植物生理学教案15

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本内容

第十章植物的生长生理(growth physiology of plant)。

第一节种子的萌发(Seed germination)

种子萌发必须有适当的外界条件,即足够的水分、充足的氧和适宜的温度。三者同等重要,缺一不可。此外,有些种子的萌发还受到光的影响。

(一)水分(Water)

吸水是种子萌发的第一步。种子吸收足够的水分以后,其他生理作用才能逐渐开始,这是因为水可使种皮膨胀软化,氧容易透过种皮,增加胚的呼吸,也使胚易于突破种皮;水分可使凝胶状态的细胞质转变为溶胶状态,使代谢加强,并在一系列酶的作用下,使胚乳的贮藏物质逐渐转化为可溶性物质,供幼小器官生长之用;水分可促进可溶性物质运输到正在生长的幼芽、幼根,供呼吸需要或形成新细胞结构的有机物。

(二)氧(oxygen)

种子萌发是一个非常活跃的生长过程。旺盛的物质代谢和活跃的物质运输等需要有氧呼吸作用来保证。因此,氧对种子萌发是极为重要的。

(三)温度(Temperature)

种子萌发也是一个生理生化变化的过程,是在一系列的酶参与下进行的,而酶的催化与温度有密切关系,所以,种子要在一定的温度条件下才能发芽。

(四)光(Light)

光对一般植物种子的萌发没有什么影响,但有些植物的种子萌发是需要光的,这些种子称为需光种子(light seed),如莴苣、烟草和拟南芥等植物的种子。还有一些种子萌发是不需要光的,称为需暗种子(dark seed),如西瓜属和黑种草属(Nigella)植物的种子。

二、种子萌发的生理生化变化(Change of physiology and biochemistry of seed germination)

种子萌发过程基本上包括种子吸水,贮存组织内物质水解和运输到生长部位合成细胞组分,细胞分裂,胚根、胚芽出现等过程。

(一)种子的吸水

种子的吸水可分为3个阶段,即急剧的吸水、吸水的停止和胚根长出后的重新迅速吸水。据测定,种子吸水第一阶段是吸胀作用(物理过程)。在第二阶段中,细胞利用已吸收的水分进行代谢作用。至到第三阶段,由于胚的迅速长大和细胞体积的加大,重新大量吸水,这时的吸水是与代谢作用相连的渗透性吸水。

(二)呼吸作用的变化和酶的形成

在种子吸水的第二阶段,种子呼吸产生的CO2大大超过O2的消耗;当胚根长出,鲜重又增高时,O2的消耗速率就高于CO2的释放速率。这说明初期的呼吸主要是无氧呼吸,而随后是有氧呼吸。在吸水的第二阶段,种子中各种酶亦在

形成着。萌发种子酶的形成有两种来源:(1)从已存在的束缚态酶释放或活化而来;(2)通过核酸诱导下合成的蛋白质,形成新的酶。

(三)有机物的转变

种子中贮藏着大量淀粉、脂肪和蛋白质,而且,不同植物种子中,这三种有机物的含量有很大差异。我们常以含量最多的有机物为根据,将种子区分为淀粉种子(淀粉较多)、油料种子(脂肪较多)和豆类种子(蛋白质较多)。这些有机物在种子萌发时,在酶的作用下被水解为简单的有机物,并运送到正在生长的幼胚中去,作为幼胚生长的营养物质。

三、种子的寿命

种子寿命(seed longevity)是指种子从成熟到失去生命力所经历的时间。在自然条件下,种子的寿命可以由几个星期到很多年。寿命极短的种子如柳树种子,成熟后只在12h内有发芽能力。大多数农作物种子的寿命,也是比较短的,约1~3年。少数有较长的,如蚕豆、绿豆能达6~11年。种子寿命长的可达百年以上。我国辽宁省普兰店的泥炭土层中,多次发现莲的瘦果(莲子),根据土层分析,这些种子埋藏至少120年,也可能达200~400年之久,但仍能发芽和正常开花结果。

第二节细胞的生长

一、细胞分裂的生理

(一)细胞周期

具有分裂能力细胞的细胞质浓厚,合成代谢旺盛,把无机盐和有机物同化成细胞质。当细胞质增加到一定量时,细胞就分裂成为两个新细胞。新生的细胞长大后,再分裂成为两个子细胞。细胞分裂成两个新细胞所需的时间,称为细胞周期(cell cycle)或细胞分裂周期(cell division cycle)。细胞周期包括分裂间期(interphase)和分裂期(mitotic stage,简称M期)。分裂期是指细胞的有丝分裂过程,根据形态指标分裂期可分为前期、中期、后期和末期等时期。分裂间期是分裂期后的静止时期,DNA是在这个时期中一定时间内合成的。于是又可把分裂间期分为三个时期:DNA合成期(简称S期)(synthesis简称),在S期之前有DNA合成前期(简称G1期),在S期之后是DNA合成后期(简称G2期)(G是取自英文gap)。

(二)细胞周期控制

(三)细胞分裂的生化变化

细胞分裂过程最显著的生化变化是核酸含量、尤其是DNA含量变化,因为DNA是染色体的主要成分。呼吸速率在细胞周期中,亦会发生变化。分裂期对氧的需求很低,而G1期和G2期后期氧吸收量都很高。G2期后期吸氧多是相当重要的,它贮存相当多能量供给有丝分裂期用。

(三)细胞分裂与植物激素

植物激素在细胞分裂过程中起着重要的作用。在烟草细胞培养中,生长素和细胞分裂素刺激G1 cyclin(CYCD)的积累,因此支持进入新的细胞周期。干旱时,根部的脱落酸浓度增加,CDK-cyclin复合物抑制剂(ICK)表达,于是抑制CDK/CYCA,阻止进入S期。细胞分裂素通过活化磷酸酶,削弱CDK酪氨酸磷酸化的抑制作用(CDK/CYCB),促进进入M期。赤霉素刺激深水稻节间cyclin的表达,细胞迅速分裂和伸长(图10-4)。

二、细胞伸长的生理

(一)细胞伸长的生理变化

当细胞伸长时,细胞的呼吸速率增快2~6倍,细胞生长需要的能量便得到保证;与此同时,细胞里的蛋白质量也随着增加,这说明呼吸作用的加强和蛋白质的积累是细胞伸长的基础。

(二)细胞壁

细胞伸长不只增加细胞质,也增加细胞壁,这样才保持细胞壁的厚度。细胞壁的松散和伸展在细胞伸长中具有极其重要的作用。植物细胞壁的基本结构物质是纤维素,许多纤维素分子构成微纤丝,细胞壁就是以微纤丝为基本框架构成的。每个纤维素分子是1 400-10 000个D-葡萄糖残基通过β-1,4键连结成的长链。植物细胞壁中的纤维素分子是平行整齐排列的,约2000个纤维素分子聚合成束状,称之为微团(micell)。微团和微团之间有间隙,彼此相互交织。每20个微团的长轴平行排列,聚合成束又构成微纤丝(microfibrill)。有时许多微纤丝又聚合成大纤丝,微纤丝借助大量链间和链内氢键而结合成聚合物(图10-5)。

在细胞伸长过程中,首先需要松散细胞壁,并不断将合成的细胞壁成分如纤维素、半纤维素、果胶等填充和沉淀到正在扩展的细胞壁中,保持细胞壁的厚度。

相关文档
最新文档