波形发生器

波形发生器
波形发生器

多种波形发生器——集成运算放大器综合设计1.实验目的

(1)掌握集成运算放大器的使用方法。

(2)加深对集成运算放大器工作原理的理解。

(3)掌握用运算放大器构成波形发生器的设计方法。

2.设计要求

(1)以集成运放为放大器设计一RC正弦波振荡器

(a)振荡频率在1kHz±10%范围内连续可调;

(b)振荡幅度峰峰值不小于10V;

(c)波形无明显失真。

(2)以集成运放为放大器设计一方波、三角波发生器

(a)输入信号频率在500Hz~1.5kHz范围内连续可调;

(b)输出幅度:方波>7V,三角波>2V;

(c)输出波形无明显失真。

(3)对所设计的电路进行计算机仿真。

3.设计原理

集成运放是一种高增益放大器,只要加入适当的反馈网络,利用正反馈原理,满足振荡的条件,就可以构成正弦波、方波、三角波和锯齿波等各种振荡电路。但由于受集成运放带宽的限制,其产生的信号频率一般都在低频范围。

(1)正弦波产生电路设计

正弦波振荡电路常用的结构有RC移相式振荡器、RC文氏电桥振荡

器如图10所示。RC移相式振荡电路结构简单,但其选频性能较差,而且输出幅度不够稳定,输出波形较差,一般只用于振荡频率固定,稳定性要求不高的场合。因此本实验主要使用RC文氏电桥振荡电路。

文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,RC串并联网络具有选频的作用,它与放大器结合起来即可构成RC振荡电路。它适用于产生频率小于1MHz的低频振荡信号,振幅和频率较稳定,频率调节方便,许多低频信号发生器的主振荡器均采用这种电路。图10所示电路即为由集成运放构成的RC文氏电桥振荡电路。

图1中电阻R2接在放大器的输出端与反相输入端之间,构成负反馈,用以控制增益RC串并联选频网络接在运算放大器的输出端与同相输入端之间,构成正反馈。当RC选频网络在ω=ω0时,反馈电压与输入电压的相位差φ=0,B=1/3,为满足起振条件,要求放大器的增益AU >3,即电路10(a)中的(1+R2/R1)>3。由此可得出当R2>2R1时即能使振荡电路满足自激振荡的振幅(注意:实际应用中,R2应略大于

R1,才能既保证起振,又不会因其过大而引起波形严重失真)和相位起振条件,产生自激振荡。

采用双联可调电位器或双联可调电容器即可很方便地调节振荡频率。在常用的RC振荡电路中,一般采用切换高稳定度的电容来进行频段的转换(粗调),再采用双联可变电位器进行频率的细调。

图10(a)电路是依靠集成运算放大器的非线性进行限幅的,波形会产生较大的失真。在实际电路中需要有自动限幅机构。常用的限幅方法是利用放大器负反馈强弱的自动调节作用实现稳幅。具体电路如图10(b)中所示。(b)图中负反馈电路中的二极管D1、D2即为自动限幅元件,电阻R3是为克服硅二极管“死区”而设置的。此电路是利用二极管的正向电阻随所加电压而改变的特性,达到自动调节负反馈深度的目的。当起振时,振幅较小,二极管的正向电阻较大,使放大器的负反馈很弱,增益很高,因此可以很快建立起振荡。随着振幅的增大,二极管的正向电阻变小,放大器的负反馈加深,增益自动下降,直到下降到3,电路达到振幅平衡条件时,振幅停止增长,电路达到稳定。反之,当由于某种原因使得输出电压幅度减小时,二极管的正向电阻加大,负反馈变弱,增益升高,迫使输出电压幅度恢复到原来的大小,从而起到稳幅的作用。采用两只二极管反向并联的目的是使输出电压正负半周振幅相等,因此这两只二极管特性应相同,否则正负半周振幅将不同。图10(b)图中的电位器RP可用来调节振荡幅度的大小。

(2)方波和三角波产生电路

利用集成运算放大器组成的具有上、下门限的迟滞比较器,接入RC

负反馈回路就可以组成一个简单的方波和三角波发生器。而改变正反向RC积分时间常数又可构成脉冲和锯齿波发生器。图(2)中电路是一个方波、三角波发生器。其中Uo1输出为三角波,Uo2输出为方波。电路由迟滞比较器和一个RC充放电回路组成,双向稳压管DZ用于限定输出幅度,电阻R3为稳压管的限流电阻。

