实验三 恒压过滤及洗涤实验

实验三 恒压过滤及洗涤实验
实验三 恒压过滤及洗涤实验

6 恒压过滤常数的测定

6.1 实验目的

(1)了解恒压板框压滤机的结构,学会恒压过滤的操作方法,验证过滤基本原理。 (2)掌握测定恒压过滤常数K 、滤布阻力当量滤液量q e 、当量过滤时间τe 、及滤饼压缩性指数S 的方法。

(3)学会板框压滤机洗涤操作。 6.2 实验原理

以多孔介质截留悬浮于流体中的颗粒,从而实现固体颗粒与流体的分离的操作称为过滤。若悬浮液中固体浓度较高,固体颗粒在多孔介质表面会形成滤饼,因此,除刚开始过滤外,过滤主要是滤饼层起过滤介质作用,此种过滤称为滤饼过滤。(以上为原理部分) (以下为数据处理部分)滤饼过滤的推动力是压差,由于设备耐压等原因,过滤一般都是情况下都是在恒压条件下进行。在恒压滤饼过滤过程中,由于滤饼不断增厚,过滤阻力不断增大,过滤速率越来越小,因此,恒压过滤尽管其操作压差在过滤过程可保持恒定,但它是一个非定态过程,过滤速率微分式如下:

)

(2e q q K d dq +=τ (3-1) 上式中的过滤常数表达式为: K=φ

μγ01)

(2S

m p -? (3-2)

对式(3-1)在恒压条件下积分,得如下恒压过滤方程:

)()(2e e k q q ττ+=+ (3-3)

式(3-1)、(3-2)、(3-3)中的K 、q e 、S 、τe 须通过恒压过滤实验测定。

取式(3-1)的倒数得:

e q K

q K dq d 2

2+=τ (3-4) 由于式(3-4)仍然是一个微分式,因此,为了便于测定和计算,用差分代替微分,式(3-4)

改写成如下形式:

e q K

q K q 2

2+=??τ (3-5) 在某一压力1m P ?条件下进行过滤实验,用量筒和秒表分别测量和记录一系列滤液体积

i V ?和其相对应的时间间隔i τ?,由i V ?除以过滤面积得i q ?。i q 的取值的方法如下:

∑?+?=-i i i i q q q 1

12

(i=1~8, 00=?q ) (3-6)

在二维坐标系中以i q 为横坐标, 以i

i q ??τ为纵坐标绘制一条直线, 由该直线的斜率可计算

出某一压力1m P ?下的过滤常数K 1, 由该直线的截距可计算出滤布阻力当量滤液量q e1, 根据

K

q e e 2=

τ, 可求出相应的当量过滤时间τe1。

用压力定值调节阀调节过滤压差(一般三个31~m m P P ??),测定并计算出相应压差下

的过滤常数(K 1~K 3),对式(3-2)两边取对数得:

)2lg()lg()1(lg 0φ

μγ+?-=m P S K (3-7)

以)lg(m P ?为横坐标,以K lg 为纵坐标画图得一直线,由该直线的斜率便可求出滤饼的压缩指数S 。

6.3 实验流程与装置

本实验装置有空压机、配料槽、压力储槽、板框过滤机和压力定值调节阀等组成。

其实验流程如图所示。CaCO 3的悬浮液在配料桶内配置一定浓度后利用位差送入压力储槽中,用压缩空气加以搅拌使CaCO 3不致沉降,同时利用压缩空气的压力将料浆送入板框过滤机过滤,滤液流入量筒或滤液量自动测量仪计量。

图1—4恒压过滤常数测定实验装置流程图

1 、配料槽

2 、压力储槽

3 、板框压滤机

4 、压力表

5 、安全阀

6 、压力变送器

7 、压力定值调节阀

8 、滤液量自动测量仪

板框过滤机的结构尺寸如下:框厚度38mm ,每个框过滤面积0.024m 2,框数2个。

由配料槽○

1配好的碳酸钙水悬浮液由压缩空气输送至压力槽○2,用压力定值调节阀○7调节压力槽○2内的压力至实验所需的压力,打开进料阀,碳酸钙水悬浮液依次进入板框压滤

机○3的每一个滤框进行过滤,碳酸钙则被截留在滤框内并形成滤饼,滤液水被排出板框压滤机外由带刻度的量筒收集。

6.4 实验操作步骤

1. 开启电源。开启控制面板上的总电源开关,打开空气压缩机电源开关、24V (DC )电源开关和仪表电源开关;

2. 配料、下料。依次打开阀○

3、○2和阀○4,用空气将碳酸钙与水搅拌混合均匀,注意阀○4不要开太大,以免碳酸钙悬浮液从配料槽○

9中喷出。打开阀○6,将混合好的碳酸钙悬浮液输送至压力料槽○

2,使液位处于视镜的二分之一处,然后关闭阀○6、○4。 3. 组装板框压滤机。将滤布用水浸湿,正确安装好滤板、滤布和滤框,然后用螺杆压紧。

注意,板、布、框的表面一定要清洗干净,不能带有滤饼,布不能起绉,否则过滤时会渗漏严重。

4. 调节压力。打开阀○

5,打开控制面板上的压力定值调节阀开关○1,再打开阀○7和阀○10,调节第一个恒压过滤的压力,当控制面板上的测量仪显示压力稳定后,便可开始做过滤实验。

5. 测定不同压力下,得到一定滤液所需时间。

(1)准备好量筒和秒表,打开悬浮液进料阀,滤液从汇集管流出开始计时。当量筒内的滤液量每次约为≈?V 800mL 时,开始切换量筒和秒表,记录下8个V ?和相应的8个过滤时

间τ?,当塑料桶内的滤液放不下时,倒回配料槽○

1。 (2) 第一个压力过滤实验做完后,关闭悬浮液进料阀,关闭阀○

7和阀○10,打开阀○8,调节第二个恒压过滤的压力,当控制面板上的测量仪显示压力稳定后,便可开始做过滤实验, 重复步骤5,记录下8个V ?和相应的8个过滤时间τ?。

(3) 第二个压力过滤实验做完后, 关闭悬浮液进料阀,关闭阀○

8, 打开阀○9和阀○11,调节第三个恒压过滤的压力,当控制面板上的测量仪显示压力稳定后,便可开始做过滤实验, 重

复步骤5,记录下8个V ?和相应的8个过滤时间τ?,关闭进料阀和阀○

9和阀○11。 6.将剩余的悬浮液压回配料槽。打开阀○

6和○4,利用压力料槽○2内的余压将剩余的悬浮液压回配料槽○

1,然后关闭阀○4、○6。慢慢打开阀○12,将压力料槽内的余压排放掉,并打开阀○

10、○11将压力定值阀内的压退回至零,然后再关闭。 7. 关闭电源。 关闭控制面板上的空气压缩机电源、24伏直流电源、仪表电源及总电源。 8.拆洗板框压滤机。 松开螺杆,拆下滤板、滤布和滤框,放在存有滤液的塑料桶内清洗滤

