计算 (12) 2.6附属设备……………………………………………… ..12 三、评价 (13) 四、参考文献 (13) 五、附表 (14)

一、概述 填料塔不但结构简单,且流体通过填料层的压降较小,易于用 耐腐蚀材料制造,所以它特别适用于处理量小,有腐蚀性的物 料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料 顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气 液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液 传质设备。 二、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 因为用水作吸收剂,同时CO2不作为产品,故采用纯溶剂。 1.2装置流程的确定 用水吸收CO2属于中等溶解度的吸收过程,故为提高传 质效率,选择用逆流吸收流程。 1.3填料的类型与选择 用不吸收CO2的过程,操作温度低,但操作压力高,因 为工业上通常选用塑料散装填料,在塑料散装填料中,塑 料阶梯填料的综合性能较好,故此选用DN聚丙烯塑料阶 梯环填料。 1.4操作温度与压力的确定 28℃,常压

二氧化碳吸收与解吸实验汇总情况

实用标准 二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~ u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

合成氨车间二氧化碳吸收塔设计毕业设计

摘要 在工业合成氨的生产过程中,粗原料气经过一氧化碳变换以后,变换气中除氢气外,还有二氧化碳和甲烷等成分,其中二氧化碳含量多达15%-35%。二氧化碳不仅降低氨合成催化剂的活性,又是制造尿素、碳酸氢铵等氮肥的原料,因此要想法除去。 本设计的目的是根据所给技术特性参数,合理设计Ι段二氧化碳吸收塔,用来脱除变换气中的二氧化碳气体。根据《GB150-1998钢制压力容器》、《JBT4710-2005钢制塔式容器》等标准,通过常规设计方法步骤进行设计,包括塔体的筒体和封头壁厚计算和水压试验,接管、接管法兰、人孔法兰和塔内件的选取,裙座的计算和设计,开孔补强计算,风载荷和地震载荷的计算和校核,以及筒体和裙座的应力分析等。强度校核时,大部分情况下将受压元件的应力限制在材料的需用应力以内,用来确保设计的安全性和经济性。 关键词:二氧化碳合成塔;填料塔;合成氨

引言 塔设备又称塔器,塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。用以使气体与液体、气体与固体、液体与液体或液体与固体密切接触,并促进其相互作用,以完成化学工业中热量传递和质量传递过程。 二氧化碳吸收塔,是利用碳酸钾溶液来脱去变换气中的二氧化碳气体,要保证较高的脱碳效率和设备的安全性能,必须对吸收塔系统进行合理的设计,包括吸收塔的尺寸设计,吸收塔材料的选择以及塔部件的选取。吸收塔的主要部件有外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体、液体进出口接管等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。塔内件是填料塔的组成部分,它与填料及塔体共同构成一个完整的填料塔。塔内件的作用是使气液在塔内更好地接触,以便发挥填料塔的最大效率和最大生产能力,因此塔内件设计的好坏直接影响填料性能的发挥和整个填料塔的性能。另外,填料塔的“放大效应”除填料本身因素外,塔内件对它的影响也很大。填料塔的内件主要有:填料支撑装置、填料压紧

CO2吸收塔设计

摘要 塔设备是化工、炼油生产中最重要的设备之一,是一种重要的单元操作设备。它可使气(或汽)液或液液两相之间进行充分接触,达到相际传质及传热的目的。常见的、可在塔设备中完成的单元操作有:蒸馏、吸收、解收、萃取、气体的洗涤等。此外,工业气体的冷却与回收、气体的湿法制作和干燥,以及兼有气液两相传质和传热的增湿和减湿等也可在塔设备中完成。 塔设备按其结构特点可以分为板式塔、填料塔和复合塔3类。本次设计选用填料塔作为吸收塔,主要考虑填料塔的以下优点:填料塔结构简单、压力降小,传热效率高,便于采用耐腐蚀的材料制造等,对于热敏性及容易起泡的物料更显出优越性。 本次设计内容包括:发展概况及应用的了解,塔体的选型,填料的选择,工艺计算(包括物料衡算,模拟计算,工艺尺寸计算,高度计算,压降计算,分布装置设计,支撑装置设计);机械计算(包括塔釜设计,上部筒体机械设计,开孔与开孔补强计算,强度设计和稳定设计,支座的选型和设计,接管的选用,法兰的选取),设备的制造及安装等,最后利用CAD将其装配图和部分零件图分别绘制出。 关键词:填料塔;二氧化碳;气液传质;逆相混合

