位移传感器的更换及如何标定----1780张伟

位移传感器的更换及如何标定----1780张伟
位移传感器的更换及如何标定----1780张伟

位移传感器的更换及如何标定

更换步骤:

1.在确认位移传感器损坏的情况下,通知调度室摘牌作业,通知相关设备人员

关闭截门,进行缷压.

2.确认缷压后,缷下位移传感器。

3.在允许停电的情况下,断开24电源,摘除接线,并记清线的颜色,以免接新

线时出现错误,烧毁位移传感器。如果条件不允许停电,则要先摘除电源线,再摘除信号线。(最好摘线时,留一段磁尺线,以为接线根据颜色可以判断,节省时间,提高正确率)

4.确认缸体已装磁环,换上新的位移传感器,进行接线,先接正负时钟,正负

数据线,然后接电源线。接线完毕需重新确认接线正确性,确认后通知调度室,送电测试。

通常轧线所用位移传感器为六线制:

BN 棕色+24V

WH 白色0V

GY 灰色- data

PK 粉色+data

YE 黄色+clock

GN 绿色- clock

标定过程:

1.如果更换新位移传感器则需要找到相应的程序块进行重新标定,此程序块在

硬件输入里。

2.标定需要在线修改以下参数NFP , OFF

3.NFP参数为位移传感器的精度,在位移传感器说明书上即可读出

说明书上C所代表的数值即是位移传感器的精度。

例如:说明书上C所在位置注明为1,则需要将NFP值修改为5.0e-3,此值对应输出端YP应用单位为毫米,如果输出端YP用到的单位为米(具体单位要根据输出端YP连接到程序中的应用判断),则需要将5.0e-3改为5.0e-6

4.OFF值的修改需要根据量程范围确定

首先要判断位移传感器的零位,有的液压缸打到最大为0,有的液压缸打到最小为0.可以先把液压缸打到最大或最小时标定零位,然后打到相反的极限位置检查YP端显示值如果近似与量程极限,则标定完成,如果显示值为负数,则零位选择不正确,需重新判断最大还是最小时为零位。

零位的标定方法:

将液压缸打开到最大或最小,修改OFF值置0,将模块的输出YP端显示值复制到OFF中,这时YP端将显示近似为0。

例如量程为0—500mm的位移传感器,将液压缸打到最小时标定零位,然后将液压缸打到最大,YP端显示值为正数近似500,则说明标定正确完成;如果YP端显示值为负数,则需重新将液压缸打到最大时标定零位,然后将液压缸打到最小检测YP端显示值如果为正数近似500,则标定

注释:

精轧串辊缸位移传感器零位在中间位置,由设备插定位销确定,然后标定零位。

位移传感器的更换及如何标定----1780张伟

位移传感器的更换及如何标定 更换步骤: 1.在确认位移传感器损坏的情况下,通知调度室摘牌作业,通知相关设备人员 关闭截门,进行缷压. 2.确认缷压后,缷下位移传感器。 3.在允许停电的情况下,断开24电源,摘除接线,并记清线的颜色,以免接新 线时出现错误,烧毁位移传感器。如果条件不允许停电,则要先摘除电源线,再摘除信号线。(最好摘线时,留一段磁尺线,以为接线根据颜色可以判断,节省时间,提高正确率) 4.确认缸体已装磁环,换上新的位移传感器,进行接线,先接正负时钟,正负 数据线,然后接电源线。接线完毕需重新确认接线正确性,确认后通知调度室,送电测试。 通常轧线所用位移传感器为六线制: BN 棕色+24V WH 白色0V GY 灰色- data PK 粉色+data YE 黄色+clock GN 绿色- clock 标定过程: 1.如果更换新位移传感器则需要找到相应的程序块进行重新标定,此程序块在 硬件输入里。