图11中电阻R1、R2组成了正反馈,与运放一起构成迟滞电压比较器,同相输入端得到一比较电压U+;反相端由R、RP和C组成负反馈,构成被比较电压UC,其大小由RC充放电电路在电容C上得到。UC与U+的相对大小,决定了输出电压的正负。而输出电压的正负极性又决定着通过电容C的电流是充电(使UC增加)还是放电(使UC减小),而UC 再与U+相比较,决定输出电压的极性。从而在输出端产生周期性的方波,而在电容一端产生周期性的三角波。

通过调节电位器RP,可改变方波和三角波的频率。

4.主要参考元器件

集成运算放大器(LM324或μA741)二极管、电阻电容等。

5.思考题

(1)RC文氏电桥振荡器中为什么稳幅效果与波形失真有矛盾?

(2)在方波、三角波发生器实验中,要求保持原来所设计的频率不变,现需将三角波的输出幅值

由原来的幅值Uo降为2/3Uo,最简单的方法是什么?

(3)RC文氏电桥振荡器中二极管D1和D2在电路中起什么作用?说明它们的工作原理。

(4)如何将方波、三角波发生器电路进行改进,使之产生占空比可调的矩形波信号?

(5)如果将正弦波发生器的输出波形,作为方波发生器的输入信号,如何改进电路完成多种波形

发生器。

(6)如何用双线示波器观测迟滞比较器的输入和输出波形,并求出上下门限电压?

6.选做题

(1)设计一个二阶有源带通滤波器,要求:中心频率f0=1kHz,通带增

益A0=1,品质因数Q=10。

(a)按照要求设计电路,并选取适当的器件进行搭接。

(b)用逐点描迹法测量此带通滤波器的幅频特性曲线,并测量通带增益及上限和下限截止频率。

(2)用带阻滤波器设计一能抑制50Hz信号的陷波器,要求:通带增益A0=1,品质因数Q=10。

(a)按照要求设计电路,并选取适当的器件进行搭接。

(b)用逐点描迹法测量此带阻滤波器的幅频特性曲线。

(3)用集成运算放大器组成万用表。

(a)用集成运算放大器组成一个直流电压表,测量范围0~15V。(b)用集成运算放大器组成一个直流电流表,测量范围0~10V。(c)用集成运算放大器组成一个欧姆表,测量范围0~1K。

(d)将以上内容组成完整的万用表。

7.参考文献

[1] 谢自美.电子线路设计·实验·测试.华中科技大学出版社(第二版)2000

[2] 路勇.电子电路实验及仿真.北京交通大学出版社清华大学出版社,2004

[3] 高吉祥.电子技术基础实验与课程设计.电子工业出版社,2005

[4] 彭介华.电子技术课程设计指导.高等教育出版社,1997

[5] 毕满清.电子技术实验与课程设计.机械工业出版社,2001

[6] 陈大钦.电子技术基础实验.华中科技大学出版社,2000

两款函数任意波形发生器产品简介

是德科技 30 MHz 函数/任意波形发生器 33521A 单通道函数/任意波形发生器 33522A 双通道函数/任意波形发生器 技术资料 ?????????????????? ?????????????????? ???? (alias-protected) ?????? ??

