1220Quantulus液闪谱仪测量_3H计数效率的刻度

1220Quantulus液闪谱仪测量_3H计数效率的刻度
1220Quantulus液闪谱仪测量_3H计数效率的刻度

液体闪烁计数器功能特点

液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C 计数效率大于95%。 1 常用放射性核素测定 液闪计数器可用于3H、14C、32P、33P、35S、45Ca、55Fe、36Cl、86Rb、65Zn、90Sr、203Hg等含有放射性核素的动植物、微生物和非生物样品测定。 2 H number法猝灭校正 在测定样品放射性的同时,测出H#数值,可以直观的判断出该样品的猝灭程度。 3 两相检测 用于检测含水放射性样品与闪烁液的分相问题,以避免由此而引起的计数效率下降。 4 自动猝灭补偿(AQC) 通过最佳的窗口等条件设置,以期使猝灭样品达到较高的计数效率。 5 随机符合监测(RCM) 可用于监测制样过程中化学发光引起的单光子事件的假计数,可以从测定结果中扣除。 6 能谱寻找与分析 此功能对未知核素的β能谱定位与分布做出可靠准确的测量,为道宽设置提供依据。 7 单光子监测(SPM) 可用于生物发光与生物中单光子事件的测定。 8 半衰期校正 对于短半衰期核素可校正出放射性强度与时间的关系。给出现存放射性强度

的量。 9 双标与三标记测定 通过设置不同道宽等条件,测定同一个样品中的双标记或三标记放射性,区分出各个标记的放射性强度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/0a2531290.html,/

液体闪烁计数

液体闪烁计数(Liquifd scintillation counting) 液体闪烁计数所用的闪烁体是液态,即将闪烁体溶解在适当的溶液中,配制成为闪烁液,并将待测放射性物质放在闪烁液中进行测量。应用液体闪烁计数可达到4π立体角的优越几何测量条件,而且源的自吸收也可以忽略,对于能量低,射程短、易被空气和其它物质吸收的α射线和低能β射线(如3H和14C),有较高的探测效率,液体闪烁计数器是α射线和低能β射线的首选测量仪器。 1.探测机理 闪烁液产生光子的过程是,从放射源发出的射线能理,首先被溶剂分子吸收,使溶剂分子激发。这种激发能量在溶剂内传播时,即传递给闪烁体(溶质),引起闪烁体分子的激发,当闪烁体分子回到基态时就发射出光子,该光子透过透明的闪闪烁液及样品的瓶壁,被光电倍增管的光阴极接收,继而产生光电子并通过光电倍增管的倍增管的位增极放大,然后被阳极接收形成电脉冲,完成了放射能→光能→电能的转换。 2.闪烁液 液体闪烁计数系统作用的闪烁溶液,是指闪烁瓶中除放射性被测样品之外的其它组分,主要是有机溶剂和溶质(闪烁体),有时为了样品的制备或提高计数效率的需要,还加入其它添加剂。 ⑴溶剂:从β源放射β射线到发射能被肖阴极接收的光妇的这一系列能量转移环节中,能量转移效率是很低的,只有少部分放射能量被利用来发射光子,其中放射源与溶剂之间,能量转移效率大约为5 ̄10%。对溶剂的选择,主要视其对闪烁体的溶介度和将放射能转移给闪烁体的效率而定。如果以一定浓度的闪烁体在甲苯溶液中产生的脉冲高度为100%,那么,凡能产生80%以上的脉冲高度的都定为溶剂,能使脉冲高度随其浓度上升而逐渐减小的称为稀释液,而在浓度很低时就能引起脉冲高度显著下降的叫淬灭剂。在液体闪烁计数系统中,一个好的溶剂应满足下列条件:①对闪烁体的溶介度高;②对放射源的转移效率高;③对闪烁发射的光子透明度高;④在无论有无助溶剂的帮助下都可以溶介放射性样品;⑤在计数器的工作温度下来结冰;⑥能够形成均相的测量溶液。一般认为,烷基苯是最好的溶剂,如甲苯,二甲苯。此外,苯甲醚也是比较好的溶剂。另外,对于含水量较多的样品,采用1,4-二氧不作为溶剂,因为该有机化合物的极性较大,既能很好地溶介闪烁体又可溶介含水量较多的样品,能改善计数效率,缺点是价格昂贵,冰点高,久放后产生淬灭作用很强的过氧化物,必须经纯化才能使用,并应加入0.001%的二乙基二硫代氨基甲酸钠或丁基氢氧基甲苯(BHT),以抑制纯化的二氧六环变质。溶剂在闪烁溶液中约占99%,因此,它的纯度对闪烁液的品质是很大的影响因素。溶剂中不发光的杂质、氧和水的含量多少,都关系到淬灭程度。原则上讲,溶剂应具有闪烁纯,即不含或很少含有影响闪烁计数的淬灭成分。实际证明,“分析纯”试剂可以不经纯化而直接使用。 ⑵闪烁液:在液体闪烁计数系统中,闪烁体又称荧光体,是闪烁液的溶质,它的很多,根据其荧光特性及作用,可分为两类,即第一闪烁和第二闪烁体。 ①第一闪烁体:(初级闪烁体):常用的第一闪烁体:对联三苯(TP):化学结构它是最早使用的闪烁体之一。它的计数率高,价格比较便宜,但是,在低温或含水溶液介度不高。2,5-二苯恶唑(PPO):化学结构它是目前普遍使用的闪烁体,能很好地溶介在常用的溶剂中,在含水的情况下也是如此,在甲苯中的溶介度达200克/升以上。它的化学性质稳定,价格也较便宜。但是,它的最大缺点是有明显的浓度淬灭(自身淬灭),即随着PPO在溶剂中的浓度升高,计数效率下降。2-苯基-5-(4-二苯基)-1,3,4恶唑(PBD):化学结构为它是已知的最有效的闪烁体之一。比PPO能耐受浓度淬灭,但是,它的溶介度低,尤其是在低温和含水样品存在时,溶介度下降更快,而且用量比PPO多两倍,价格昂贵。2-(4-t-丁基苯基)-5-(4-二苯基)-1,3,4,恶二唑(丁基-PBD):化学结构为