Abstract Tower is one of the most important equipment in chemical industry and oil production, it is also an important handling equipment. It will enable gas(or steam) liquid or liquid-liquid connnecting fully and reaching the purposes of transfering media and heat . Commonly, operation can be completed in tower are: distillation, absorption, of the admission, extraction, washing of the gases. In addition, recycling and cooling of gas in industrial , the gas production of wet and dry, and both two-phase of gas-liquid mass transfering and heat transfering by the humidification and wet,could also be done in the tower. The struction of tower can be divided into plate tower, packed tower and the tower due to its characteristics . The packed tower is choosen as the absorber in the design, Given to the following advantages of the tower: the structure of the tower is simple, the pressure is small , the efficiency of heat conveying is high , and it could be made by corrosion-resistant materials easily, such as manufacturing, thermosensitive and sparkling materials more easily Demonstrate superiority. The design includes: Development and application of knowledge of the tower, and the selection of the structer about the tower, the choice of packing terms and caculating(including the caculating about material balance, simulation caculating, process size, height, the pressure drop, the distribution of design, Design Support Unit); mechanical calculations (including the reactor design of the tower, the design of the upper shell, the opening and the opening reinforcement, the strength of the design and stability of the design, the selection and design of the bearing ,the choice to take over, the selection of flange ), The manufacture the map of assemble and parts with the help of CAD. Key words:Packed tower;Carbon dioxide;Gas-liquid mass transfer; Reverse mixed

二氧化碳吸收与实验

二氧化碳吸收实验装置 说明书 天津大学化工基础实验中心 2015.04

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气,解吸水中二氧化碳的操作练习。 三、实验原理: 气体通过填料层的压强降: 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图-1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能: 吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,

二氧化碳吸收实验

填料吸收塔实验装置 说明书 天津大学化工基础实验中心 2014.10

一、实验目的: 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容: 1.测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2.固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度以下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3.进行纯水吸收混合气体中的二氧化碳、用空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图1所示: 图1 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线 0。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。

传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 二氧化碳吸收实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ; L K -以气相分压表示推动力的总传质系数,或简称为液相传质总系数,1-?s m 。

二氧化碳吸收与解吸实验.docx

氧化碳吸收与解吸实验 一、 实验目的 1. 了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测 定数据的处理分析,加深对填料塔流体力学性能基本理论的理解, 加深对填料塔传 质性能理论的理解。 2. 掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、 实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较 大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传 质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料 塔液侧传质膜系数和总传质系数。 三、 实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强 降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下 填料层的压强降JP 与气速U 的关系如图一所示: 图一填料层的P ?U 关系 当液体喷淋量L o =0时,干填料的丄P ?U 的关系是直线,如图中的直线

当有一定的喷淋量时,厶P?U的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P?U关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1. 二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A的传质速率方程可分别表达为气膜G A = k g A( P A - P Ai) ( 1) 液膜G^k I A(C Ai -C A) (2) 式中:G A —A组分的传质速率,kmoI S J; A —两相接触面积,m; P A —气侧A组分的平均分压,Pa; P Ai —相界面上A组分的平均分压,Pa; C A—液侧A组分的平均浓度,kmol m j3 C Ai —相界面上A组分的浓度kmol m J3 k g —以分压表达推动力的气侧传质膜系数,kmol m^ s^1 Pa j; kι—以物质的量浓度表达推动力的液侧传质膜系数,m S J。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表 达为:G A=K G A(P A-P A)(3) G A=K L A(C A -C A)(4) 式中:P A —液相中A组分的实际浓度所要求的气相平衡分压,Pa; C A —气相中A组分的实际分压所要求的液相平衡浓度,kmol m^ ; K G —以气相分压表示推动力的总传质系数或简称为气相传质总系数, kmol m ^2SV Pa 4;