33500 系列函数/任意波形发生器 实现更出色的精度和灵活性?わょ??????????????????わ???????????????????????????? Keysight 33500 ????/??????????????????????????????????????????????????⒔????? 10 ???????????????????????????????????? 主要特性 —30 MHz ??????? ??????????? —???? 40 ps???????? 0.04%???????????—250 MSa/s ???? 16 ??? ????????????????? —????????????????????????????????? —??? 33522A ?????勚??????ㄩ? —?㈨ 1 MSa ??▌╈????㈨ 16 MSa ▌╈???▌╈???? ???? —?? LXI C ??? —????????????? TFT ?????????????????????????? —??? BenchL ink Waveform Builder Pro ????????????信号保真度 ???????????????? ??????????????? ??????????????? ??????????????? ????? 33500 ????/??? ??????????????? ??????? 40 ps ?⒔??? ???/??????? 10 ???? ??????????? 16 ??? ???? 0.04% ???????? ▕ 250 MSa/s (16 ?) ??????? ????????????▌╈?? ????????????⒋??? ???????????????? ???????????? 灵活的信号生成 33521A ? 33522A ???????? ??????????????? ? (DTMF) ????? 33522A ??? ?????????????ㄩ?? ???????勚???????? ??????????????(? ???????) ??????⒋? ???????????????? ???????????⒋??? 逐点波形 33500??????????? ???????????? (alias- protected) ?????????? ?????????????? ???33521A ? 33522A ??? ? 30 MHz ???????⒋?? ??????????????? ??????????????? ???????????????? ??????????????? ???????????????? ????????? 用户界面 ????????????? TFT ? ???????????????? ???????????????? ?????? 33500 ?????? LXI C ??????? USB 2.0 ? 10/100 Base-T ???????????㎡? ???? PC ?????????? ???????????????? ?? GPIB ????????? 可选 33503A BenchLink Waveform Builder Pro 软件 Benchlink Waveform Builder Pro ? ??????????????? ??????????????? ??? Microsoft Windows ???? ???????????????? ???????????????? ??????????????? ???????????????? ?╖????????㎡???? ??????????????? ??????????????? BenchLink Waveform Builder Pro? ???????????????? ???????????????? ?????╱????????? ㎡??????????????? ??????????????? ??? 30 ??????????? https://www.360docs.net/doc/0210848717.html,/? nd/33503

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

多波形函数信号发生器方案

个人资料整理仅限学习使用中文摘要

英文摘要

目录 1 引言.......................................................... - 1 - 2函数信号发生器设计要求及过程.................................. - 2 - 2.1函数信号发生器设计要求 (2) 2.2函数信号发生器电路设计的基本原理 (2) 2.3运算放大器的介绍 (3) 2.3.1迟滞电压比较器......................................... - 3 - 2.3.2 积分电路.............................................. - 5 - 2.4差分放大器的介绍 (6) 3总体电路设计 (7) 3.1方波—三角波产生电路的设计 (7) 3.2三角波—正弦波变换电路的设计 (11) 4.1EWB软件的简介 (15) 4.1.1 EWB软件的概述........................................ - 15 - 4.1.2 EWB软件的基本操作方法................................ - 15 - 4.2函数信号发生器的仿真过程及结果 (16) 4.2.1使用EWB对电路进行设计和实验仿真的基本步骤............. -16 - 4.2.2方波—三角波信号发生器电路的装调及仿真结果............ - 16 - 4.2.3三角波—正弦波变换电路的装调和仿真.................... - 17 - 结论........................................................... - 20 - 参考文献

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼 典型的DDS原理框图如图所示。 其实质是数模转换,仍然要遵循奈奎斯特采样定理。即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。相对于直接模拟频率合成,锁相频率合成,其优点如下: ·频率分辨率高。若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。 ·工作频带较宽。根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。 ·超高速频率转换时间。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。 ·相位变化连续。改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。 ·具有任意输出波形的能力。只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。例如三角波、锯齿波和矩形波。 ·具有调制能力。由于DDS是相位控制系统,这样也就有利于各种调制功能。 同时DDS合成技术也有一些固有的缺点,如下: ·杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。另外,一个幅值在理论上只能用一个无限长的二进制代码才能精确表示,由于ROM的存储能力,只采用了有限比特代码来表示这一幅值,这必然会引起幅度量化误差。另外,DAC的有限分辨率以及非线性也会引起误差。所以对杂散的分析和抑制,一直是国内外研究的特点,因为它从很大程度上决定了DDS的性能。 ·频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL等工艺制作的DDS芯片工作频率一般在几十MHz至几百MHz左右。但随着高速GaAs器件的出现,频带限制已明显改善,芯片工作频率可达到2GHz范围左右。 以上摘自:《现代DDS的研究进展与概述》一文,https://www.360docs.net/doc/0210848717.html,/event/emag/20080226.htm。 将DDS应用于波形发生器,能非常方便的产生任意波形。一般除了具备常规函数发生器所具备的正弦波、方波、锯齿波、脉冲、噪声外,还有指数上升、指数下降、Sinc波、心电图波、直流,以及地震波等任意波形。能采用直接在仪器上手动编辑或windows 下软件编辑的方式产生任意波形,用于模拟电路或应用环境中可能发生的情况,此外还具备非常丰富的调制功能,甚至有些调制功能是以往只能在高端信号源上才能看到的。 下面找出主要以国产厂商为主的函数/任意波形发生器做一个对比,以此来了解国内DDS的应用水平,并给出一个大概的选购指南,以便您在需要的时候能够快捷的找到合手的信号源。Agilent在很早之前就推出了33200系列