2.标定需要在线修改以下参数NFP , OFF 3.NFP参数为位移传感器的精度,在位移传感器说明书上即可读出 说明书上C所代表的数值即是位移传感器的精度。 例如:说明书上C所在位置注明为1,则需要将NFP值修改为5.0e-3,此值对应输出端YP应用单位为毫米,如果输出端YP用到的单位为米(具体单位要根据输出端YP连接到程序中的应用判断),则需要将5.0e-3改为5.0e-6 4.OFF值的修改需要根据量程范围确定 首先要判断位移传感器的零位,有的液压缸打到最大为0,有的液压缸打到最小为0.可以先把液压缸打到最大或最小时标定零位,然后打到相反的极限位置检查YP端显示值如果近似与量程极限,则标定完成,如果显示值为负数,则零位选择不正确,需重新判断最大还是最小时为零位。 零位的标定方法: 将液压缸打开到最大或最小,修改OFF值置0,将模块的输出YP端显示值复制到OFF中,这时YP端将显示近似为0。 例如量程为0—500mm的位移传感器,将液压缸打到最小时标定零位,然后将液压缸打到最大,YP端显示值为正数近似500,则说明标定正确完成;如果YP端显示值为负数,则需重新将液压缸打到最大时标定零位,然后将液压缸打到最小检测YP端显示值如果为正数近似500,则标定 注释: 精轧串辊缸位移传感器零位在中间位置,由设备插定位销确定,然后标定零位。

光纤位移传感器的动态实验一.

光纤位移传感器的动态实验一 (一) 实验目的 了解光纤位移传感器的动态应用。 (二) 实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器) (三) 实验内容 1. 了解激振线圈在实验仪上所在位置及激振线圈的符号。 2. 在静态实验的电路中接入低通滤波器和示波器,如图1接线。 图1 3. 将测微头与振动台的台面脱离,测微头远离振动台。将光纤探头与振动台反射面的距离调整在光纤传感器工作点即线形段中点上(利用静态特性实验中得到的特性曲线,选择线形中点的位置为工作点,目测振动台的反射面与光纤探头端面之间的相对距离即线性区△X 的中点)。 4. 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的频率与幅度旋钮,使振动台振动且振动幅度适中。 5. 保持低频振荡器输出的p p V -幅度值不变,改变低频振荡器的频率(用示波器观察低频振荡器输出的p p V -值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮值p p V -相同),将频率和示波器上所测的峰峰值(此时的峰峰值p p V -是指经低通后的p p V -)填入表格中,并作出幅频特性图。 6. 关闭主、副电源,把所有旋钮复原到原始最小位置。

(四)数据表格 光纤位移传感器的动态实验二 (一)实验目的 了解光纤位移传感器的测速应用。 (二)实验仪器 DH-CG2000传感器系统实验仪(本实验所用部件包括:电机控制、差动放大器、小电机、电压表、光纤位移传感器、直流稳压电源、主、副电源、示波器) (三)实验内容 1.了解电机在实验仪上所在的位置及控制单元。 2.按图2接线,将差动放大器的增益置最大,电压表的切换开关置2V,开启主、副电源。 图2 3.将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使电压表显示 最大。再用手稍微转动电机,让反光面避开光纤探头。调节差动放大器的调零,使电压表显示接近零。 4.旋动电机控制电位器,使电机运转。

拉绳位移传感器_米兰特

一、米兰特拉绳位移传感器MPS-L-R详细介绍: 1、输出模式:电阻型 2、有效行程:300~20000mm 3、线性精度:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无; 8、最大允许拉伸速度:1000mm/s; 9、牵引力:Max.1500g 10、震动:10g 11、重量:<3500g 二、米兰特拉绳位移传感器MPS-L-V系列详细介绍: 1、输出模式(后缀):R电阻型、V电压型、A电流型、P1增量

脉冲型、P2绝对脉冲型 2、有效行程:3000~20000mm 3、线性精度:(R、V、A型:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC;P1、P2型:5~24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无;P1、P2型:10KHz~50KHz; 8、最大允许拉伸速度:1000mm/s; 9、牵引力:Max.1500g 10、震动:10g 11、重量:<3500g 12、防护等级: IP 65 三、米兰特拉绳位移传感器MPS-L-MA系列详细介绍: 1、输出模式(后缀):电流型 2、有效行程:3000~20000mm 3、线性精度:(R、V、A型:0.3%~0.2%FS) 4、重复精度:(R、V、A型:0.03%~0.02%FS) 5、供电电压:R型:~24VDC;V、A型:24VDC; 6、输出特征:R型:0~10KΩ;V型:0~10VDC;A型:4~20Ma; 7、迟滞:R、V、A型:无; 8、最大允许拉伸速度:1000mm/s;