吸收塔设计

大庆师范学院 《化工原理》课程设计说明书 设计题目吸收塔设计 学生姓名濮玲 指导老师 学院化学化工学院 专业班级化工4班 完成时间2010年12月18日

目录 第一节前言 (5) 1.1 填料塔的主体结构与特点 (5) 1.2 填料塔的设计任务及步骤 (5) 1.3 填料塔设计条件及操作条件 (5) 第二节填料塔主体设计方案的确定 (6) 2.1 装置流程的确定 (6) 2.2 吸收剂的选择 (6) 2.3填料的类型与选择 (6) 2.3.1 填料种类的选择 (6) 2.3.2 填料规格的选择 (6) 2.3.3 填料材质的选择 (7) 2.4 基础物性数据 (7) 2.4.1 液相物性数据 (7) 2.4.2 气相物性数据 (7) 2.4.3 气液相平衡数据 (8) 2.4.4 物料横算 (8) 第三节填料塔工艺尺寸的计算 (9) 3.1 塔径的计算 (9) 3.2 填料层高度的计算及分段 (10) 3.2.1 传质单元数的计算 (10) 3.2.3 填料层的分段 (12) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (13) 4.1 塔内件类型 (13) 4.2 塔内件的设计 (13) 4.2.1 液体分布器设计的基本要求: (13) 4.2.2 液体分布器布液能力的计算 (13) 注:14 1填料塔设计结果一览表 (14) 2 填料塔设计数据一览 (14)

3 参考文献 (16) 4 后记及其他 (16) 附件一:塔设备流程图 (16) 附件二:塔设备设计图 (17)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

二氧化碳吸收

吸收实验装置说明书 一、实验设备的特点 本实验装置可用于实验教学和科研。通过该实验装置,可以了解填料吸收塔的结构,掌握其操作方法;学习填料塔流体力学性能的测量方法;学习并掌握吸收塔传质性能的测量方法;加深对填料吸收塔的一些基本概念及理论的理解。 ⒈使用方便,安全可靠,直观; ⒉数据稳定,实验准确; ⒊本装置体积小,重量轻,移动方便。 二、设备主要技术数据及其附件 ⒈设备参数: ⑴风机:XGB-12型,550W; ⑵填料塔:玻璃管内径D=0.035m,内装φ4×10mm瓷拉西环,填料层高度Z=0.60m; ⑶填料塔:玻璃管内径D=0.035m,内装φ4×10mm瓷拉西环,填料层高度Z=0.60m; ⑷二氧化碳钢瓶1个、减压阀1个(用户自备)。 ⒉流量测量: ⑴CO2转子流量计:型号:LZB-6;流量范围:0.06~0.6m3/h;精度: 2.5% ⑵空气转子流量计:型号:LZB-10;流量范围:0.25~2.5m3/h;精度: 2.5% ⑶水转子流量计:型号:LZB-10;流量范围:16~160 L/h;精度: 2.5% ⑷解吸收塔水转子流量计:型号:LZB-6 流量范围:6~60 L/h 精度: 2.5% ⒊浓度测量:吸收塔塔底液体浓度分析:定量化学分析仪一套 ⒋温度测量:Cu50铜电阻,液温度。

三、实验装置的基本情况 图1 二氧化碳吸收解吸实验装置流程 1-减压阀;2-CO2钢瓶;3-CO2流量计;4-解吸塔水流量计;5-解吸塔水泵;6-吸收塔;7,8-取样阀; 9-吸收塔底出分液阀;10-吸收塔底回液阀;11-放液阀;12、13-空气进气阀;14、15-U型管; 16-解吸塔;17-吸收塔水流量计;18-空气流量计;19-空气旁通阀;20-吸收塔水泵;21-风机 吸收质(纯二氧化碳气体)由钢瓶经二次减压阀和转子流量计3,进入吸收塔塔底,气体由下向上经过填料层与液相水逆流接触,到塔顶经放空;吸收剂(纯水)经转子流量计17进入塔顶,再喷洒而下;吸收后溶液由塔底流入塔底液料罐中由解吸泵5经流量计4进入解吸塔,空气由18流量计控制流量进入解吸塔塔底由下向上经过填料层与液相逆流接触,对吸收液进行解吸,然后自塔顶放空,U形液柱压差计用以测量填料层的压强降。