函数波形信号发生器

函数波形发生器设计 摘要 函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 经过仿真得出了方波、三角波、正弦波、方波——三角波转换及三角波——正弦波转换的波形图。 关键字:函数信号发生器、集成运算放大器、晶体管差分放 设计目的、意义 1 设计目的 (1)掌握方波—三角波——正弦波函数发生器的原理及设计方法。 (2)掌握迟滞型比较器的特性参数的计算。 (3)了解单片集成函数发生器8038的工作原理及应用。 (4)能够使用电路仿真软件进行电路调试。 2 设计意义 函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。 在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、导航、宇航等领域。 设计内容 1 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等): 1.1课程设计的内容 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; (4)对单片集成函数发生器8038应用接线进行设计。 1.2课程设计的要求 (1)提出具体方案 (2)给出所设计电路的原理图。 (3)进行电路仿真,PCB设计。 2 函数波形发生器原理 2.1函数波形发生器原理框图 图2.1 函数发生器组成框图

多波形函数信号发生器

多波形函数信号发生器

————————————————————————————————作者:————————————————————————————————日期:

电子课程设计 设计题目:多波型信号发生器 系部:信息工程学院 专业:电子信息工程 班级:1301班 学号:8 姓名:高旭 指导老师:陈亮

目录 一设计要求 (3) 二总体概要设计 (3) 三各单元模块设计与分析······························································································4 3.1 正弦波发生 器 (4) 3.1.1 RC桥式振荡 器····························································································4 3.2方波转化电 路 (6) 3.2.1555定时 片································································································6 3.2.2由555芯片构成的施密特触发 器 (7) 3.2.3方波幅度调节电 路 (8) 3.3三角波转化电路 (8) 3.3.1RC无源积分器 (8) 3.3.2自举电路反相放大器················································································9 四总电路图 (10)

函数波形发生器.docx

1 2 3 4 5 6 7 8 vcc vcc 11 U1A LM324D 02 R12 50% 3 矩形波 C7 10uF 4~l 50%^! ■^iRH 10k ;, Rw6 D1 Dz1 0 2DZ4.QT Dz2… □Z4.7 iS 乙 0324D R1 卉扳忒 U3C 750 U Key=A 1N414^ D2 禺 4N4仏 C6 卄 IOOI R15 17 1ML Dz3 2^02DZ4- 13 4D1 2 ID 9 Rwl 50% T 啥 4 1nF Rw2 50% 100kj 50% Key?A R2 K'kL 23 锯齿 1 S 22 C2 Z100 R14 1k|. w3 24 _L >R3—T — : iokh 10: C3 ±22°F OOnF Rw8 100kL Key=A 21 巫弦波 三角波 .17V

* W 卄*4巴犁曲<5 冋"Y 0叢%T r

函数波形发生器的设计 一、验目的 1、学习函数波形发牛器的设实计方法; 2、了解单片函数发生器ICL8038的工作原理及应用; 3、掌握函数波形发生器电路的调试及主要指标的测试方法; 4、研究函数波形发牛器的设计方案。 二、实验原理 在无线电通信,测量,口动化控制等技术领域广泛地应用着各种类型的信号发牛器,常用的波形是止弦波,矩形波(方波)和锯齿拨。 随着集成电路技术的发展,己有能力同时产生同频的方波,三角波和正弦波的专用集成电路, 称为函数波形发生器,如ICL8038o 1.函数波形发生器 专用集成电路ICL8038就是一个函数波形发生器,其引出脚的排列及性能见附录一。典型应用电路如图5-2-1所示。 图5-2-1 161^038典熨应川电路