饼直至干净为止,然后倒回配料槽○1。 6.5 实验数据记录及整理

表6-1 数据记录与整理表

30000

60000

90000

q i

Aτ/A q

斜率

K 2=5.54112×106,故k=3.61×10-7, 截距e q K

2=14667,e q =2.65×10-3 e τ=19.5 s

6.6实验报告

1. 将原始实验数据处理、作图、计算后,求出三个恒压过滤常数K 、滤布阻力当量滤液量q e 、当量过滤时间τe 、和一个滤饼压缩性指数S 。

2. 数据处理既可以用作图法,也可以用最小二乘法,两者结果相差不大。

6.7实验思考题

过滤实验

过滤实验 一、实验目的 1、了解滤料级配方法 2、熟悉过滤实验设备的过滤、反冲洗过程 3、验证清洁砂层水头损失与滤速成正比 4、加深对过滤基本规律的理解 二、实验原理及设备 在水处理技术中,过滤是通过具有空隙的粒状滤料层(如石英砂等)截留水中的悬浮物和胶体,从而使水得到澄清的工艺工程。滤池的形式有多种多样,以石英砂为滤料的普通快滤池使用历史最久,并在此基础上发展出现了双层滤池、多层滤池和上向流过滤等。 过滤的作用,不仅可以截留水中的悬浮物,而且通过滤层还可以把水中的有机物、细菌乃至病毒等随着浊度降低而被大量的去除,净水的原理如下: 1、阻力截留 当污水流过颗粒状滤料层时,粒径较大的悬浮物颗粒首先被截留在表层的滤料的空隙中,随着此层滤料间的空隙越来越小,截污能力也越来越大,逐渐形成一层主要由被截留的固体颗粒构成的滤膜,并由他起到重要的过滤作用。这种作用属于阻力截留或筛滤作用。悬浮物粒径越大,表层滤料和滤速越小,就越容易形成表层筛滤膜,滤膜的截污能力也越高。 2、重力沉降 污水通过滤料层时,众多的滤料表面提供了巨大的沉降面积。重力沉降强度主要与滤料的直径以及过滤速度有关。滤料越小,沉降面积越大,滤速越小,水流越平稳,这些都有利于悬浮物的沉降。 3、接触絮凝 由于滤料具有巨大的比表面积,它与悬浮物质间有明显的物理吸附作用。此外,沙粒在水中常常带有表面负电荷,能吸附带正电荷的胶体,从而在滤料表面形成带正电荷的薄膜,并进而吸附带负电荷的粘土和多种有机物等胶体,在沙粒上发生接触絮凝。 在实际过滤过程当中,上述三种机理往往同时起作用,只是随着条件不同而有主次之分。对粒径较大的悬浮物颗粒,以阻力截流为主,因为这一过程主要发生在滤料的表面,通称成为表面过滤。对于细微的悬浮物,以发生在滤料深层的重力沉降和接触絮凝为主,称为深层过滤。 在过滤当中,滤料起着核心的作用,为了取得良好的过滤效果,滤料应具有一定级配。滤料级配是指将不同粒径的滤料按一定的比例组合。滤料是带棱角的颗粒,不是规则的球体,所说的粒径是指把滤料颗粒包围在内的球体直径(这是一个假想直径)。在生产中,简单的筛分方法是用一套不同孔径的筛子筛分滤料试样,选取合适的级配。我国现行的规范是采用0.5mm和1.2mm孔径的筛子进行筛选,取其中段,这种方法虽然简单易行,但却不能反映滤料粒径的均匀程度,因此还应该考虑级配的情况。 能反映级配状况的指标是通过筛分曲线求得的有效粒径d10、d80和不均匀系数K80。d10时表示通过滤料重量10%的孔径,它反映滤料中细颗粒的尺寸,即产生水头损失的“有效”部分尺寸;d80时表示通过滤料重量80%的孔径,它反映滤料中粗颗粒的尺寸;K80=d80/d10。K80越大,表示粗细颗粒的尺寸相差越大,滤料粒径越不均匀,这样的滤料对过滤及反冲洗

恒压过滤常数测定实验报告

一、 实验课程名称:化工原理 二、实验项目名称:恒压过滤常数测定实验 三、实验目的和要求: 1. 熟悉板框压滤机的构造和操作方法; 2. 通过恒压过滤实验,验证过滤基本原理; 3. 学会测定过滤常数K 、q e 、τe 及压缩性指数S 的方法; 4. 了解操作压力对过滤速率的影响。 四、实验内容和原理 实验内容:测定时间与滤液量的变化关系,绘制相关图表,求出过滤常数K 及压缩性指数S 。 实验原理:过滤是以某种多孔物质作为介质来处理悬浮液的操作。在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。 影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为: L p a K u μεε?-=223')1(1 (1) 由此可以导出过滤基本方程式: )('12Ve V v r p A d dV s +?=-μτ (2) 恒压过滤时,令k=1/μr ’v ,K=2k △p 1-s ,q=V/A ,q e =Ve/A ,对(2)式积分得: (q+q e )2=K(τ+τe ) (3) K 、q 、q e 三者总称为过滤常数,由实验测定。 对(3)式微分得: 2(q+q e )dq=Kdτ e q K q K dq d 22+=τ (4) 用△τ/△q 代替dτ/dq ,用q 代替q 。在恒压条件下,用秒表和电子称分别测定一系列时间间隔△τi ,和对应的滤液质量△M (除水的密度换算成体积△V i ),可计算出一系列△τi 、△q i 、q i ,在直角坐标系中绘制△τ/△q ~q 的函数关系,得一直线,斜率为2/K ,截距为2q e /K ,可求得K 和q e ,再根据τe =q e 2/K ,可得τe 。 改变过滤压差△p ,可测得不同的K 值,由K 的定义式两边取对数得: lgK=(1-S)lg(△p)+lg(2k) (5) 在实验压差范围内,若k 为常数,则lgK ~lg(△p)的关系在直角坐标上应是一条直线,斜率为(1-S),可得滤饼压缩性指数S ,进而确定物料特性常数k 。 五、主要仪器设备 实验装置如图1-1所示:

过滤与反冲洗

过滤与反冲洗

过滤与反冲洗实验 一、实验目的 ①了解过滤实验装置的组成和构造。 ②通过实验,进一步了解过滤及反冲洗原理。 ③掌握过滤及反冲洗实验的操作方法。 二、实验原理 分级筛子可以截留部分比筛孔小的颗粒,地表水渗入地下通过地层过滤可形成清洁井水。受这些自然现象启发,人类创造了处理浑浊水的方法,即过滤。分析表明,接触絮凝作用、筛滤作用、沉淀作用是浑浊水通过滤层达到清洁的因素,并以接触絮凝作用为主。过滤一般用石英砂等颗粒状滤料层截留水中悬浮杂质,从而使水达到澄清的工艺过程。为提高出水清洁度,应合理进行滤层级配和投加混凝剂。 在过滤过程中,随着过滤时间的增加,滤层中悬浮颗粒的量会随之不断增加,这就必然会导致过滤过程水力条件的改变。使孔隙率减小滤速减小、滤层两侧压力差增大,并有可能造成部分已被截留的杂质冲出滤层。因此,当过滤水头损失达到最大允许值或出水浊度超过规定值时,滤池需进行反冲洗,以排除滤层中所截留的杂质。反冲洗强度以能保证最底层滤料膨胀即可。滤池冲洗通常采用自下而上的水流进行反冲洗的方法。反冲洗时,滤料层膨胀起来,截留滤层中的污物,在滤层空隙中的水流剪力作用下,以及在滤料颗粒碰撞摩擦的作用下,从滤层表面脱落下来,然后被冲洗水流带出滤池。反冲洗效果主要取决于滤层孔隙水流剪力。该剪力既与冲洗流速有关,又与滤层膨胀有关。冲洗流速小,水流剪力小;冲洗流速大,使滤层膨胀度大,滤层孔隙中水流剪力又会降低,因此,冲洗流速应控制适当。 影响过滤效果的因素还有很多,诸如水质、水温、滤速、滤料尺寸、滤料形状,以及悬浮物的表面性质、尺寸和强度等。本系统仅考虑滤速的影响 三、实验设备及仪器 (1)仪器 ①过滤与反冲洗的实验装置 光电式浑浊度仪(1台) (2)器具 ①烧杯(200ml,2个) ②秒表(1块) ③温度计(0~1000C,1支) 四、实验内容与步骤

恒压过滤实验常数测定实验报告

恒压过滤实验
一、实验目的
1、掌握恒压过滤常数 K、通过单位过滤面积当量滤液量 qe 、当量过滤时间 ? e 的测定方法; 加深 K、 qe 、 ? e 的概念和影响因素的理解。 2、 学习滤饼的压缩性指数 s 和物料常数 k 的测定方法。 3、 学习
d? ——q 一类关系的实验测定方法。 dq
4、 学习用正交试验法来安排实验,达到最大限度的减小实验工作量的目的。 5、 学习对正交试验法的实验结果进行科学的分析,分析出每个因素重要性的大小,指出试 验指标随各因素的变化趋势,了解适宜操作条件的确定方法。
二、实验内容
1、设定试验指标、因素和水平。因可是限制,分 4 个小组合作共同完成一个正交表。 故同意规定实验指标为恒压过滤常数 K,设定的因素及其水平如表 6-1 所示。假定各因素之 间无交互作用。 2、为便于处理实验结果,应统一选择一个合适的正交表。 3、按选定正交表的表头设计,填入与各因素水平对应的数据,使它变成直观的“实验 方案”表格。 4、分小组进行实验,测定每个实验条件下的过滤常数 K、q 5、对试验指标 K 进行极差分析和方差分析;之处各个因素重要性的大小;讨论 K 随其 影响因素的变化趋势;以提高过滤速度为目标,确定适宜的操作条件。
三、实验原理
1.恒压过滤常数 K、 qe 、 ? e 的测定方法。 在过滤过程中,由于固体颗粒不断地被截留在介质表面上,滤饼厚度增加,液体流过固 体颗粒之间的孔道加长,而使流体阻力增加,故恒压过滤时,过滤速率逐渐下降。随着过滤 的进行,若得到相同的滤液量,则过滤时间增加。 恒压过滤方程
(q ? qe ) 2 ? K (? ? ? e )
式中 q———单位过滤面积获得的滤液体积, m / m ;
3 2
(1)

过滤及反冲洗实验报告书

资源与环境工程学院 (环境监测与评价专业) 课程实验报告 课程:水处理技术(实验)实验名称:过滤及反冲洗实验成绩评定: 班级: 组别: 姓名: 学号: 同组成员: 指导教师: 实验学期:

实验七过滤及反冲洗实验 实验日期:实验地点:实验成绩: 一、实验目的 1、掌握反冲洗时冲洗强度与滤层膨胀度之间的关系。 2、了解清洁砂层过滤时水头损失变化规律,以及滤层水头损失的增长对过滤周期的影响。 二、实验原理 1、过滤原理 水的过滤是根据地下水通过地层过滤形成清洁井水的原理而创造的处理浑浊水的方法。在处理过程中,过滤一般是指以石英砂等颗粒状滤料层截留水中悬浮杂质,从而使水达到澄清的工艺过程。过滤是水中悬浮颗粒与滤料颗粒间粘附作用的结果。粘附作用主要决定于滤料和水中颗粒的表面物理化学性质,当水中颗粒迁移到滤料表面上时,在范得华引力和静电引力以及某些化学键和特殊的化学吸附力作用下,它们被粘附到滤料颗粒的表面上。此外,某些絮凝颗粒的架桥作用也同时存在。经研究表明,过滤主要还是悬浮颗粒与滤料颗粒经过迁移和粘附两个过程来完成去除水中杂质的过程。 2、影响过滤的因素 在过滤过程中,随着过滤时间的增加,滤层中悬浮颗粒的量也会随着不断增加,这就必然会导致过滤过程水力条件的改变。当滤料粒径、滤层级配和厚度及水位己定时,如果孔隙率减小,则在水头损失不变的情况下,将引起滤速减小。反之,在滤速保持不变时.将引起水头损失的增加。就整个滤料层而言,鉴于上层滤料截污量多,越往下层截污置越小,因而水头损失增值也由上而下逐渐减小。此外,影响过滤的因素还有很多,诸如水质、水温、滤速、滤料尺寸、滤料形状、滤料级配,以及悬浮物的表面性质、尺寸和强度等等。 3、滤料层的反冲洗