位移传感器原理与分类

位移传感器原理与分类 传感器之家中将位移传感器分为线位移跟物位移两类,这是按照位移的特征分的。位移传感器就是测量空间中距离的大小,线位移就是在一条线上移动的长度,角位移就是转动的角度。下面就线位移做下介绍,线位移按原理分主要有电阻式、电容式、电感式、变压器式、电涡流式、激光式等等。前面三种主要用来测量小位移,中位移一般则用变压器式,大的位移则用电位器式的比较多,对于精密的场合,则需要选择激光式。 电容式位移传感器是把位移的变化换作电容的变化进行制作的。对于振动频率很高的环境条件下,最适合选用这种类型的传感器。它具有灵敏度高、能实现非接触量的测量,而且可以在恶劣场合下工作。它也有一些缺点,比如对连接线缆有很高的要求,它要有屏蔽性能;而且最好选用高频电源用来供电。现在做的最好的电容式位移传感器可以测量0.001微米的位移,误差非常小。 电感式位移传感器是将测量量换作互感的变化的传感器,它既可以测量角位移也可以测量线位移。目前常用到的电感式位移传感器有气隙式,面积式,螺管式三种。变气隙型中电感的变化与传感器中活动衔铁的位移相对应。变面积型是用铁芯与衔铁之间重合面积的变化来反映位移。螺管型是衔铁插入长度的变化导致电感变化的原理。

变压器式位移传感器是用途最广的一种位移传感器,线圈中感应电动势随着位移的变化而变化。这种传感器它的灵敏度都很高,有时都不用放大器。缺点在于质量一般比较大,不应用于高频场合。 电涡流式位移传感器是基于电涡流效应,它的感应参数是阻抗的变化,尽量使阻抗是位移的函数,它还与被测物体的形状跟尺寸有关。该传感器的量程一般在0到80毫米。 电阻式位移传感器是通过测量变化的电阻值来计算位移的变化,它通常分为电位器式跟应变式。前面一种适合测量位移大、精度要求不高的场合;后面一种是利用电阻应变效应,它具有线性度跟分辨率都比较高,失真小的优点。

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。 实验目的: 了解电涡流位移传感器的结构和工作原理。 了解电涡流位移传感器的静态标定方法。 实验原理 结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。 工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。 测量电路 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。由于输出电压的频率始终恒定,因此称为定频幅式。这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证

稳定的输出。 实验仪器与材料 电涡流位移传感器静态标定系统 Hz-8500探头前置器 8511型电涡流探头 电涡流传感器测量装置 高精度数字万用表。 实验内容: 实验一:被测金属板采用铝质板,测量U-x 关系曲线。 实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。 实验三:被测金属板采用铁板,测量U-x 关系曲线。 5、实验数据: 实验一数据: 6、实验要求: 1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。答:线性工作范围:由画出的U-X关系曲线可以看出其线性工作范围在0~13 灵敏度:(15.4-1.78)/13=1.048

电涡流位移传感器的原理

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而

拉线位移传感器的特点

拉绳位移传感器目前主要的应用系统领域包括直线导轨系统和液压气缸系统,具体适用的机械产品有试验机、伸缩系统、仓储位置定位、纺织机械、金属板材机械、印刷机械、水平控制仪、建筑机械等相关尺寸测量和位置控制,且取得的数据也是精确数值。 熟悉拉绳位移传感器的人都知道,该传感器可以分为数字输出型和模拟输出型两个产品类。数字输出型可以选择增量旋转编码器、绝对值编码器等,输出信号为方波ABZ信号或格雷码信号,行程最大可以做到80m,线性精度最大0.05%,分辨力根据配置不同最大可以达到0.003mm/脉冲。模拟输出型可以选择精密电位器、霍尔编码器、绝对值编码器等,输出信号可以为4-20mA、0-5V、1-5V、0-10V、串行SSI和电阻信号等,最大行程可以达到60米,使用环境最大可以达到IP65的防护等级,-45℃~+105℃的宽温度环境下使用。 CFWY-II型号的传感器也是属于这一类的传感器,下面就具体以它为例进行详细介绍。它的主要特点有:安装方便,设有备用安装基准面,根据需要多种选择;安装空间小,安装难度低;无需导向且机械公差不影响测量精度。 这款型号的位移传感器属于微型拉线(绳)位移传感器,可以用来记录测量长度0~1000mm的线性距离、模拟量型和数字量型输出,标准化接口,可以坚固耐用适合短距离,高分辨率的场合。