水吸收丙烯酸气体吸收塔设计

水吸收丙烯酸气体吸收塔设计 一、设计条件的选定 1、混合气:产物:丙烯酸气体 副产物:醋酸,甲酸,二氧化碳,马来酸,丙烯醛,乙醛,丙酮等气体。 混合气的处理量为:h /m 640.467393 2、进塔混合气组成:含丙烯酸摩尔分率:%6.6 3、进塔混合气温度:100℃ 4、进塔吸收剂(水)的温度:25℃ 5、丙烯酸回收率:%64.74 6、操作条件:操作压力在常压下进行 第一章 概述 1.1吸收塔的概述 气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。 实际生产中,吸收过程所用的吸收剂常需回收利用。故一般来说,完整的吸收过程应包括吸收和解吸两部分。在设计上应将两部分综合考虑,才能得到较为理想的设计结果。作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作: (1) 根据给定的分离任务,确定吸收方案; (2) 根据流程进行过程的物料和热量衡算,确定工艺参数; (3) 依据物料及热量衡算进行过程的设备选型或设备设计; (4) 绘制工艺流程图及主要设备的工艺条件图; 1.2吸收设备的发展 吸收操作主要在填料塔和板式塔中进行,尤以填料塔的应用较为广泛。 塔填料的研究与应用已取得长足的发展:鲍尔环、阶梯环、金属环矩鞍等的出现标志散装填料朝高通量、高效率、低阻力方向发展有新的突破;规整填料在工业装置大型化和要求高分离效率的情况下倍受重视,已成为塔填料的重要品种。 填料塔仍处于发展之中,今后的研究方向主要是提高传质效率,同时考虑填料的强度、操作性能及使用上的通用因素并综合环型、鞍型及规整填料的优点开发构型优越、堆积接触方式合理、流体在整个床层均匀分布的新型填料。目前看来,填料的材质以陶瓷、金属、塑料为主,为满足化工生产温度和耐腐蚀要求,已开发了氟塑料制成的填料。 填料塔的发展,与塔填料的开发研究是分不开的。除了提高原有填料的流体力学与传质性能外,还开发了效率高、放大效应小的新型填料。加上塔填料本身具有压降小、持液量小、耐腐蚀、操作稳定、弹性大等优点,使填料塔开发研究达到了新的台阶。 1.3吸收过程在工业生产上应用 化工生产中吸收操作广泛应用于混合气体的分离: (1) 净化或精制气体,混合气体中去除杂质。如用K 2CO 3水溶液脱除合成气中的CO 2,丙酮脱除石油裂解气中的乙炔等。 (2) 制取某种气体的液态产品。如用水吸收氯化氢气体制取盐酸。 (3) 混合气体以回收所需组分。如用汽油处理焦炉气以回收其中的芳烃。 (4) 工业废气处理。工业生产中所排放的废气中常含有丙酮,NO ,NO 2,HF 等有害组分,组成一般很低,但若直接排入大气,则对人体和自然环境危害都很大。因此排放之前必须加以处理,选用碱性吸收剂吸收这些有害的气体是环保工程中最长采用的方法

二氧化碳吸收与解吸实验说明书..

二氧化碳吸收与解吸实 验装置说明书 仁爱化工基础实验中心 王立轩 2014.05

一、实验目的: 1.了解填料吸收塔的结构和流体力学性能。 2.学习填料吸收塔传质能力和传质效率的测定方法。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定填料塔在一定液体喷淋量下的 液泛气速。 2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的 气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质 单元高度和体积吸收总系数)。 3. 采用纯水吸收二氧化碳、空气解吸水中二氧化碳,测定填料塔的液侧传质 膜系数和总传质系数。 三、实验原理 1.气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层 压强降的大小决定了塔的动力消耗。压强降与气、液流量有关,不同液体喷淋 量下填料层的压强降P ?与气速u 的关系如图1-1所示: 图1-1 填料层的P ? ~u 关系 当无液体喷淋即喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图

中的直线0。当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转 折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:恒持液量区、载液区与液泛区。 2. 传质性能:吸收系数是决定吸收过程速率高低的重要参数,而实验测定是 获取吸收系数的根本途径。对于相同的物系及一定的设备(填料类型与尺寸), 吸收系数将随着操作条件及气液接触状况的不同而变化。 (1)二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别 表达为 气膜 )(Ai A g A p p A k G -= (1-1) 液膜 )(A Ai l A C C A k G -= (1-2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别 表达为:)(* -=A A G A p p A K G (1-3) )(A A L A C C A K G -=* (1-4) 式中:* A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; *A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

相关文档
最新文档