恒压过滤常数测定实验------实验报告

恒压过滤常数测定实验 一、实验目的 1. 熟悉板框压滤机的构造和操作方法。 2. 通过恒压过滤实验,验证过滤基本理论。 3. 学会测定过滤常数K 、qe 、τe 及压缩性指数s 的方法。 4. 了解过滤压力对过滤速率的影响。 二、基本原理 过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。 过滤速度u 定义为单位时间单位过滤面积内通过过滤介质的滤液量。影响过滤速度的主要因素除过滤推动力(压强差)△p ,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。 过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式: 2 e = 2(V+V )dV KA d τ 式中:K —过滤常数,由物料特性及过滤压差所决定,m 2/s 将式(3)分离变量积分,整理得: () 2 2=(+)e e V V KA ττ+ 再将式(7)微分,得: 22()=e V V dV KA d τ+ 将式(8)写成差分形式,则

22 =+e q q q K K τ?? 式中: q ?— 每次测定的单位过滤面积滤液体积(在实验中一般等量分配),m 3 / m 2 ; τ?— 每次测定的滤液体积所对应的时间,s ; q — 相邻二个q 值的平均值,m 3 / m 2 。 以 q τ ??为纵坐标,q 为横坐标将式(9)标绘成一直线,可得该直线的斜率和截距, 斜率: 2=S K 截距: 2=e I q K 则, 2 =K S ,m 2 /s == 2e KI I q S ,m 3 22 2 == e e q I K KS τ ,s 改变过滤压差P ?,可测得不同的K 值,由K 的定义式(2)两边取对数得: lg =(1-s)lg(p)+B K ? 在实验压差范围内,若B 为常数,则lgK ~lg(P ?)的关系在直角坐标上应是一条直线,斜率为(1-s),可得滤饼压缩性指数s 。 三、实验装置与流程 本实验装置由空压机、配料槽、压力料槽、板框过滤机等组成,其流程示意如图1。

恒压过滤实验报告

恒压过滤 . 一、实验名称: 恒压过滤 二、实验目的: 1、熟悉板框过滤机的结构; 2、测定过滤常数K、q e、θe; 三、实验原理: 板框压滤是间歇操作。一个循环包括装机、压滤、饼洗涤、卸饼和清洗五个工序。板框机由多个单元组合而成,其中一个单元由滤板(·)、滤框(∶)、洗板( )和滤布组成,板框外形是方形,如图2-2-4-1所示,板面有内槽以便滤液和洗液畅流,每个板框均有四个圆孔,其中两对角的一组为过滤通道,另一组为洗涤通道。滤板和洗板又各自有专设的小通道。图中实线箭头为滤液流动线路,虚线箭头则为洗液流动路线。框的两面包以滤布作为滤面,滤浆由泵加压后从下面通道送入框内,滤液通过滤布集于对角上通道而排出,滤饼被截留在滤框内,如图2-2-4-2a)所示。过滤完毕若对滤饼进行洗涤则从另一通道通入洗液,另一对角通道排出洗液,如图 2-2-4-2b)所示。

图2-2-4-2 过滤和洗涤时液体流动路线示意图 在过滤操作后期,滤饼即将充满滤框,滤液是通过滤饼厚度的一半及一层滤布而排出,洗涤时洗液是通过两层滤布和整个滤饼层而排出,若以单位时间、单位面积获得的液体量定义为过滤速率或洗涤速率,则可得洗涤速率约为最后过滤速率的四分之一。 恒压过滤时滤液体积与过滤时间、过滤面积之间的关系可用下式表示: )()(2 2e e KA V V θθ+=+ (1) 式中:V ——时间θ内所得滤液量[m 3 ] V e ——形成相当于滤布阻力的一层滤饼时获得的滤液量,又称虚拟滤液量[m 3 ] θ——过滤时间[s] θe ——获过滤液量V e 所需时间[s] A ——过滤面积[m 2 ] K ——过滤常数[m 2/s]

化工原理恒压过滤常数测定实验报告

恒压过滤常数测定实验 一、实验目的 1. 熟悉板框压滤机的构造和操作方法。 2. 通过恒压过滤实验,验证过滤基本理论。 3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。 4. 了解过滤压力对过滤速率的影响。 二、基本原理 过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。 过滤速度u 定义为单位时间单位过滤面积通过过滤介质的滤液量。影响过滤速度的主要因素除过滤推动力(压强差)△p,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。 过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动围,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式: (1) 式中:u —过滤速度,m/s ; V —通过过滤介质的滤液量,m 3 ; A —过滤面积,m 2 ; τ —过滤时间,s ; q —通过单位面积过滤介质的滤液量,m 3/m 2 ; △p —过滤压力(表压)pa ; s —滤渣压缩性系数; μ—滤液的粘度,Pa.s ; r —滤渣比阻,1/m 2 ; C —单位滤液体积的滤渣体积,m 3 /m 3 ; Ve —过滤介质的当量滤液体积,m 3; r ′ —滤渣比阻,m/kg ;

C —单位滤液体积的滤渣质量,kg/m3。 对于一定的悬浮液,在恒温和恒压下过滤时,μ、r、C和△p都恒定,为此令: (2) 于是式(1)可改写为: (3)式中:K—过滤常数,由物料特性及过滤压差所决定,m2/s 将式(3)分离变量积分,整理得: (4) 即V2+2VV e=KA2τ (5) 和从0到积分,则: 将式(4)的积分极限改为从0到V e V e2=KA2τ (6)将式(5)和式(6)相加,可得: 2(V+V e)dv= KA2(τ+τe) (7) 所需时间,s。 式中:—虚拟过滤时间,相当于滤出滤液量Veτ e 再将式(7)微分,得: 2(V+V e)dv= KA2dτ (8)将式(8)写成差分形式,则 (9)式中:Δq—每次测定的单位过滤面积滤液体积(在实验中一般等量分配),m3/ m2; Δτ—每次测定的滤液体积所对应的时间,s; —相邻二个q值的平均值,m3/ m2。 以Δτ/Δq为纵坐标,为横坐标将式(9)标绘成一直线,可得该直线的斜率和截距, 斜率:S= 截距:I= q e 则,K= ,m2/s