NaI(Tl)闪烁谱仪r能谱

NaI (Tl )闪烁谱仪测量γ能谱 实验目的 1. 掌握NaI(Tl) γ闪烁谱仪的结构、原理和工作过程 2. 掌握NaI(Tl)γ闪烁谱仪的性能指标和测试方法。 3. 了解核电子学仪器的数据采集、记录方法和数据处理原理。 实验内容 1. 学会NaI(Tl) 单晶γ闪烁谱仪装置的使用操作方法 2. 掌握调整谱仪参数,选择最佳测量工作条件的方法 3. 测量谱仪的能量分辨率、刻度能量线性。 4. 了解数据处理(包括对谱形进行光滑、寻峰,曲线拟合等)。 一.γ射线与物质的相互作用 γ射线光子与物质原子相互作用的机制主要有以下三种方式,如图1所示。 图1 γ射线光子与物质原子相互作用 (1)光电效应 当能量为E γ的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失。发射出去的电子称为光电子,这种过程称为光电效应。发射光电子的动能为 i e B E E -=γ B i 为束缚电子所在壳层的结合能。原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。这种X 射线在闪烁体内很容易再产生一次新的光电效应,将能量又转移给光电子,所以闪烁体得到的能量是两次光电效应产生的光电子能量之和。 值得注意的是,由于必须满足动量守恒定律,自由电子(非束缚电子)不能吸收光子能量而成为光电子。光电效应的发生除入射光子和光电子之外,还需有一个第三者参加,这第三者就是发射光电子之后剩余下来的整个原子。它带走一些反冲能量,但该能量十分小。由于它的参加,动量和能量守恒才能满足。而且,电子在原子中被束缚得越紧(即越靠近原子核的电子),越容易使原子核参加上述过程。所以在K 壳层上发生光电效应的概率最大。 (2)康普顿效应 γ光子与自由静止的电子发生碰撞,将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射,改变了原来的能量和方向。反冲电子的动能为 ()θγγ cos 112 0-+=E c m E E e (

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

简易频率计课程设计

目录 1 技术要求及系统结构 (1) 1.1技术要求 (1) 1.2系统结构 (1) 2设计方案及工作原理 (2) 2.1 算法设计 (2) 2.2 工作原理 (3) 3组成电路设计及其原理 (6) 3.1时基电路设计及其工作原理 (6) 3.2闸门电路设计 (7) 3.3控制电路设计 (8) 3.4小数点控制电路 (9) 3.5整体电路 (10) 3.6 元件清单 (10) 4设计总结 (11) 参考文献 (11) 附录1 (12) 附录2 (17)