一、CFWY-II型号传感器实体图 一、CFWY-II型号传感器外形尺寸图

二、CFWY-II型号传感器技术指标表 蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除

美国CELESCO拉绳位移传感器

美国CELESCO拉绳位移传感器 广州南创钟工 美国CELESCO拉绳位移传感器目前是世界最大的专业拉绳位移传感器生产商。美国Celesco传感器其技术很容易实现:拉绳传感器通过一根高柔性的不锈钢芯同被测物体相连,将直线运动转换成旋转运动。目前,美国CELESCO拉绳位移传感器的产品在50多个国家设立了国外办事处及售后服务中心,并在中国设立了广州南创传感事业部,为美国CELESCO拉绳位移传感器提供最佳的服务与解决方案。 美国CELESCO拉绳位移传感器特点: 1、美国CELESCO拉绳位移传感器量程范围大(0~70,000mm),品种全,体积小,安装使用方便,可以适合危险场合应用。 2、美国CELESCO拉绳位移传感器输出信号全:电流4…20mA,0...20mA, 电压0…5Vdc, 0…10Vdc, 电桥 2.0mV/V, 0…30mV/V可调, 电位器, 增量编码器,绝对值编码器,RS232,RS485 ,RS422,SSI,Profibus。 3、美国CELESCO拉绳位移传感器测量精度高(最高精度可达到±0.01%),可靠性好,防护等级高(可达IP68),寿命长,维护少称重传感器(load cells)。 4、美国CELESCO拉绳位移传感器应用范围广广泛应用在各种位置测量控制领域。CELESCO传感器美国CELESCO拉绳式传感器系列:PT1 系列是一种紧凑型的拉绳式位移传感器, 适用于慢速及中等加速度位移的测量,比如结构测试(室内),汽车机械结构测试或液压缸检测。 美国CELESCO拉绳位移传感器测量范围达50英寸,适应的环境: NEMA 4 ,IP65 PT100系列是我们工具级别的拉绳式位移传感器,适用于慢速及中等加速度的实验室位移的测量,无不良的外界环境。 美国CELESCO拉绳位移传感器测量范围达100英寸,适应的环境:NEMA 1,IP50 PT5系列是我们工业级别的拉绳式位移传感器,适用于高加速度和高循环的应用场合,如铸造,

2021年LVDT式位移传感器的原理之令狐采学创编

LVDT式位移传感器的原理 欧阳光明(2021.03.07) Linearity Variable Differential Transducers 简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1Es2。这就是LVDT的简单工作原理(如图12示)。 LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

(图一:LVDT工作原理图) 采用环氧树脂,不锈钢等材料作为线圈骨架,用不同线径的漆包线在骨架上绕制线圈。与传统的电力变压器不同。LVDT是一种开磁路弱磁耦合的测量元件。在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压(激励电压)时,铁芯在线圈内移动就改变了空间磁场分布从而改变了初,次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁芯位置的不同,互感量也不同, 刺激产生的感应电动势也不同,这样就将铁芯的位移量(实际的铁芯是通过测杆与被测物保持相接触,也就是被测物体的位移量)变成电压信号输出,由于两个次级线圈电压极性相反,所以传感器的输出是两个次级线圈电压之差,其电压差值与位移量成线性关系 (图二LVDT电原理图) 当铁芯处在线圈正中间位置时两次级线圈感应电压相等但相位相反,其电压差值为零,当铁芯往右移动时,右边的次级线圈感应的电压大于左边。两线圈输出的电压差值大小随铁芯位移而成线性变化(第一象限的实线段部分),这是LVDT 有效的测量范围(一半)。当铁芯继续往右移动时两级线圈输出电压的差值不与铁芯位移成线性关系,此为缓冲,非测量区(虚线段)。反之,当铁芯自线圈中间位置向左边移动亦然。零点两边的实线段一般是对称的测量范围,只不过两者都是交流信号而相位差180″。