D668-化工原理-恒压过滤常数测定实验指导书

恒压过滤常数测定实验指导书

恒压过滤常数测定实验 一、实验目的 1. 熟悉板框压滤机的构造和操作方法。 2. 通过恒压过滤实验,验证过滤基本理论。 3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。 4. 了解过滤压力对过滤速率的影响。 二、基本原理 过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。 过滤速度u 定义为单位时间单位过滤面积内通过过滤介质的滤液量。影响过滤速度的主要因素除过滤推动力(压强差)△p ,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。 过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式: ()()()() e s e s V V C r p A V V C r p A d dq Ad dV u +'?'?=+??===--μ?μ?ττ11 (1) 式中:u —过滤速度,m/s ; V —通过过滤介质的滤液量,m 3; A —过滤面积,m 2; τ —过滤时间,s ; q —通过单位面积过滤介质的滤液量,m 3/m 2; △p —过滤压力(表压)pa ; s —滤渣压缩性系数; μ—滤液的粘度,Pa.s ;

r —滤渣比阻,1/m 2; C —单位滤液体积的滤渣体积,m 3/m 3; Ve —过滤介质的当量滤液体积,m 3; r ' —滤渣比阻,m/kg ; C —单位滤液体积的滤渣质量,kg/m 3。 对于一定的悬浮液,在恒温和恒压下过滤时,μ、r 、C 和△p 都恒定,为此令: ()C r p K s ??=-μ?12 (2) 于是式(1)可改写为: ) (22 Ve V KA d dV +=τ (3) 式中:K —过滤常数,由物料特性及过滤压差所决定,s m /2 。 将式(3)分离变量积分,整理得: ()()?? =+++τ τ022 1d KA V V d V V e e V V V e e (4) 即 τ222KA VV V e =+ (5) 将式(4)的积分极限改为从0到V e 和从0到e τ积分,则: e e KA V τ22= (6) 将式(5)和式(6)相加,可得: ()()e e KA V V ττ+=+22 (7) 式中:e τ—虚拟过滤时间,相当于滤出滤液量V e 所需时间,s 。 再将式(7)微分,得: ()τd KA dV V V e 22=+ (8) 将式(8)写成差分形式,则 22 e q q q K K τ?=+? (9) 式中:q ?— 每次测定的单位过滤面积滤液体积(在实验中一般等量分配),m 3/ m 2; τ?— 每次测定的滤液体积q ?所对应的时间,s ; q — 相邻二个q 值的平均值,m 3/ m 2。

实验报告一:恒压过滤参数的测定

恒压过滤参数的测定实验报告 前言 1.过滤介质 过滤是在推动力的作用下,位于一侧的悬浮液(或含尘气)中的流体通过多孔介质的孔道向另一侧流动。颗粒则被截留,从而实现流体与颗粒的分离操作过程。被过滤的悬浮液又称为滤浆,过滤时截留下的颗粒层称为滤饼,过滤的清液称为滤液。 过滤介质即为使流体通过而颗粒被截留的多孔介质。无论采用何种过滤方式,过滤介质总是必须的,因此过程介质是过滤操作的要素之一。 多ZJ系列真空净油机过滤介质的共性要求是多空、理化性质稳定、耐用和可反复利用等。可用作过滤介质的材料很多,主要可以分为: (1)织物介质 织物是非常常用的过滤介质。工业上称为滤布(网),由天然纤维、玻璃纤维、合成纤维或者金属丝组织而成。可截留的最小颗粒视网孔大小而定,一般在几到几十微米的范围。 (2)多孔材料 制成片、板或管的各种多孔性固体材料,如素瓷、烧结金属和玻璃、多孔性塑料以及过滤和压紧的毡与棉等。此滤油机类介质较厚,孔道细,能截留1~3μm 的微小颗粒。 (3)固体颗粒床层 由沙、木炭之类的固体颗粒堆积而成的床层,称为率床。用做过滤介质使含少量悬浮物的液体澄清。 (4)多孔膜 过滤是使水通过滤料时去除水中悬浮物和微生物等的净水过程。滤池通常设在沉淀池或澄清池之后。目的是使滤后水的浊度达到水质标准的要求。水经过滤后,残留的细菌、病毒失去了悬浮物的保护作用,从而为过滤后消毒创造了条件。所以,在以地面水为水源的饮用水净化中,有时可省去沉淀或澄清,但过滤是不可缺少的。 由特殊工艺合成的聚合物薄膜,最常见的是醋酸纤维膜与聚酰胺膜。膜过滤属精密过滤(ultrafiltration),可分离5nm的微粒。 2.滤饼过滤与深层过滤 根据过滤过程的机理有滤饼过滤和深层过滤之分。滤饼过滤又称为表面过滤。使用织物、多孔材料或膜等作为过滤介质。过滤介质的孔径不一定要小于最小颗粒的粒径。过滤开始时,部分小颗粒可以进入甚至穿过介质的小孔。但很快由颗粒的架桥作用使介质的孔径缩小形成有效的阻挡。被截留在介质表面的颗粒形成称为滤饼的滤渣层,透过滤饼层的则是被净化了的滤液。随着滤饼的形成真正起过滤介质作用的是滤饼本身,因此称为滤饼过滤。滤饼过滤主要适用于含固量较大(>过滤纸;1%)的场合。 深层过滤一般应用介质层较厚的滤床类(如沙层、硅藻土等)作为过滤介质。颗粒小于介质空隙进入到介质内部,而长而曲折的孔道中被截留并附着于介质之上。深层过滤无滤饼形成,主要用于净化含固量很少(<0.1%)的流体,如水的

实验五 过滤实验

实验五过滤实验 一、实验目的 过滤是具有孔隙的过滤层截留水中杂质,从而使水得到澄清的工艺过程,砂滤是一种最主要的应用于生产实验的水处理工艺,不仅可以去除水中细小的悬浮颗粒杂质,而且能有效地去除水中的细菌、病毒及有机物。本实验采用石英砂作为滤料,进行清水、原混水及经混凝后的混水的过滤实验及反冲洗实验。希望达到以下目的: 1.掌握清洁滤料层过滤时水头损失的变化规律及其计算方法; 2.深化理解滤速对出水水质的影响; 3.深入理解反冲洗强度与滤料层膨胀高度间的关系,掌握反冲洗方法。 4. 熟悉普通快滤池过滤、反冲洗的工作过程。 5. 加深对滤速、冲洗强度、滤层膨胀率、初滤水浊度的变化、冲洗强度与冲洗膨胀率关系 以及滤速与清洁滤层水头损失关系的理解。 二、实验原理 快速过滤池滤料层能截留粒径远比滤料孔隙小的水中杂质,主要通过接触絮凝作用,其次为筛滤作用和沉淀作用。要想过滤出水水质好,除了滤料组成需符合要求外,沉淀前或滤前投加混凝剂也是必不可少的。 当过滤水头损失达到最大允许水头损失时,滤池需要进行冲洗。少数情况下,虽然水头损失未达到最大允许值,但如果滤池出水浊度超过规定要求,也需进行冲洗。冲洗强度需满足底部滤层恰好膨胀的要求。根据运行经验,冲洗排水浊度降至10~20度以下可停止冲洗。 快滤池冲洗停止时,池中水杂质较多且未投药,故初滤水浊度较高。滤池运行一段时间(约5~10 min或更长)后,出水浊度开始符合要求。时间长短与原水浊度、出水浊度要求、药剂投放量、滤速、水温以及冲洗情况有关。如初滤水历时短,初滤水浊度比要求的出水浊度高不了多少,或者说初滤水对滤池过滤周期出水平均浊度影响不大时,初滤水