摘要 简易数字频率计是一种用四位十进制数字显示被测信号频率(1Hz—100KHz)的数字测量仪器.它的基本功能是测量正弦波,方波,三角波信号,有四个档位(×1,×10,×100,×1000),并能使用数码管显示被测信号数据,本课程设计讲述了数字频率计的工作原理以及其各个组成部分,记述了在整个设计过程中对各个部分的设计思路、对各部分电路设计方案的选择、元器件的筛选、以及在设计过程中的分析,以确保设计出的频率计成功测量被测信号。 关键词:简易数字频率计十进制信号频率数码管工作原理 1技术要求及结构 本设计可以采用中、小规模集成芯片设计制作一个具有下列功能的数字频率测量仪。 1.1技术要求 ⑴要求测量频率范围1Hz-100KHz,量程分为4档,即×1、×10、×100、×1000。 ⑵要求被测量信号可以是正弦波、三角波和方波。 ⑶要求测试结果用数码管表示出来,显示方式为4位十进制。 1.2 系统结构 数字频率计的整体结构要求如图1-1所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 图1-1 数字频率计系统结构框图 2 设计方案及工作原理 2.1 算法设计

NaI(Tl)闪烁谱仪实验报告材料

实验5:NaI(Tl)闪烁谱仪 实验目的 1. 了解谱仪的工作原理及其使用。 2. 学习分析实验测得的137Cs γ谱之谱形。 3. 测定谱仪的能量分辨率及线性。 容 1. 调整谱仪参量,选择并固定最佳工作条件。 2. 测量137Cs 、65Zn 、60Co 等标准源之γ能谱,确定谱仪的能量分辨率、刻度 能量线性并对137Cs γ谱进行谱形分析。 3. 测量未知γ源的能谱,并确定各条γ射线的能量。 原理 )1(T NaI 闪烁谱仪由)1(T NaI 闪烁体、 光电倍增管、射极输出器和高压电源以及线性脉冲放大器、单道脉冲幅度分析器(或多道分析器)、定标器等电子学设备组成。图1为)1(T NaI 闪烁谱仪装置的示意图。此种谱仪既能对辐射强度进行测量又可作辐射能量的分析,同时具有对 γ射线探测效率高(比G-M 计数器高几十倍)和分辨时 间短的优点,是目前广泛使用的一种辐射探测装置。

当γ射线入射至闪烁体时,发生三种基本相互作用过程,见表1第一行所示:(1)光电效应;(2)康普顿散射;(3)电子对效应。前两种过程中产生电子,后一过程出现正、负电子对。这些次级电子获得动能见表1第二行所示,次级电子将能量消耗在闪烁体中,使闪烁体中原子电离、激发而后产生荧光。光电倍增管的光阴极将收集到的这些光子转换成光电子,光电子再在光电倍增管中倍增,最后经过倍增的电子在管子阳极上收集起来,并通过阳极负载电阻形成电压脉冲信号。γ射线与物质的三种作用所产生的次级电子能量各不相同,因此对于一条单能量的γ射线,闪烁探测器输出的次级电子脉冲幅度仍有一个很宽的分布。分布形状决定于三种相互作用的贡献。 表1 γ射线在NaI(Tl)闪烁体中相互作用的基本过程

闪烁谱仪测γ射线能谱(252)

用闪烁谱仪测γ射线能谱4+ PB04210252 刘贤焯 第26组10号 和原子的能级间跃迁产生原子光谱类似,原子核的能级间跃产生γ射线谱。测量γ射线强度按能量的分布即γ射线能谱,简称γ能谱。研究γ能谱可确定原子核激发态的能级,研究核蜕变纲图等,对放射性分析、同位素应用及鉴定核素等方面都有重要的意义。测量γ射线能谱最常用的仪器是闪烁γ能谱仪,该谱仪在核物理、高能粒子物理和空间辐射物理的探测中都占有重要地位,而且用量很大。 本实验的目的是学习用闪烁谱仪测量γ射线能谱的方法,要求掌握闪烁谱仪的工作原理和实验方法,学会谱仪的能量标定方法,并测量γ射线的能谱。 实验原理 根据原子核结构理论,原子核的能量状态是不连续的,存在着分立能级。处在能量较高的激发态能级2E 上的核,当它跃迁到低能级1E 上时,就发射γ射线(即波长约在1nm ~ 0.1nm 间的电磁波)。放出的γ射线的光量子能量12E E hv -=,此处h 为普朗克常数,ν为γ光子的频率。由此看出原子核放出的γ射线的能量反映了核激发态间的能级差。因此测量γ射线的能量就可以了解原子核的能级结构。测量γ射线能谱就是测量核素发射的γ射线强度按能量的分布。 1. 闪烁谱仪测量γ射线能谱的原理 闪烁能谱仪是利用某些荧光物质,在带电粒子作用下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱的。这种荧光物质常称为闪烁体。 (1) 闪烁体的发光机制 闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机晶体闪烁体。有机闪烁体包括有机晶体闪烁体、有机液体闪烁体和有机塑料闪烁体等。此处仅对常用的无机晶体闪烁体的发光机