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

位移传感器的安装方法

位移传感器的功能是将机械的位移量转换成电信号,在我们选择位移传感器的时候需要考虑的有安装方式线性精度和供电情况,同样需要知道你的大概测量范围去选择更加合适的位移传感器。 首先我们在选择位移传感器规格范围时需留有余量,一般情况下最好是在实际行程的基础上选大一规格的即可。同样还需要注意的是你选择的是电涡流位移传感器,拉线位移传感器还是滑块位移传感器。如果你的位移传感器不便于进行对中调整的场合使用的话,最好是使用滑块位移传感器。而就位移的量程而言,大量程的建议使用的拉线位移传感器,电涡流位移传感器只是相对精度比较高的去测量。滑块位移传感器可以减少调整对中性的工作量,但辅助加长杆不能取消,否则,会出现由于对中性不好而导致稳定性和使用寿命,所以类似的位移传感器安装要是相当严格的。 位移传感器的安装要求根据你测量的是振动和位移,如果是轴的径向振动测量就得要求轴的直径大于探头直径的三倍以上。每个测点应同时安装两个传感器探头,两个探头应分别安装在轴承两边的同一平面上相隔90度。轴的径向振动测量时探头的安装位置应该尽量靠近轴承。探头中心线应与轴心线正交,探头监测的表面必须是无裂痕或其它任何不连续的表面现象。 如果是轴的轴向位移测量测量面应该与轴是一个整体,这个测量面是以探头的中心线为中心,宽度为1.5倍的探头圆环。探头安装距离距止推法兰盘不应超过305mm,否则测量结果不仅包含轴向位移的变化,而且包含胀差在内的变化,这样测量的不是轴的真实位移值。对于位移传感器的测量方式不一样,对应的安装就需要有不一样的要求。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/019669734.html,。

直线位移传感器标定方法

模拟量阀门直线位移传感器标定方法 加压过滤机电控液动阀门分为两种,为开关量阀门和模拟量阀门.开关量阀门上装有接近开关,其作用是保证阀门开关到位时电机自动断电和开关信号的反馈;模拟量阀门(4个滤液阀)上不但装有能保证电机自动断电的接近开关,还另外装有直线位移传感器,其作用是能够反馈阀门的实际开度从而可以对阀门开度进行检测和控制,这里以行程为250的直线位移传感器为例,对直线位移传感器的标定方法做介绍. 一仪表的组成: 直线位移传感器为四线制仪表,由2部分组成,分别为安装在阀门体上的探杆和安装在阀门控制箱上的二次仪表. 二仪表的标定: 在安装好探杆之后,其标定工作主要是调整阀门控制箱上的二次仪表,二次仪表表盘如下图:

二次仪表背面端子图如下: 标定以及安装方法: 1. 按端子图,接线时将探杆(发讯头)的三根线按照高低总的顺序依次接入,将“相”“中”两个端子接入AC220V电源;将“1+”“2-”两个端子与PLC柜连接. 2. 标定前把接入PLC柜的两根线拆下,将电流表两个表笔接入两个端子,将电流表拨至mA档. 3. 把阀门控制箱里面的小型断路器合上,可以看到阀门控制箱电源指示灯亮,再将表盘上的电源按钮按下,看到数字显示表上有读数则标定准备工作完毕. 4. 将阀门就地箱转换开关拨至“就地”档,手动执行关阀门动作,观察并确认阀门已经关到位,调整表盘上的“调零”按钮直到表盘上的开度显示为-10.电流表显示4mA以下.

5. 手动执行开阀门动作,观察并确认阀门已经开到位,调整表盘上的“调满”按钮直到表盘上的开度显示为260.电流表显示20mA以上。 6. 重复步骤5,步骤4至少3次以上,保证开到位时开度260,关到位时开度-10,则标定完毕.表盘上“校正”“标定”2个旋钮不允许现场调试人员以及岗位司机私自调整.