实验三恒压过滤常数测定实验

实验三 恒压过滤常数测定实验 1.实验目的 (1)熟悉板框压滤机的结构和操作方法。 (2)测定恒压过滤常数K 、q e 、θ e 。 (3)测定滤饼的压缩性指数s 。 2.基本原理 由恒压过滤方程: θK q q q e =+22 式中:q — 单位过滤面积所得滤液体积,m 3/ m 2 ; θ— 过滤时间,s ; K - 恒压过滤常数,m 2/s; q e - 反映过滤介质阻力的常数,m 3/ m 2 。 微分得: ()θKd dq q q e =+2 将上式写成差分形式,则: e q K q K q 2 2+=??-θ 式中:q ?— 每次测定的单位过滤面积滤液体积,m 3/ m 2; θ?— 每次测定滤液体积q ?所对应的时间间隔,s ; q — 相邻二个q 值的平均值,m 3/ m 2。 以q ??/θ为纵坐标,q 为横坐标,将上式标绘成一直线,由该直线的斜率和截距可求出过 滤常数K 和q e ,而虚拟过滤时间 θe =q e 2/K 也可将恒压过滤方程变为: K q q K q e 21 += θ 以q /θ为纵坐标,q 为横坐标,绘成一直线,由直线的斜率和截距求出过滤常数K 和q e 。 改变过滤压差△p ,可测得不同的K 值,由K 的定义式s p k K -?=1) (2两边取对数得: ()()lg(2k)p lg s 1lgK +?-= 在实验压差范围内,若k 为常数,则lgK ~lg(△p)的关系在直角坐标上是一条直线,斜率为 (1-s ),可得滤饼压缩性指数s 。 3.实验装置与流程 本实验装置由空压机、配料槽、压力贮槽、板框过滤机(板框厚度25mm ,每个框过滤面积 0.024m 2,框数2个)等组成,其流程如图2-3所示。 4.实验步骤 (1)在配料槽内配制含CaCO 3约10%(质量)的水悬浮液。 (2)开启空压机,将压缩空气通入配料槽,使CaCO 3悬浮液搅拌均匀。 (3)正确装好滤板、滤框及滤布。滤布使用前用水浸湿,滤布要绷紧,不能起皱(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动手轮使板框合上,然后再压紧)。

实验二过滤与反冲洗实验(修改)20101216(104室)

实验二 过滤与反冲洗实验 一、实验目的 1、了解模型及设备的组成与构造。 2、观察过滤及反冲洗现象,进一步了解过滤及反冲洗原理。 3、掌握实验的操作方法。 4、掌握滤池工作中主要技术参数的测定方法。 二、实验原理 1、过滤与反冲洗模型 过滤与反冲洗实验装置是由进水箱、流量计、过滤柱及水位计组成。 2、水过滤原理 水的过滤是根据地下水通过地层过滤形成清洁井水的原理而创造的处理浑浊水的方法。在处理过程中,过滤一般是指以石英砂等颗粒状滤料层截留水中悬浮杂质,从而使水达到澄清的工艺过程。过滤是水中悬浮颗粒与滤料颗粒间粘附作用的结果。粘附作用主要决定于滤料和水中颗粒的表面物理化学性质,当水中颗粒迁移到滤料表面上时,在范得华引力和静电引力以及某些化学键和特殊的化学吸附力作用下,它们被粘附到滤料颗粒的表面上。此外,某些絮凝颗粒的架桥作用也同时存在。经研究表明,过滤主要还是悬浮颗粒与滤料颗粒经过迁移和粘附两个过程来完成去除水中杂质的过程。 3、影响过滤的因素 在过滤过程中,随着过滤时间的增加,滤层中悬浮颗粒的量也会随着不断增加,这就必然会导致过滤过程水力条件的改变。当滤料粒径、形状、滤层级配和厚度及水位已定时,如果孔隙率减小,则在水头损失不变的情况下,将引起滤速减小。反之,在滤速保持不变时,将引起水头损失的增加。就整个滤料层而言,鉴于上层滤料截污量多,越往下层截污量越小,因而水头损失增值也由上而下逐渐减小。此外,影响过滤的因素还有很多,诸如水质、水温、滤速、滤料尺寸、滤料形状、滤料级配,以及悬浮物的表面性质、尺寸和强度等等。 4、滤料层的反冲洗 过滤时,随着滤层中杂质截留量的增加,当水头损失增至一定程度时,导致滤池产生水量锐减,或由于滤后水质不符合要求,滤池必须停止过滤,并进行反冲洗。反冲洗的目的是清除滤层中的污物,使滤池恢复过滤能力。滤池冲洗通常采用自上而下的水流进行反冲洗的方法。反冲洗时,滤料层膨胀起来,截留于滤层中的污物,在滤层孔隙中的水流剪力作用下,以及在滤料颗粒碰撞摩擦的作用下,从滤料表面脱落下来,然后被冲洗水流带出滤池。反冲洗效果主要取决于滤层孔隙水流剪力。该剪力既与冲洗流速有关,又与滤层膨胀有关。冲洗流速小,水流剪力小;冲洗流速大,使滤层膨胀度大,滤层孔隙中水流剪力又会降低,因此,冲洗流速应控制适当。高速水流反冲洗是最常用的一种形式,反冲洗效果通常由滤床膨胀率e 来控制,即 %1000 ?-= L L L e 式中 L ——砂层膨胀后的厚度(cm ); L 0——砂层膨胀前的厚度(cm )。

恒压过滤常数的测定实验报告

实验二 恒压过滤常数的测定 一. 实验目的 (1) 熟悉板框压滤机的构造和操作方法; (2) 通过恒压过滤实验,验证过滤基本原理; (3) 测定过滤常数K 、qe 、θ; (4) 了解过滤压力对过滤速率的影响。 二. 实验原理 如图一所示,滤浆槽内配有一定浓度的轻质碳酸钙悬浮液(浓度在2-4%左右),用电动搅拌器进行均匀搅拌(浆液不出现旋涡为好)。启动旋涡泵,调节阀门3使压力表5指示在规定值。滤液在计量桶内计量。 过滤、洗涤管路如图二示 图一 恒压过滤实验流程示意图 1─调速器;2─电动搅拌器;3、4、6、11、14─阀门; 5、7─压力表8─板框过滤机; 9─压紧装置;10─滤浆槽; 12─旋涡泵;13-计量桶 。

