线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展
线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________)

作者:齐科研相蕾陈静宋玉国霍正浩杨泽

【关键词】线粒体DNA 基因突变疾病

线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。

此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。

1 线粒体DNA的遗传学特征

线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。

1.1 母系遗传

Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。

1.2 异质性和突变负荷

核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

变发生在成千上万个mtDNA分子上,由此而产生突变体的突变含量几乎变化于0%到100%之间。人们将细胞或组织同时拥有突变型和野生型mtDNA的状态称为异质性;将细胞或组织只拥有一种mtDNA(全部是突变型mtDNA,或野生型mtDNA)的状态称为均质性[2]。

突变负荷(mutation load)是衡量mtDNA突变体异质性程度的重要指标,它是指发生突变mtDNA占全体mtDNA的百分比。一般情况下,mtDNA疾病的发生及其临床表型往往取决于突变负荷的指标:当人肌肉中mt-A3243G点突变突变负荷达到50%时就足以造成骨骼肌细胞的氧化损伤和肌肉组织形态学异常;另外,A3243G突变负荷的高低与疾病的严重程度呈一定的相关性。

1.3 阈值效应

当异质性mtDNA突变体的突变负荷较低时,与突变型mtDNA 共存的野生型mtDNA会发挥足够的补偿作用,以维持线粒体呼吸链的功能。然而,当突变负荷超过一定范围,使得野生型mtDNA 分子的数量不足以维持呼吸链的功能时,组织或器官就会出现功能异常,这种现象称为阈值效应[2]。人体不同组织、器官对mtDNA突变的易感性存在差异,能量需求高的部位(如骨骼肌、脑、心、肾小管和内分泌腺)容易受突变影响,较低的突变负荷就能引起临床症状;能量需求低的部位(如肺、皮肤和韧带)对突变不敏感,较高的突变负荷才能导致异常的产生。

1.4 “瓶颈”和随机分配

异质性mtDNA突变体的突变负荷在不同的世代交替间变化较为明显,这种效应即为线粒体遗传的“瓶颈”。一个被广泛接受的假设是:在卵子发生早期,原始卵母细胞中的mtDNA 数量会急剧减少,从而产生’’瓶颈”。然而,Cao[8]等对单个小鼠生殖细胞mtDNA的计数显示:在卵子发生的初中级阶段,原始卵母细胞中含有稳定的、适中的mtDNA拷贝数;而在初级卵母细胞的成熟阶段,mtDNA 数量才会有实质性的增加。这说明“瓶颈”的产生并不是因为卵子发生早期mtDNA数量急剧减少所造成,而是由于卵母细胞经历了多次分裂使得最终分配到每个卵子中mtDNA 的有效数量较少所致。

在有丝分裂时(包括卵子发生),mtDNA分子被随机分配到子代细胞中。存在于卵母细胞中的mtDNA分子大约有150000个,经过卵子发生,只有一部分mtDNA进入初级卵母细胞中,形成异质性水平相差很大的卵母细胞群;受精卵经历卵裂和胚胎发育,最后只有几个拷贝的mtDNA分子进入新生儿的组织细胞中。因此,同一母系家族成员间在疾病表型上时常会迥然不同。体细胞每经历一次有丝分裂,mtDNA分子会随着线粒体一起被随机分配到子代细胞中,所以组织中mtDNA的突变负荷可以随着组织细胞的分裂而改变,进一步说,同一患者的疾病表型也能够随着时间的推移而表现出很大的变异性。

2 mtDNA疾病的临床特征

线粒体是真核细胞重要的细胞器,因此,mtDNA疾病影响许多组织,出现变化多端临床特征。根据临床特征mtDNA疾病可以分三组:典型综合征、可能与mtDNA紧密关联的综合征以及与常见病相关的表型。

由于缺乏蛋白保护并且没有完整的突变修复功能,mtDNA突变率非常高。线粒体基因组的高突变率不但产生了大量致病突变体,还产生了更多的序列多态性[9]。致病性mtDNA突变一般具有以下特点:1)突变位点在进化上比较保守,突变导致核苷酸或氨基酸替换,或基因编码产物的生物学功能丧失;2)突变导致的生化损伤和疾病的临床表型能够分离;3)当突变是异质性突变时,组织损伤程度与突变负荷呈正相关;4)同一突变可以从遗传上相互独立的患者中发现。