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

位移传感器的设计与系统标定综合实验

位移传感器的设计与系统标定综合实验 马杭 (上海大学理学院力学系,上海200436) An experiment by design and system calibration of displacement sensor for purpose of teaching Ma Hang (Department of Mechanics, College of Sciences, Shanghai University, Shanghai 200436) 摘要:本文介绍了新开发的综合型教学实验——位移传感器的设计及位移测试系统的标定实验的主要内容。进行该项实验,要求学生灵活应用所学的知识,得到动手、动脑的综合训练,进一步巩固和掌握所学知识并通过实验获取新的知识和能力,了解传感器这一科学研究与工程测量中重要器件的设计与制造的一般过程,起到举一反三的效果。 关键词:位移传感器,双悬臂梁,电阻应变计,电测,系统标定 传感器是科学实验与工程测量中常用的测量器件,用来把相关的物理量如温度、压力、浓度、载荷等转变成具有确定对应关系的电量输出,以满足对于信息的记录、显示、传输、存储、处理以及控制的要求。传感器种类繁多,发展日新月异,是实现自动测量与控制的第一个环节,在生产实践和科学研究的各个领域中发挥着极其重要的作用。以电测技术为基础的传感器是各类传感器中最常见的一类,结合力学类专业的学习特点以及本实验室的条件,我们设计开发了位移传感器的设计及位移测试系统的标定实验,并给我校力学专业的本科生和研究生进行了开设。 本实验要进行设计和制作的传感器是一种双悬臂梁式位移传感器(也叫引伸计),用于测量亚毫米级的微小位移,它利用电阻应变计作为敏感元件,利用钛合金微梁作为弹性元件,并利用电桥作为基本测量电路,利用静态数字电阻应变仪作为放大与输出仪器,这些元件和仪器与记录仪器共同组成了位移测试系统,可以实现对静态小位移的测量。 实验的主要内容有三个,分别为传感器的设计、制作和标定。传感器的设计也分为三个部分,即结构设计、组桥设计和理论灵敏度的计算。如图1所示,从结构设计方面说,当给定了测量范围或量程(即刀口移动的距离)以后,首先要考虑的问题是结构的形式和尺寸,其次要考虑的是弹性元件的材料选择、受力和材料的工作范围。传感器的受力至少应当能够

光纤位移传感器实验

光纤位移传感器实验 一、实验目的 1、了解光纤位移传感器工作原理及其特性; 2、了解并掌握光纤位移传感器测量位移的方法。 二、实验内容 1、光纤位移传感器输出信号处理实验; 2、光纤位移传感器输出信号误差补偿实验; 3、光纤位移传感器测距原理实验; 4、利用光纤位移传感器测量出光强随位移变化的函数关系; 5、实验误差测量。 三、实验仪器 1、光线位移传感器实验仪1台 2、反射式光纤1根 3、对射式光纤2根 4、连接导线若干 5、电源线1根 四、实验原理 本实验仪通过光纤位移传感器位移测量实验,熟悉光纤结构特点及光纤数值孔径的定义,掌握光纤位移的测量原理,熟悉光路调整方法。 本实验仪可以完成反射式和对射式光纤位移传感器实验,重点研究光纤位移传感器的工作原理及其应用电路设计。 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型称为传感 (或 型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使用单模光纤,它 在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器大制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。该光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高光纤位移传感器实位移测量器件,利用光纤传输光信号的功能,根据检测到的反射光的强度来测量被测反射表面的距离。 光纤位移传感器属于非功能型光纤传感器。 相关参数: 1、光源:高亮度白光LED,直径5mm 2、探测器:高灵敏度光敏三极管

LVDT式位移传感器的原理

L V D T式位移传感器的原 理 The Standardization Office was revised on the afternoon of December 13, 2020

LVDT式位移传感器的原理 Linearity Variable Differential Transducers简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1-Es2。这就是LVDT的简单工作原理(如图1-2示)。

LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

拉绳位移传感器介绍(详细)