DSP任意波形信号发生器毕业设计

目录 摘 要 (2) Abstract (3) 1 绪论 (4) 1.1概述 (4) 1.2选题的目的、意义 (4) 1.3 选题的背景 (5) 1.4 本文所研究的内容 (6) 2 波形信号发生器的原理及方案选择 (7) 2.1任意波形信号发生器的原理 (7) 2.1.1 直接模拟法 (7) 2.1.2 直接数字法 (7) 2.2 任意波形发生器的设计方案 (9) 2.2.1 查表法 (9) 2.2.2计算法 (9) 2.2.3传统方法 (10) 3 基于DSP 5416的任意波形信号发生器的软件设计 (12) 3.1 TMS320C5416的开发流程 (12) 3.2软件开发环境 (13) 3.3任意波形信号发生器的软件编程 (14) 3.3.1 计算法实现波形输出 (14) 3.3.2 D/A转换 (15) 3.3.3波形控制及软件设计流程图 (16) 3.4参数的设定 (18) 4 基于DSP 5416的任意波形信号发生器的硬件设计 (20) 4.1 TMS320VC5416开发板 (20) 4.2 TMS320VC5416实验箱的连接 (23) 4.3 波形信号发生器的硬件测试过程 (23) 5 任意波形信号发生器展望 (28) 结束语 (29) 致谢 (30) 参考文献 (31)

摘 要 任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 随着无线电应用领域的扩展,针对广播、电视、雷达、通信的专用信号发生器获得了长足的发展,表现在载波调制方式的多样化,从调幅、调频、调相到脉冲调制。如果采用多台信号发生器获得测量信号显然是很不方便的。因此需要任意波形发生器(Arbitrary Waveform Generator,AWG),使其能够产生任意频率的载频信号和多种载波调制信号。 目前我国已经开始研制任意波形发生器,并取得了可喜的成果。但总的来说,我国任意波形发生器还没有形成真正的产业。并且我国目前在任意波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。 本文主要工作分为以下几个方面:首先,介绍研制任意波形信号发生器的目的、意义、背景,以及利用CCS仿真工具用软件实现任意波形信号发生器的的过程 ;之后,对硬件的连接及测试结果作介绍;最后,简要的对任意波形信号发生器的未来作一下展望。 关键词:DSP,任意波形信号发生器,DDS

使用任意波形发生器-Tektronix

使用任意波形发生器 创建无线信号 入门手册

使用任意波形发生器创建无线信号入门手册 2 https://www.360docs.net/doc/0210848717.html,/signal_generators

使用任意波形发生器创建无线信号 入门手册 目 录 摘要??????????????????????????????????????????????4简介??????????????????????????????????????????????4无线应用与数字调制??????????????????????????????????????5-12无线发射面临的挑战?????????????????????????????????????5为什么要数字调制??????????????????????????????????????6什么是数字调制???????????????????????????????????????7数字调制应用????????????????????????????????????????12数字无线测试?????????????????????????????????????????12-19发射机-I-Q调制器测试???????????????????????????????????13 IF滤波器效率和损伤测试???????????????????????????????????14发射机-RF功率放大器线性度?????????????????????????????????15接收机-IF解调器测试????????????????????????????????????16接收机-RF功能测试????????????????????????????????????17接收机-平衡器特性评估???????????????????????????????????18接收机-干扰灵敏度?????????????????????????????????????18 RF频谱环境仿真???????????????????????????????????????19使用任意波形发生器(AWG)生成调制信号????????????????????????????19-25生成基带I-Q信号??????????????????????????????????????19 IF生成???????????????????????????????????????????20 RF生成???????????????????????????????????????????21编译复合信号????????????????????????????????????????23回绕式考虑?????????????????????????????????????????24展望??????????????????????????????????????????????26 https://www.360docs.net/doc/0210848717.html,/signal_generators 3