制作简单介绍。 最常用的无机晶体是铊激活的碘化钠单晶闪烁体,常写为NaI (T1),属离子型晶体,是绝缘体,按固体物理的概念,其能带结构是在价带和导带之间有比较宽的禁带。如有带电粒子进入到闪烁体中,引起后者产生电离或激发过程,即可能有电子从价带激发到导带或激发到激带,然后这些电子再退激到价带的可能过程之一是发射光子。这种光子的能量还会使晶体中其他原子产生激发或电离过程,也就是光子可能被晶体吸收而不能被探测到。为此在晶体中掺入少量的杂质原子称为激活原子,如在碘化钠晶体中掺入铊原子,其关键作用是可以在低于导带和激带的禁带中形成一些杂质能级,见图2.2.1-1示意图。这些杂质原子会捕获一些自由电子或激子到达杂质能级上,然后以发光的形式退激发到价带,这就形成了闪烁过程的发光,而这种光因能量小于禁带宽度而不再被晶体吸收,不再会产生激发或电离。这说明只有加入少量激活杂质的晶体才能成为实用的闪烁体。对于无机晶体NaI (T1)而言,其发射光谱最强的波长是415nm的蓝紫光,其强度反映了进入闪烁体内的带电粒子能量的大小。应选择适当大小的闪烁体,可使这些光子一射出闪烁体就被探测到。(2)γ射线与物质的相互作用 γ射线光子与物质原子相互作用的机制主要有以下三种方式: 1)光电效应 当能量 E的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某

用闪烁谱仪测γ射线能谱

实验题目: 用闪烁谱仪测γ射线能谱 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型Cs 137的γ射线能谱图。图的纵轴代表单位时间内的脉冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全部能量,所以光电峰的能量就代表γ射线的能量,对Cs 137,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率

(1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰 M e V E 17.11=γ、MeV E 33.12=γ等能量值,先分别测量两核素的γ能谱,得到光电峰所对应的多道分 析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应 MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左

简易数字频率计

宁波工程学院 电子信息工程学院 课程设计报告 课程设计题目:简易数字频率计 起讫时间:2011年05月23日至2011年06月03日

目录第一章技术指标 1.1整体功能要求 1.2电气指标 1.3扩展指标 1.4设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图 2.3 计数原理 第三章单元电路设计 3.1 波形变换电路 3.2 闸门电路设计 3.3小数点显示电路设计 第四章测试与调整 4.1 硬件测试与调整 4.2 软件测试与调整 4.3 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进 5.3心得体会 附录

第一章技术指标 1.1整体功能要求 设计并制作一台数字显示的简易频率计,主要用于测量正弦波、方波等周期 信号的频率值。 1.2 电气指标 1.2.1 信号波形:方波; 1.2.2 信号幅度;TTL电平; 1.2.3 信号频率:100Hz~9999Hz; 1.2.4 测量误差:≤1%; 1.2.5 测量时间:≤1s/次,连续测量; 1.2.6 显示:4位有效数字,可用数码管,LED或LCD显示。 1.3扩展指标 1.3.1 可以测量正弦波信号的频率,电压峰-峰值VPP=0.1~5V; 1.3.2 方波测量时频率测量上限为3MHz,测量误差≤1%; 1.3.3 正弦(Vopp=0.1V~5V)测量时频率测量上限为3MHz,测量误差≤1%; 1.3.4量程自动切换,且自动切换为四位有效数字输出; 1.4设计条件 1.4.1 电源条件:+5V。 1.4.2开发平台:本系统以高速SOC单片机C8051F360和FPGAEP2C8T144为 核心,主要包括9个模块,其主要配置见表1-1。 表1-1数字电子系统设计实验平台模块一览 型号名称主要配置 MCU模块SOC单片机8051F360,CPLD芯片EMP3064TC44 74151 FPGA模块EMP3064TC44,串行配置芯片,JTAG和AS配置 接口 74153 LCD和键盘模块12864中文液晶,16个按键 7404 8位高速A/D模块30MHz8位A/D转换器ADS930,信号调理电路4518 10位高速D/A模块双路100MHz10位D/A转换器THS5651,差分放 大电路,反相器

简易数字频率计设计报告

简易数字频率计设计报告 目录 一.设计任务和要求 (2) 二.设计的方案的选择与论证 (2) 三.电路设计计算与分析 (4) 四.总结与心得..................................... 错误!未定义书签。2 五.附录........................................... 错误!未定义书签。3 六.参考文献....................................... 错误!未定义书签。8