拉绳位移传感器介绍(详细) 拉绳位移传感器定义 拉绳位移传感器又称拉绳传感器。它是一种新型而简便的长度位移传感器,用途非常广泛,具有结构紧凑、测量行程长、安装空间尺寸小、测量精度高,可靠性好,寿命长,维护少等优点。另外,拉绳位移传感器安装使用方便,适合许多危险场合应用,广泛应用与测量领域。本文主要介绍拉绳位移传感器工作原理及拉绳位移传感器安装时的注意事项。 拉绳位移传感器工作原理 拉绳式位移传感器的功能是把机械运动转换成可以计量,记录或传送的电信号。拉绳位移传感器由可拉伸的不锈钢绳绕在一个有螺纹的轮毂上,此轮毂与一个精密旋转感应器连接在一起,感应器可以是增量编码器,绝对(独立)编码器,混合或导电塑料旋转电位计,同步器或解析器。 操作上,拉绳式位移传感器安装在固定位置上,拉绳缚在移动物体上。拉绳直线运动和移动物体运动轴线对准。运动发生时,拉绳伸展和收缩。一个内部弹簧保证拉绳的张紧度不变。带螺纹的轮毂带动精密旋转感应器旋转,输出一个与拉绳移动距离成比例的电信号。测量输出信号可以得出运动物体的位移、方向或速率。 拉绳位移传感器常用参数 常用参数有测量行程、输出信号模式、线性度、重复性、分辨率、线径规格、出线口拉力、最大往返速度、重量、输入电阻值、功率、工作电压、工作温度、震动、防护等级等。

拉绳位移传感器信号输出方式 拉绳位移传感器信号输出方式分为数字信号输出和模拟信号输出,数字输出型可以选择增量旋转编码器、绝对值编码器等,输出信号为方波ABZ信号或格雷码信号,行程最大可以做到10000毫米,线性精度最大0.01%,分辨力根据配置不同最大可以达到0.001毫米/脉冲。 模拟输出型可以选择精密电位器、霍尔编码器、绝对值编码器等,输出信号可以为4-20毫安、0-5伏、0-10伏、串行SSI和电阻信号等,最大行程可以达到12500毫米,使用环境最大可以达到IP65的防护等级,-45℃~+105℃的宽温度环境下使用。 拉绳位移传感器分类 拉绳位移传感器分为数字输出型和模拟输出型两个产品类。适合直线导轨系统,液压气缸系统、伸缩系统,仓储位置定位,压力机械,造纸机械,纺织机械,金属板材机械,包装机械,印刷机械,水平控制仪,建筑机械等相关尺寸测量和位置控制。在试验机行业屏显、数显系统上应用也较为广泛,其它应用场合可以定制拉绳式位移传感器。此外,拉绳位移传感器完全可以替代光栅尺、电子尺,实现低成本的高精度测量。 使用安装注意事项 1. 利用底部4个固定螺丝孔,依现场及机器安装空间设施需要,直接安装或另加保护或其他机械使用. 2. 不锈钢索安装时,须注意水平角度,亦即尽量使钢索由出线口至移动部位之机构,于工作时水平滑动,保持最小角度(容许偏差+/-30)以确保量测精度及钢索之寿命.

线位移传感器动态参数校准规范

线位移传感器动态参数校准规范 1 范围 本校准规范规定了对线位移传感器实验室环境下的动态参数进行校准的计量特性、校准条件、校准项目、校准方法、校准结果的处理及复校时间间隔。 本校准规范适用于新制造(或购置)、使用中、修理后的线位移传感器动态参数校准。 2 引用文件 本校准规范引用下列技术条件 JJF 1001-2011 通用计量术语及定义技术规范。 JJF 1059.1-2012 测量不确定度评定与表示。 JJF 1094-2002 测量仪器特性评定。 GB/T 7665-2005 传感器通用术语。 GB/T 30111-2013 位移传感器通用规范。 GB/T 18459-2001 传感器主要静态性能指标的计算方法。 GJB 8137-2013 位移传感器标定与精度测试方法。 JJF 1305-2011 线位移传感器校准规范。 注:凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改版)适用于本规范。 3 术语和计量单位 3.1 术语 3.1.1 线位移传感器linear displacement sensor 能够感受长度尺寸变化并转换为可用输出信号的器件。 3.1.2 动态特性dynamic characteristic 与响应于被测量随时间变化有关的传感器特性。 3.1.3 动态示值误差dynamic error of indication