三.主要仪器设备 (1)旋涡泵: 型号: (2)搅拌器: 型号: KDZ-1 ; 功率: 160w 转速: 3200转/分 (3)过滤板: 规格: 160*180*11(mm) (4)滤布:型号工业用;过滤面积0.0475m2 (5)计量桶:第一套长275 mm、宽325mm 四.操作方法与实验步骤 (1)系统接上电源,打开搅拌器电源开关,启动电动搅拌器2。将滤液槽10内浆液搅拌 均匀。 (2)板框过滤机板、框排列顺序为:固定头-非洗涤板-框-洗涤板-框-非洗涤板-可动头。用 压紧装置压紧后待用。 (3)使阀门3处于全开、阀4、6、11处于全关状态。启动旋涡泵12,调节阀门3使压力 表5达到规定值。 (4)待压力表5稳定后,打开过滤入口阀6过滤开始。当计量桶13内见到第一滴液体时 按表计时。记录滤液每增加高度20mm时所用的时间。当计量桶13读数为160 mm 时停止计时,并立即关闭入口阀6。 (5)打开阀门3使压力表5指示值下降。开启压紧装置卸下过滤框内的滤饼并放回滤浆槽 内,将滤布清洗干净。放出计量桶内的滤液并倒回槽内,以保证滤浆浓度恒定。 (6)改变压力,从(2)开始重复上述实验。

恒压过滤实验报告材料

恒压过滤 一、实验名称: 恒压过滤 二、实验目的: 1、熟悉板框过滤机的结构; 2、测定过滤常数K、q e、θe; 三、实验原理: 板框压滤是间歇操作。一个循环包括装机、压滤、饼洗涤、卸饼和清洗五个工序。板框机由多个单元组合而成,其中一个单元由滤板(·)、滤框(∶)、洗板( )和滤布组成,板框外形是方形,如图2-2-4-1所示,板面有槽以便滤液和洗液畅流,每个板框均有四个圆孔,其中两对角的一组为过滤通道,另一组为洗涤通道。滤板和洗板又各自有专设的小通道。图中实线箭头为滤液流动线路,虚线箭头则为洗液流动路线。框的两面包以滤布作为滤面,滤浆由泵加压后从下面通道送入框,滤液通过滤布集于对角上通道而排出,滤饼被截留在滤框,如图2-2-4-2a)所示。过滤完毕若对滤饼进行洗涤则从另一通道通入洗液,另一对角通道排出洗液,如图2-2-4-2b)所示。 图2-2-4-1 板框结构示意图

图2-2-4-2 过滤和洗涤时液体流动路线示意图 在过滤操作后期,滤饼即将充满滤框,滤液是通过滤饼厚度的一半及一层滤布而排出,洗涤时洗液是通过两层滤布和整个滤饼层而排出,若以单位时间、单位面积获得的液体量定义为过滤速率或洗涤速率,则可得洗涤速率约为最后过滤速率的四分之一。 恒压过滤时滤液体积与过滤时间、过滤面积之间的关系可用下式表示: )()(22e e KA V V θθ+=+ (1) 式中:V ——时间θ所得滤液量[m 3 ] V e ——形成相当于滤布阻力的一层滤饼时获得的滤液量,又称虚拟滤液量[m 3] θ——过滤时间[s] θe ——获过滤液量V e 所需时间[s] A ——过滤面积[m 2] K ——过滤常数[m 2/s]

恒压过滤常数测定实验实验报告

恒压过滤常数测定实验 1 实验目的 1.1 熟悉板框压滤机的构造和操作方法。 1.2 通过恒压过滤实验,验证过滤基本理论。 1.3 学会测定过滤常数K、q e、τe及压缩性指数s的方法。 1.4 了解过滤压力对过滤速率的影响。 2 基本原理 过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。 过滤速度u定义为单位时间单位过滤面积内通过过滤介质的滤液量。影响过滤速度的主要因素除过滤推动力(压强差)p,滤饼厚度L外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。 过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式: 式中:u—过滤速度,m/s; V—通过过滤介质的滤液量,m3; A—过滤面积,m2; τ—过滤时间,s; q—通过单位面积过滤介质的滤液量,m3/m2; p—过滤压力(表压)pa; s—滤渣压缩性系数; μ—滤液的粘度,Pa.s; r—滤渣比阻,1/m2;

C—单位滤液体积的滤渣体积,m3/m3; Ve—过滤介质的当量滤液体积,m3; r‘—滤渣比阻,m/kg; C—单位滤液体积的滤渣质量,kg/m3。 对于一定的悬浮液,在恒温和恒压下过滤时,μ、r、C和△p都恒定,为此令: 于是式(1)可改写为: 式中:K—过滤常数,由物料特性及过滤压差所决定,m2 / s。 将式(3)分离变量积分,整理得: 即 将式(4)的积分极限改为从0到V e和从0到τe积分,则: 将式(5)和式(6)相加,可得: 式中:τe—虚拟过滤时间,相当于滤出滤液量V e所需时间,s。 再将式(7)微分,得: 将式(8)写成差分形式,则 式中:△q—每次测定的单位过滤面积滤液体积(在实验中一般等量分配),m3/ m2; q—相邻二个q值的平均值,m3/ m2。 △τ—每次测定的滤液体积 q所对应的时间,s;

实验三 :过滤综合实验

实验三 过滤综合实验 —— 恒压(板框)过滤实验 本实验设备由过滤板、过滤框、旋涡泵等组成,是一种小型的工业用板框过滤机。本套装置可进行设计型、研究型、综合型实验。由于设备接近工业生产状况,通过实验可培养学生的工程观念、实验研究能力、设计能力以及解决生产实际问题的能力。 一、实验任务 根据教学大纲要求和各实验小组的准备情况,从下列实验任务中选择其中1-2项实验。 1.测定恒压过滤参数K 和过滤介质参数qe 、θe ; 2.改变压力,测定滤饼压缩性指数S 和滤饼物料特性常数k ; 3.研究不同过滤压力对过滤机生产能力的影响; 4.研究在相同压力下,不同滤浆浓度对过滤机生产能力的影响。 二、实验基本原理 滤饼过滤是液体通过滤渣层(过滤介质与滤饼)的流动。无论是生产工艺还是工艺设计,过滤速率的计算都要有“过滤常数”作依据。由于滤渣厚度随着时间而增加,所以,恒压过滤速度随着时间而降低。不同物料形成的悬浮液,其过滤常数差别很大,即使是同一种物料,由于浓度不同,滤浆温度不同,其过滤常数也不尽相同,故要有可靠的实验数据作参考。 根据恒压过滤方程: ()()e e K q q θθ+=+2 (1) 式中: q ─ 单位过滤面积获得的滤液体积 [ m 3/m 2 ] e q ─ 单位过滤面积的虚拟滤液体积 [ m 3 /m 2 ] θ ─ 实际过滤时间 [ s ] e θ ─ 虚拟过滤时间 [ s ] K ─ 过滤常数 [ m 2 /s ] 将(1)式微分可得: e q K q K dq d 2 2+=θ (2) 当各数据点的时间间隔不大时, dq d θ 可以用增量之比 q ??θ 来代替,即: e q K q K q 22+=??θ (3) 上式为一直线方程。试验时,在恒压下过滤要测定的悬浮液,测出过滤时间θ及滤液累计量q 的数据,在直角坐标纸上标绘 q ??θ 对 q 的关系,所得直线斜率为 K 2,截距为 e q K 2 ,从而求出 K 和 e q 。