一、 设计任务与要求 1.1位数:计4位十进制数。 1.2.量程 第一档 最小量程档,最大读数是9.999KHZ ,闸门信号的采样时间为1S. 第二档 最大读数是99.99KHZ ,闸门信号采样时间为0.1S. 第三档 最大读数是999.9KHZ ,闸门信号采样时间为10mS. 第四档 最大读数是9999KHZ ,闸门信号采样时间为1mS. 1.3 显示方式 (1)用七段LED 数码管显示读数,做到能显示稳定,不跳变。 (2)小数点的位置随量程的变更而自动移动 (3)为了便于读数,要求数据显示时间在0.5-5s 内连续可调 1.4具有自检功能。 1.5被测信号为方=方波信号 二、设计方案的选择与论证 2.1 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图 2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号 图2-2 频率测量算法对应的方框图 输入电路 闸门 计数电路 显示电路 闸门产生

整体方框图及原理 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态

闪烁谱仪测γ射线能谱(牛雷)

实验题目: 用闪烁谱仪测γ射线能谱 4+ 实验目的: 本实验的目的是学习用闪烁谱仪测量 γ射线能谱的方法,要求掌握闪烁谱仪 的工作原理和实验方法,学会谱仪的能量标定方法,并测量γ射线的能谱。 实验原理: 根据原子核结构理论,原子核的能量状态是不连续的,存在着分立能级。处 在能量较高的激发态能级2E 上的核,当它跃迁到低能级1E 上时,就发射γ射线(即波长约在1nm ~ 0.1nm 间的电磁波)。放出的γ射线的光量子能量 12E E hv -=,此处h 为普朗克常数,ν为γ光子的频率。由此看出原子核放 出的γ射线的能量反映了核激发态间的能级差。因此测量γ射线的能量就可以了解原子核的能级结构。测量γ射线能谱就是测量核素发射的γ射线强度按能量的分布。 闪烁能谱仪是利用某些荧光物质,在带电粒子作用下被激发或电离后,能发射 荧光(称为闪烁)的现象来测量能谱的。这种荧光物质常称为闪烁体。 闪烁γ能谱仪可测得γ能谱的形状,图2.2.1-6所示是典型 Cs 137 的γ射线能谱 图。图的纵轴代表单位时间内的脉冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对

应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。C E 即为康普 顿边界,对应反冲电子的最大能量。 数据处理: 1)测量Cs 137的γ能谱光电峰位置与线性放大器放大倍数间的关系 Y A x i s T i t l e X Axis Title X:放大倍数 Y:道址 由图知 Cs 137 的γ能谱光电峰位置与线性放大器放大倍数间有线性关系,斜率为9.77333 2) 测量 Cs 137 和Co 60放射源的γ射线能谱,用已知的光电峰能量值来标定谱仪的 能量刻度,然后计算未知光电峰的能量值。

简易数字显示频率计的设计

简易数字显示频率计的设计 摘要:本文应用NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路,实现可测量1HZ-99HZ这个频段的数字频率计数器。 关键词:脉冲;频率;计数;控制 1 引言 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量显得很重要。测量频率的方法有很多,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。 2 电子计数器测频方法 电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 3 简易数字频率计电路组成框图 本设计主要运用数字电路的知识,由NE555构成时钟电路,7809构成稳压电源电路,CD4017构成控制电路,CD40110和数码管组成计数锁存译码显示电路。从单元电路的功能进行划分,该频率计由四大模块组成,分别是电源电路、时钟电路(闸门)、计数译码显示电路、控制电路(被测信号输入电路、锁存及清零)。电路结构如图1所示。 图1 简易数字频率计电路组成框图 4 单元模块电路设计

4.1电源电路 在电子电路中,通常都需要电压稳定的直流电源供电。小功率的稳压电源的组成如图2所示,它由电源变压器、整流电路、滤波电路和稳压电路四部分组成。 图2 电源电路 220V市电经220V/12V变压器T降压,二极管桥式整流电路整流,1000uF电容滤波后送人7809的输入端(1脚)。7809的第二脚接地,第三脚输出稳压的直流电压,C7、C8是为了进一步改变输出电压的纹波。红色发光管LED指示电源的工作状态,R9为LED的限流电阻,取值为5.1K。 4.2 时钟电路 电路如图3所示,由NE555构成的多谐振电路,3脚输出振荡脉冲,其中LED为黄色发光二极管,R1为5.1K,R2为1K,R3为10K,C1,C5为100UF,C4为0.01UF,C2为1000PF,R PE 选取10K。 图3 时钟电路 4.3计数、显示电路