线位移传感器示值与对应输入量的真值之差。 3.1.4 动态重复性dynamic repeatability 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性。 3.1.5 分辨力resolution 线位移传感器能够有效辨别的最小位移量。 3.1.6 响应时间response time 由被测量的阶跃变化引起的传感器输出上升到其最终规定百分率时所需要的时间。 注:为注明这种百分率,可将其置于主词前面,例如:98%响应时间。 3.1.7 频率响应frequency response 在规定的被测量频率范围内,对加在传感器上的正弦变化的被测量来说,输出量与被测量振幅之比及输出量和被测量之间相差随频率的变化。 注:频率响应应当以在规定的被测量频率范围内的频率和某一规定的被测量为基准。 3.1.8 动态测量范围dynamic full scale output 在保证性能指标的前提下,用最大被测量和最小被测量表示的区间。 4 概述 线位移传感器可用来测量位移、距离、位置和应变量等长度尺寸,在工程测试中应用广泛。典型的线位移传感器可以分为接触式传感和非接触式传感。线位移传感器输出信号种类多,绝大部分线位移传感器输出电信号,如不同频率的脉冲信号、电压或电流等模拟量;也有些线位移传感器已集成了信号转化功能,能直接以数字方式或其他方式输出长度尺寸。 典型的线位移传感器的结构示意图如下。 图1 一种线位移传感器示意图 1—测杆;2—外壳;3—信号输出线缆

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

位移传感器的工作原理

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器. 该位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 磁致伸缩线性位移传感器的工作原理 磁致伸缩线性位移传感器的工作原理:当工作时,由电子仓内电子电路产生一起始脉冲,此起始脉冲在波导丝中传输时,同时产生了一沿波导丝方向前进的旋转磁场,当这个磁场与磁环或浮球中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,这一扭动被安装在电子仓内的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两个脉冲之间的时间差,即可精确测出被测的位移和液位。该产品主要应用于要求测量精度高、使用环境较恶劣的位移和液位测量系统中。具有精度高、重复性好、稳定可靠、非接触式测量、寿命长、安装方便、环境适应性强等特点。它的输出信号是一个真正的绝对位置输出,而不是比例的或需要再放大处理的信号,所以不存在信号漂移或变值的情况,因此不必像其它液位传感器一样需要定期重标和维护;正是因为它的输出信号为绝对值,所以即使电源中断重新接通也不会对数据接收构成问题,更无须重新归回零位。与其它液位变送器或液位计相比有明显的优势,它可广泛应用于石油、化工、制药、食品、饮料等行业,对各种液罐的液位进行计量和控制。作为位移传感器,它不但可以测量运动物体的直线位移,而且还可同时给出运动物体的速度模拟信号。 电涡流传感器是由DJ型前置放大器和电涡流探头组合构成,它是一种趋近式传感系统。由于其长期工作可靠性好,灵敏度高,抗干扰能力强,采用非接触测量,响应速度快,耐高温,能在油、汽、水等恶劣环境下长期连续工作,检测不受油污、蒸汽等介质的影响,已广泛应用于电力、石化、冶金、钢铁、航空航天等大中型企业,对各种旋转机械的轴位移、振动、转速、胀差、偏心、油膜厚度等进行在线监测和安全保护,为精密诊断系统提供了全息动态特性,有效地对设备进行保护。电涡流位移传感器系统主要包括探头、延伸电缆(可选)、前置器和附件。线性范围宽、动态响应好、抗干扰能力强。 电涡流传感器是以高频电涡流效应为原理的非接触式位移传感器。前置器内产生的高频电流从振荡器流入探头线圈中,线圈就产生了一个高频电磁场。当被测金属的表面靠近该线圈时,由于高频电磁场的作用,在金属表面产生感应电流,即电涡流。该电流产生一个交变磁场,方向与线圈磁场相反,这二个磁场相互迭加就改变了原线圈的阻抗。所以探头与被测金属表面距离的变化可通过探头线圈阻抗的变化来测量。前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。 此下为电阻式位移传感器:

相关文档
最新文档