函数波形发生器 程序及程序流程图、系统原理图

ASSUME CS: CODE CODE PUBLIC ORG 100H START: MOV DX,40H ;8255 A口地址IN AL,DX ;8255初始化TEST AL,01H JZ FF1 TEST AL,02H JZ FF2 TEST AL,04H JZ FF3 JMP START ;读频率选择状态L: TEST AL,10H JZ FB TEST AL,20H JZ JCB TEST AL,40H JZ SJB JMP START ;读波形选择状态FF1:MOV SI,09H JMP L FF2:MOV SI,03H JMP L FF3:MOV SI,02H JMP L ;频率调节 FB: MOV DX 48H ;0832 端口地址F: MOV BX 0FFH F0: MOV CX,SI MOV AL,00H F1: OUT DX,AL LOOP F1 DEC BX JNZ F0 MOV BX,0FFH F2: MOV CX,SI F3: OUT DX,AL LOOP F3 DEC BX JNZ F2 JMP F ;方波发生子程序 JCB:MOV DX,48H ;0832 端口地址MOV AL,0FFH J: INC AL MOV BX,0FFH J1: MOV CX,SI J2: OUT DX,AL LOOP J2 DEC BX JNZ J1 JMP J ;锯齿波发生子程序 SJB: MOV DX,48H ;0832 端口地址S: MOV AL,00H MOV BX,80H S0: MOV CX,SI S1: OUT DX,AL INC AL LOOP S1 DEC BX JNZ S0 MOV BX 80H S2: MOV CX,SI S3: DEC AL OUT DX,AL LOOP S3 DEC BX JNZ S2 JMP S ;三角波发生子程序JMP START ENDS CODE

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

任意波形发生器

基于CPLD和单片机的任意波形发生器设计 在电子工程设计与测试中,常常需要一些复杂的、具有特殊要求的信号,要求其波形可任意产生,频率方便可调。通常的信号产生器难以满足要求,市场上出售的任意信号产生器价格昂贵。结合实际需要,我们设计了一种任意波形发生器。电路设计中充分利用MATLAB的仿真功能,将希望得到的波形信号在MATLAB中完成信号的产生、抽样和模数转换,并将得到的数字波形数据存放在数据存储器中,通过单片机和CPLD控制,将波形数据读出,送入后向通道进行A/D转换和放大处理后得到所需的模拟信号波形。利用上述方法设计的任意波形发生器,信号产生灵活方便、功能扩展灵活、信号参数可调,实现了硬件电路的软件化设计。具有电路结构简单、实用性强、成本低廉等优点。 任意波形发生器的设计思想,是利用MATLAB的强大仿真功能,方便、快捷的生成给定频率、周期、脉宽的任意波形数据;并将数据预存在数据存储器中。在单片机控制下,利用CPLD电路产生地址读出数据,送入D/A转换电路,得到所需的任意波形信号。系统结构框图如图1;图中分频电路和地址发生器由CPLD实现。 图1 系统框图 单片机采用AT89C52芯片,通过软件编程产生所要求的控制信号。主要的控制参数包括:信号周期、脉宽;分频电路的开始信号、地址发生器的复位信号;E2PROM的选通信号;D/A转换电路的选通信号。在具体电路中,端口P1.0控制分频电路的启动、P1.1控制地址发生器的清零,P2.0控制 28C256和AD7545的选通信号。单片机工作在定时器0方式,软件设计利用C语言实现。流程图如图2所示。 图2 软件流程图 MATLAB作为一款优秀的数学工具软件,具有强大的运算功能;可以方便的产生各种信号波形,在软件中实现波形信号的产生、抽样和模数转换。设计的任意波形发生器,数据存储器选用28C256芯片,信号波形通过MATLAB仿真产生;得到的波形数据存放在数据存储器28C256中。具体设计中,我们要求产生周期为200ms,脉宽为5ms的单/调频混合信号,其中单频信号的脉宽为4ms,频率为 30KHz;调频信号的脉宽为1ms,频率为30KHz_35KHz。在MATLAB中设定抽样率为500KHz,得到了

函数波形发生器

函数波形发生器 一、题目分析 题目要求:利用D/A芯片产生峰峰值为5V的锯齿波和三角波。 控制功能:使用2个拨动开关(K1、K2)进行功能切换。当K1接高电平时,输出波形的频率为1Hz,否则为0.5Hz。当K2接高电平时,输出为三角波,否则输出为锯齿波。 使用的主要元器件:8031、6MHz的晶振、74LS373、74LS138、2764、DAC0832、LM324、拨动开关K1、K2等。 输出波形的验证方法:使用示波器测量输出波形。 函数发生器采用AT89c52 单片机作为控制核心,外围采用模拟/数字转换电路(DAC0832)、运放电路(LM324)、按键等。电路采用AT89C52单片机和一片DAC0832数模转换器组成数字式低频信号发生器。 通过开关控制可产生锯齿波、三角波,同时用开关控制频率切换的波形。所产生的波形V P-P范围为5 V,频率范围为1HZ与0.5HZ,波形准确并且平滑。本系统设计简单、性能优良,具有一定的实用性。 本设计主要应用AT89c52作为控制核心。硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点。 二、方案论证 硬件方案选择 方案一:AT89c52单片机是一种高性能8位单片微型计算机。它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机。AT89c52芯片中每一路模拟输出与DAC0832芯片相连,构成多个DAC0832同步输出电路,输出波形稳定,精度高,但是第二级DAC0832输出,发生错误并且电路连接复杂。 方案二:AT89c52芯片中只有一路模拟输出或几路模拟信号非同步输出,这种情况下CPU对DAC0832 执行一次写操作,则把一个数据直接写入DAC