水中氚活度的液闪测量分析方法操作规程

水中氚活度的液闪测量分析方法操作规程 1 实验原理 将含氚水样中常压蒸馏,收集蒸馏液的中间部分,然后将一定量的蒸馏液与一定量的闪烁液混合,暗适应后用低本底液体闪烁谱仪测量样品的活性。猝灭校正采用内标准源法,扣除本底,标准样品与本底样品另行配备以作效率刻度。 2 试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂。 2.1 高锰酸钾,KMnO4。 2.2 氢氧化钠,NaOH。 2.3 闪烁液。 2.4 标准氚水,浓度和标准待测试样尽量相当,不准确度≤±3%。 2.5 无氚水,含氚浓度低于0.1Bq/L的深层地下水。 2.6 蒸馏水。 3 仪器和设备 3.1 低本底液体闪烁谱仪,计数效率大于15%,本底小于2 计数/min。 3.2 分析天平,感量0.1mg,量程大于10g。 3.3 蒸馏装置,包括蒸馏瓶,500mL;蛇形冷凝管,250mL;电热炉;冷却水循环器。3.4 容量瓶,50mL ,500mL ,1000mL。 3.5 样品瓶,低钾玻璃瓶、聚乙烯、聚四氟乙烯或石英瓶,20mL。 3.6 移液管,10mL;移液枪,1mL。 3.7 电导率仪。 3.8 磨口塞玻璃瓶或塑料瓶,250mL。 4 样品前处理 4.1 标准样品配备 4.1.1 取氚标准源溶液小瓶,稀释溶解于500mL容量瓶中贮存备用。 4.1.2 根据测量需要,取xmL备用标准液,稀释至8mL加入至20mL样品计数瓶中,再加 入12mL闪烁液,旋紧瓶盖,振荡混合均匀后保存备用。根据标准源现有活度A o可得此标准样品活度为D=xA o/500,衰变/min。

4.2 待测样品制备 4.2.1 取300mL 水样,放入蒸馏瓶中,然后向蒸馏瓶中加入0.3g 高锰酸钾和1.5g氢氧化 钠。盖好磨口玻璃塞子,并装好蛇形冷凝管,加热蒸馏,将开始蒸出的50‐100mL 蒸馏液弃去,然后收集中间的约100mL 蒸馏液收集于磨口塞玻璃瓶或塑料瓶中准备用于样品测量,其余舍弃。 4.2.2 用电导率仪测定蒸馏液的电导率≤5μS·cm-1。如果电导率≥5μS·cm-1,水样应重 新蒸馏。 4.2.3 取8.00mL 蒸馏液(4.2.1)和12.00mL 闪烁液,放入20mL 样品计数瓶中,旋紧瓶 盖,振荡混合均匀后保存备用。 4.3 本底样品制备 将无氚水按4.2.1 步骤进行蒸馏,取其蒸馏液8.00mL 放入20mL 样品计数瓶中,再加入12.00mL 闪烁液,旋紧瓶盖,振荡混合均匀后保存备用。现暂时使用超纯蒸馏水代替无氚水制备本底样品。 5 样品测量与分析 5.1 把制备好的试样,包括本底试样,待测试样和标准试样,同时放入低本底液体闪烁谱 仪的样品室中,避光12 小时以上。 5.2 调试仪器使之达到正常工作状态。打开WinQ软件,仔细选择并确定氚测量的各项参 数,使仪器的测量道对所测样品的灵敏度优值达到最大。 5.3 在选定氚测量道内,对制备的本底试样以确定的计数时间间隔进行计数。对于环境低 水平样品测量,本底试样的计数时间至少应大于1000min。 5.4 选用确定计数时间间隔,在氚测量道,对标准试样进行计数,求出标准试样的计数率, 然后用下式计算仪器的计数效率: 式中:E——仪器的计数效率,(计数/min)/(衰变/min); N d——标准试样计数率,计数/min; N b——本底试样计数率,计数/min; D——加入到标准试样中氚的衰变数,衰变/min。 上述分析过程可通过设备自带Easy View软件操作控制自动获得。

简易数字频率计电路设计

简易数字频率计电路设计

摘要 请对内容进行简短的陈述,一般不超过300字 关键字:周期;频率;数码管,锁存器,计数器,中规模电路,定时器 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。 数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。 本章要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示。数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、数码管、时基电路、逻辑控制、译码显示电路几部分组成。

目录 前言 (1) 1.数字频率计的原理 (2) 2.系统框图 (3) 3.系统各功能单元电路设计 (3) 3.1 时基电路设计 (3) 3.2 放大整形电路 (4) 3.3 逻辑控制电路 (5) 3.4 锁存单元 (6) 3.5 分频电路 (7) 3.6 显示器 (7) 3.7 报警电路 (8) 4.系统总电路图 (10) 结束语 (11) 参考文献 (12)

前言 数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。被测信号可以是正弦波、方波或其它周期性变化的信号。数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成。 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