恒压过滤实验常数测定实验报告

恒压过滤实验 一、实验目的 1、掌握恒压过滤常数K 、通过单位过滤面积当量滤液量e q 、当量过滤时间e θ的测定方法;加深K 、e q 、e θ的概念和影响因素的理解。 2、 学习 dq d θ ——q 一类关系的实验测定方法。 二、实验内容 1、测定实验条件下的过滤常数K 、e q 三、实验原理 1.恒压过滤常数K 、e q 、e θ的测定方法。 在过滤过程中,由于固体颗粒不断地被截留在介质表面上,滤饼厚度增加,液体流过固体颗粒之间的孔道加长,而使流体阻力增加,故恒压过滤时,过滤速率逐渐下降。随着过滤的进行,若得到相同的滤液量,则过滤时间增加。 恒压过滤方程 )()(2e e K q q θθ+=+ (1) 式中q —单位过滤面积获得的滤液体积,2 3 /m m ; e q —单位过滤面积上的当量滤液体积,2 3 /m m ; e θ—当量过滤时间,s ; θ—实际过滤时间,s ; K —过滤常数,m 2 /s 。 将式(1)进行微分可得: e q K q K dq d 2 2+=θ (2) 这是一个直线方程式,于普通坐标上标绘q dq d -θ的关系,可得直线。其斜率为K 2 ,截距为 e q K 2 ,从而求出K 、e q 。至于e θ可由下式求出: e e K q θ=2 (3) 当各数据点的时间间隔不大时, dq d θ可用增量之比q ??θ来代替. 在本实验装置中,若在

计量瓶中手机的滤液量达到100ml 时作为恒压过滤时间的零点,再次之前从真空吸滤器出口到计量瓶之间的管线中已有的滤液在加上计量瓶忠100ml 滤液,这两部分滤液课视为常量(用'q 表示),这些滤液对应的滤饼视为过滤介质意外的另一层过滤介质。在整理数据是,应考虑进去,则方程式变为 q ??θ=K 2q+K 2(e q +q ′ ) (4) 以 q ??θ与相应区间的平均值q 作图。在普通坐标纸上以q ??θ 为纵坐标,q 为横坐标标绘q ??θ~q 关系,其直线的斜率为:K 2;直线的截距为:K 2(e q +q ′)。 过滤常数的定义式:s p k K -?=12 (5) 两边取对数: )2lg(lg )1(lg k p s K +?-= (6) 因常数='= ν μr k 1 ,故K 与p ?的关系在对数坐标上标绘时应是一条直线,直线的斜率为s -1,由此可得滤饼的压缩性指数s ,然后代入式(4-5)求物料特性常数k 。 四、实验方法 操作步骤: 1、开动电动搅拌器将滤浆桶内滤浆搅拌均匀(不要使滤浆出现打旋现象)。将真空吸滤器安装好,放入滤浆桶中,注意滤浆要浸没吸滤器。 2、打开进气阀,关闭调节阀5,然后启动真空泵。 3、调节进气阀,使真空表读数恒定于指定值,然后打开调节阀5进行抽滤,待计量瓶中收集的滤液量达到100ml 时,按表计时,作为恒压过滤零点。记录滤液每增加100ml 所用的时间。当计量瓶读数为800ml 时停表并立即关闭调节阀5. 4、 打开进气阀10和8,待真空表读数降到零时停真空泵。打开调节阀5,利用系统内大气压将吸附在吸滤器上的滤饼卸到桶内。放出计量瓶内滤液,并倒回滤浆槽内。卸下吸滤器清洗干净待用。 5、 结束试验后,切断真空泵、电动搅拌器电源,清晰真空吸滤器并使设备复原。 五、实验装置与流程

化工原理实验 恒压过滤

浙江科技学院 实验报告 课程名称:化工原理 实验名称:恒压过滤常数测定实验学院:生物与化学工程学院专业班:化学工程与工艺111 姓名:王建福 学号:5110420006 同组人员:杨眯眯张涛 实验时间: 2013 年11月14日 指导教师:诸爱士

一、实验课程名称:化工原理 二、实验项目名称:恒压过滤常数测定实验 三、实验目的和要求: 1.熟悉板框压滤机的构造和操作方法; 2.通过实验,验证过滤基本原理; 3.学会测定过滤常数K 、q e 、τe 及压缩性指数S 的方法; 4.了解操作压力对过滤速率的影响。 四、实验内容和原理 实验内容:测定时间与滤液量的变化关系,绘制相关图表,求出过滤常数K 及压缩性指数S 。 实验原理:过滤是以某种多孔物质作为介质来处理悬浮液的操作。在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。 影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为: L p a K u μεε?-=22 3')1(1 (1) u :过滤速度,m/s K ’:康采尼常数,层流时,K ’=5.0 ε:床层空隙率,m 3/m 3 μ:滤液粘度,Pas a :颗粒的比表面积,m 2/m 3 △p :过滤的压强差,Pa L :床层厚度,m 恒压过滤时,令k=1/μr ’v ,K=2k △p 1-s ,q=V/A ,q e =Ve/A ,对(2)式积分得: (q+q e )2=K(τ+τe ) (3) K 、q 、q e 三者总称为过滤常数,由实验测定。 对(3)式微分得: 2(q+q e )dq=Kdτ e q K q K dq d 22+=τ (4) 用△τ/△q 代替dτ/dq ,在恒压条件下,用秒表和量筒分别测定一系列时间间隔△τi ,和对应的滤液体积△ V i ,可计算出一系列△τi 、△q i 、q i ,在直角坐标系中绘制△τ/△q ~q 的函数关系,得一直线,斜率为2/K ,截距为2q e /K ,可求得K 和q e ,再根据τe =q e 2/K ,可得τe 。 改变过滤压差△p ,可测得不同的K 值,由K 的定义式两边取对数得: lgK=(1-S)lg(△p)+lg(2k) (5) 在实验压差范围内,若k 为常数,则lgK ~lg(△p)的关系在直角坐标上应是一条直线,斜率为(1-S),可得滤饼压缩性指数S ,进而确定物料特性常数k 。

相关文档
最新文档