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

陈冲EDA课程设计_任意波形信号发生器

EDA课程设计 任 意 波 形 信 号 发 生 器

姓名: 陈冲 班级: 07通信工程 指导老师:孙惠章 目录 一.简述 (3) 二.设计性能要求 (3) 三.系统框图 (3) 四.系统电路图 (3) 五.基本工作原理 (4) 六. 单元电路模块源程序及功能 (5)

七.系统仿真波形 (10) 八.引脚锁定 (11) 九.实验结果及硬件验证 (11) 十.实验心得 (13) 任意波形信号发生器的设计 一.简述 随着信息科技的发展,波形发生器在科技社会等多个领域发挥着越来越重要作 用。采用eda技术利用quartus60软件平台,基于大规模可编程逻辑器件fpga 设计的多功能波形发生器系统,大大简化其结构, 降低成本, 提高了系统的可靠性 和灵活性。设计中运用计数器,数据选择器,对所需的频率进行选择和同步。使用宏 功能模块存储波形。然后多波形进行幅度的选择。产生满足需要的不用频率和幅度的 波形。 二.设计性能要求 1.能输出正弦波,锯齿波,阶梯波,三角波,方波,矩形脉冲等八种波形。 2.具有幅度和频率的调整。 3.单元电路模块使用VHDL语言编写。

三.系统框图 图1.任意波形信号发生器系统框图四.系统电路图

图2.任意波形信号发生器系统电路图 五.基本工作原理 将要产生的波形数据存入波形存储器中, 然后在参考脉冲的作用下, 对输入的频率数据进行累加, 并将累加器输出的一部分作为读取波形存储器的地址, 将读出的波形数据经D/A 转换为相应的电压信号,D/A 转换器输出的一系列的阶梯电压信号经低通滤波器滤波后便输出了光滑的合成波形的信号。 选择八种基础波形为设计与实现的对象,而八个波形作为同一个任意波形发生器里的四个部分,是有着同一个输入与输出,因此在设计上还需要对波形进行选择与控制的部分,通过对时钟脉冲输入的选择,使得八个波形模块只有一个输入为时钟脉冲,其他三个模块则输入始终为0。在波形输出时,设计一个模块控制输出的波形是所要求输出的波形,在时钟脉冲选择与输出波形选择两模块之间。 对于频率的选择可以选择分频器,同时也可以选择计数器,本实验采用的是计数器以实现分频的效果,输出分别为二分频,四分频,八分频,十六分频用以实现不同的频率。幅度调节可以使用lpm_divide,可以实现八种不同的幅度调节。 六.单元电路模块源程序及功能 1.分频模块 以下为分频模块(CT74161)的VHDL语言编程源程序 LIBRARY IEEE;

频率可变的任意波形发生器

深圳大学实验报告 课程名称:V erilog使用及其应用 实验名称:频率可变的任意波形发生器 学院:电子科学与技术学院 一、前言 波形发生器是一种数据信号发生器,在调试硬件时,常常需要加入一些信号,以观察电路工作是否正常,在实验与工程中都具有重要的作用。随着电子技术的发展与成熟,电子工程领域对波形发生器的要求越来越高,不仅要求波形发生器具有连续的相位变换,频率稳定等特点,还要求波形发生器可以模拟各种复杂信号,并能做到幅度、频率,相位,波形动态可调。V erilog HDL是一种硬件描述语言(HDL:Hardware Discription Language),是一种以文本形式来描述数字系统硬件的结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。 本实验正是基于V erilog HDL语言对波形发生器的功能进行描述,并进行仿真,从而了解与掌握波形发生器的内部工作原理,并进一步熟悉与掌握V erilog HDL语言,将课堂所学知识进行实践。