超低本底液体闪烁谱仪技术标书

超低本底液体闪烁谱仪技术标书 货物名称:超低本底液体闪烁谱仪数量:1台套 1 主要用途 地下水氚和碳-14测定, U,Th, Pu, Po,Pb等同位素比值测定。 2 工作条件 2.1电源:220V(±10%),50Hz(±1Hz); 2.2环境温度:15-28℃或更宽; 2.3环境湿度:≥70%。 3 技术要求 3.1 技术性能与指标 (1) 低本底的铅屏蔽; ? (2) 独立于样品检测器的防护计数器; (3) 光密封的样品测量室和送样器; ?(4) 本底[cpm(B)]:0.32~0.5; (5) 品质因子(E2/B):10000~16000(beta); ? (6) 高效低本底和谱稳定性光电倍增管; (7) 减低固有本底的活性材料; (8) 无线频率噪声控制器; (9) 静电清除器; (10) 自动连续谱稳定器; (11) 具有光密封的测量室快门; (12) 对无光和Gamma都是光密封的样品升降机; (13) 线性放大; (14) 2个对数AD转换器,每个有1024道MCA; (15) 8个计数窗; (16) 分析核素:3H、14C、32Si、32P、137Cs、89Sr、30Sr、Pu、Po、Pa、U、 Th、Ra;能进行3H、14C、125I、35S、45Ca 和32P单标记和双标 记计数; ? (17) 效率(标准源):3H :>27 %。, 14C :> 75 %; ? (18)测定稳定性:测定变异小于0.2% / 24小时(不含随机误差);

(19) 测定能量范围:1-2000KeV(beta); (20) 自动连续波谱稳定器:使用GaP LED作为参照光源进行62次/秒的 自动矫正光电倍增管和峰型放大系统,并对高压自动修正保持输出 信号稳定; (21) 多个窗口的脉冲成形分析器,容易查看的谱分析程序; (22) 仪器应具有全面检测系统,优良的自检和自诊断功能; (23) 能很好屏蔽宇宙射线和环境中的GAMMA射线,有屏蔽监测功能; (24) 计算机控制系统: a. 参数设置:可以由计算机选择测试的参数; b. 谱峰处理:可以自动或手动进行峰面积及计数率、探测效率的 计算; c. 淬灭校正:可以校正不同程度的淬灭。 3.2 配件及附件 (1) 探头冷却系统; (2) 计算机系统(CPU>PIV,内存≥256M,硬盘≥40G,CD-RW), 17″液晶彩显,激光打印机(A4); (3) 氚分析闪烁液:20升; (4) 7ml聚四氟乙烯瓶(铜底、铜盖):20个; (5) 20mL塑料计数瓶:10包(1000只/包); (6) 样品盘2个(20位); (7) 闪烁瓶支架:3个; (8) 液压移液装置:2个; (9) 为满足对基本性能的要求所应配备的其它附件; (10) 日常操作和仪器维护所需的工具; (11) 可供三年使用的备品及备件。 4 技术资料 供货方提供产品样本、操作手册各壹套。 5 技术服务和培训 5.1 仪器制造商授权的技术人员到现场免费进行安装调试,确保仪器技术 指标验收合格,并在用户实验室免费培训操作技术人员2名。 5.2 仪器制造商应在中国境内设有培训中心, 免费为用户培训操作技术人 员壹人次(四天) 。

NaI(T1)闪烁谱仪测定γ射线的能谱

NaI (T1)闪烁谱仪测定γ射线的能谱 09904047 周宁 [实验装置] NaI (T1)闪烁谱仪(FH1901型)一套,脉冲示波器(SBT-5型)一台,Cs 137 γ源 和Co 60 γ源各一个。 [实验原理] 一、γ射线与物质的相互作用 1.光电效应 入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打 出来形成光电子。由于束缚电子的电离能i E 一般小于γ射线的能量γE 。所以: γγE E E E i ≈-=光电 光电效应的截面光电σ随入射γ射线能量的增加而减小。 2.康普顿散射 核外自由电子与入射γ射线发生康普顿散射。根据动量守恒的要 求,散射和入射只能发生在一个平面内。反冲康普顿电子的动能e E 为: 'hv hv E e -= 康普顿散射后散射光子能量与散射角θ的关系为: )cos 1(1'θα-+= hv hv 其中2 0c m hv =α 康普顿电子的能量在0至α α 212+hv 之间变化。 3.正、负电子对的产生 当γ射线能量超过2 02c m (1.022MeV )以后,γ光子受 原子核或电子的库仑场的作用可能转化成正、负电子对。入射γ射线的能量越大,产生正、负电子对的截面也越大。在物质中正电子的寿命是很短的,当它在物质中消耗尽自己的动能时,便同物质原子中的轨道电子发生湮没反应而变成一对能量各为0.511MeV 的γ光子。 二、仪器结构与工作原理