二、实验原理 总体设计方案及其原理说明: DDS是一种把数字信号通过数/模转换器转换成模拟信号的合成技术。它由相位累加器、相幅转换函数表、D/A转换器以及内部时序控制产生器等电路组成。 参考频率f_clk为整个合成器的工作频率,输入的频率字保存在频率寄存器中,经N位相位累加器,累加一次,相位步进增加,经过内部ROM波形表得到相应的幅度值,经过D/A转换和低通滤波器得到合成的波形。△P为频率字,即相位增量;参考频率为f_clk;相位累加 器的长度为N位,输出频率f_out为: F_out——输出信号的频率;

智能函数波形发生器文献综述

毕业设计(论文)文献综述 题目:基于单片机的波形发生器的设计 英文题目: The Design Of Based-on Single Chip Waveform Generator 系部 : 电气工程系___________________ 专业: 电子科学与技术________________ 班级: 08电科(1)班_________________ 学号: 200831025___________________ 姓名: 姜东东_________________________ 指导老师: 陈素______________________ 填表日期:2012-2-18____________________

一、前言部分:(标题小四号宋体加粗,正文五号宋体,段落首行缩进2字符,字间距为标准字间距,行间距设置最小值,设置值为20磅) 波形发生器是电子技术领域中常见的信号源之一,在测量、自动控制、通信、广播和热处理等许多技术领域有着广泛的应用。波形发生器有产生三种或多种波形的波形发生器,使用的器件可以是分立器件,也可以采用集成电路。 本次毕业设计所制作的波形发生器可以产生方波、三角波、正弦波、负向锯齿波和正向锯齿波。在电路中,我们采用了集成运放,从而使波形的质量、幅值和频率的稳定性等性能指标有了很大的提高。电路的振荡频率在0~14.7KHZ之间连续可调,并且通过改变电路中的电位器,可以改变方波信号发生器的频率。通过毕业设计,加深了我们对所学知识的了解,提高了我们的动手能力,理论与实际相结合。近年来,自动控制技术的发展十分迅速,自动控制的普及率越来越高,在各行各业中得到了广泛的应用。在自动控制系统中,经常需要进行性能的测试以及信息的传送。这些都离不开一定的波形作为测试和传送的依据。而在模拟系统中,经常用到的波形除了正弦波振荡电路外,还有矩形波,锯齿波和三角波等。 在本波形发生器中用到的电源是直流稳压电源电路。采用了三端集成稳压器7812和7912,分别产生+12V和-12V的电压。在波形发生电路中,使用了LM324的四个运算放大电路,能够产生方波、三角波、正弦波、负向锯齿波以及正向锯齿波。 通过毕业设计,加深了我们对所学知识的了解,提高了我们的动手能力,理论与实际相结合。 二、主题部分:(标题小四号宋体加粗,正文五号宋体,段落首行缩进2字符,字间距为标准字间距,行间距设置最小值,设置值为20磅) 随着电子技术,尤其是军事电子技术革新带来的新体制武器装备的发展与应用,电子信号频率上限、信号带宽和调制带宽不断拓展,调制种类不断增加,波形任意化程度加剧,频率分辨力和捷变速度大幅提高。这一信号日益复杂化的趋势,对作为电子测试领域两大根本-信号产生与获取技术,提出了新的挑战。以高速数字采样为核心的时域测试正在成为现代电子测试技术的主流方向,波形产生与获取技术也不例外。 现代波形技术着眼于高速任意波形发生器、宽带高精度数字化仪、宽带数字存储示波器等高性能测试仪器的技术实现。 波形获取 在波形获取方面,数字采样技术应用极为广泛,数字电压表、数字存储示波器(DSO)、数字化仪、波形分析仪等仪器的技术实现几乎完全依赖采样技术;而基于数字中频技术的实时频谱分析仪、无线通信分析仪等测试仪器中,数字取样和实时信号处理技术已成为整个技术体系中的核心。而且,随着A/D取样速率和精度的不断提升,以及DSP理论与技术的日益成熟,射频/微波测试仪器的实现技术也正从以传统扫频技术为核心向以数字取样和实时处理技术为核心转变,基于实时采样的时域测试仪器,如数字示波器、高精度数字化仪等正在成为现代电子仪器的主流发展方向,孕育着电子仪器体系和测量方法的重要变革。

相关文档
最新文档