1 反射层 2 闪烁体 3 硅油4光电倍增管 5 射极跟随器 6 高压电源 7 线性放大器 8 单道分析器 9 定标器10 示波器 带电粒子通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发台回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对,然后这些电子使闪烁体内的分子或原子激发和电离而发光。中子的探测,则是利用中子引起的核反应所产生的带电粒子,或中子与核碰撞时产生的反冲核,这些带电粒子和反冲核在闪烁体内引起发光。光阴极上打出的电子在光电倍增管中倍增出大量电子,最后为阳极所接收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度的大小与粒子在闪烁体内消耗掉的能量及产生的光强成正比,所以根据脉冲幅度可以确定入射粒子的能量。利用脉冲幅度分析器和定标器可以测定入射射线的能谱。 三、仪器性能 1.闪烁体 a.对入射粒子的阻止本领10% b.光能输出额 c.发光的衰减时间 d.响应匹配 2.光电倍增管 a.光阴极的光谱响应 b.阳极灵敏度 c.暗电流与本底脉冲 d.光电倍增管的时间特性 3.能量分辨率 4.时间分辨本领 137单能γ射线的响应 四、闪烁探测器对Cs 137的γ谱的全能峰是比较典型和突出的,因此通常用它作为标准源,一方面Cs 用来检验γ谱仪的能量分辨率,另一方面作为粒子能量测量的相对标准。 五、NaI(T1)闪烁谱仪的能量线性关系及其检验 对于理想的闪烁谱仪,脉冲幅度与能量之间应当呈线性关系。对于实际的NaI(T1)闪烁谱仪,γ射线能量在100keV到1.3MeV区域内是近似线性的,只是在γ射线

实验四 闪烁探测器及r能谱的多道测量..

云南大学物理实验教学中心 实验报告 课程名称:普通物理实验 实验项目:实验四闪烁探测器及r能谱的多道测量 学生姓名:马晓娇学号:20131050137 物理科学技术学院物理系 2013 级天文菁英班专业 指导老师:张远宪 试验时间:2015 年 10月 30 日 13 时 00 分至 15 时 00 分 实验地点:物理科学技术学院 实验类型:教学 (演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□

一、实验目的 1、了解γ 射线与物质相互作用的基本原理; 2、掌握闪烁探测器的工作原理及使用方法; 3、掌握能谱仪基本性能的确定; 4、掌握简单γ放射源的γ能谱测量。 二、实验原理 原子核由高能级向低能级跃迁时会辐射 射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的 射线,将 射线的次级电子按不同能量分别进行强度测量,从而得到 辐射强度按能量的分布,即为“能谱”。测量能谱的装置称为“能谱仪”。 (一)γ射线与物质相互作用 γ射线与物质相互作用是γ射线能量测量的基础。γ射线与物质相互作用主要有三种效应,即光电效应、康普顿散射和电子对效应。 1、γ射线与物质相互作用。当γ射线的能量在30MeV 以下时,最主要的相互作用方式有三种: (1) 光电效应。γ射线的全部能量转移给原子中的束缚电子,使这些电子从原于中发射出来,γ光子本身消失。 (2)康普顿散射。入射γ光子与原子的核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化。 (3) 电子对效应。 γ光子与靶物质原子的原子核库仑场作用,光子转化为正-负电子对。 在光电效应中,原子吸收光子的全部能量,其中一部分消耗于光电子脱离原子束缚所需的电离能,另一部分就作为光电子的动能。所以,释放出来的光电子的能量就是入射光子能量和该束缚电子所处的电子壳层的结合能B γ之差。虽然有一部分能量被原子的反冲核所吸收,但这部分反冲能量与γ射线能量、光电子的能量相比可以忽略。因此, E 光电子γγE B E i ≈-= (1) 即光电子动能近似等于γ射线能量。值得注意的是,由于必须满足动量守恒定律,自由电子(非束缚电子)则不能吸收光子能量而成为光电子。光电效应的发生除入射光子和光电子外,还需要有一个第三者参加,这第三者就是发射光子之后剩余下来的整个原子。它带走一些反冲能量,但该能 量十分小。由于它的参加,动量和能量守恒才能满 足。而且,电子在原子中被束缚得越紧(即越靠近 原子核),越容易使原子核参加上述过程。所以在 K 壳层上发生光电效应的概率最大。 图1是能量为hν,的入射光子发生康普顿散射 的示意图,h ν'为散射光子的能量;θ为散射光子与 入射光子方向间的夹角,称散射角;?为反冲电子

相关文档
最新文档