致病性的mtDNA突变通常位于编码蛋白质、tRNAS或rRNAs 的基因上,并能够引起广泛的临床症状。mtDNA突变与表型之间的关系复杂,相同的突变可以引发不同的疾病表型,例如,tRNALleu(UUR)基因上的A3243G突变既能出现在MELAS患者中,也能出现在CPEO、线粒体肌病、糖尿病伴耳聋患者中;同一疾病表型也可以由不同的突变引起,例如,MELAS可以由20多个点突变(位于编码tRNAS或呼吸链复合体蛋白亚基的线粒体基因上)引起,也可以由重组突变引起[4]。一些彼此独立的因素可以影响mtDNA疾病的临床表现,包括:

突变体的异质性水平、组织分布、器官对呼吸链的依赖程度、核背景和环境因素等。由于mtDNA突变致病的分子机制还没有被完全阐明,突变与疾病表型之间的确切关系至今仍显得扑朔迷离。

从遗传学角度可以将mtDNA突变分为两大类:点突变和重组突变。

2.1 点突变

与点突变相关的人类遗传性疾病有:LHON(Leber遗传性视神经病变)、MELAS(线粒体脑肌病伴高乳酸血症和卒中样发作)、MERRF(肌阵挛性癫痫症和破碎红纤维病)、NARP(神经性肌无力-共济失调-色素性视网膜炎)、MILS(母系遗传Leigh氏综合征)、MIDD(母系遗传糖尿病伴耳聋)、DEAF(氨基糖苷类诱导性耳聋或非综合症性耳聋)、心肌病和肌红蛋白尿等(http://https://www.360docs.net/doc/0218208079.html,)[4]。此外,mtDNA点突变还与一些代谢疾病(如高血压、糖尿病、高胆固醇血症等)和神经变性疾病(如帕金森症、阿尔茨海默氏症等)的易感性有关。

2.1.1 LHON(Leber hereditary Optic neuropathy)

LEON是第一个被鉴定出与mtDNA点突变有关的母系遗传疾病,临床上以两侧连续急性或亚急性视力衰退为特征,主要累及青少年男性。Man等对英格兰人口进行的调查显示,每100,000天中,有11.82人携带mtDNA-LHON突变,其中至少有3.22人会因为患LHON

而出现视觉衰退。这项调查提示LHON是一种常见的人类疾病。

大多数与LHON有关的点突变位于MTND基因上,其数目已经超过30余种。三种原发性mtDNA突变G11778A、G3460A和T 1 4484C 分别位于MTND4、MEND 1和MTND6基因上,由它们引起的LHON病例约占所有LHON患者的95%。LHON病原性突变体的外显率(penetrance,具有特定遗传基因的个体在一定环境下表现其遗传基因的概率)变化非常大,不同的LHON 突变有不同的外显率,即使相同突变的外显率在不同个体间也存在差异。很多因素决定了LEON的外显率,包括继发性突变位点[10]secondary mutation,在健康人中存在,但能增加疾病外显率、单倍型(haplotype)以及核基因[11]等。

2.1.2 MELAS(mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes)

MELAS是一组具有高度临床变异性和遗传异质性的mtDNA疾病,它的主要特征有:1)脑顶枕叶局灶性损害及由此引起的卒中样发作;2)乳酸性酸中毒和破碎红纤维Cragged redfiber,RRF);3)其他中枢神经表现,如痴呆、反复头痛和呕吐、癫痫发作、色素性视网膜炎和耳聋;4)一些患者有共济失调的表现;5)少数患者出现糖尿病、肠道假梗阻和心肌病;6)生化上,线粒体复合体I常有缺损,而复合体Ⅳ不易受累,出现的破碎红纤为COX(细胞色素C氧化酶)阳性[12]。

与MELAS相关的mtDNA点突变已经超过20个。人多数MELAS 病例是由mt-tRNA(leuUUR)基因上的异质性突变A3243G引起;少数则是由其它mtDNA点突变(如T3271C)和大片段重组突变所致:也有一些MELAS患者的mtDNA是正常的(突变可能发生在核基因上)。

2.1.3 MERRF(myoclonic epilepsy and ragged red fibers)

MERRF是一种母系遗传的神经肌肉紊乱症,它的主要特征:1)肌阵挛、癫痫、肌无力和消瘦伴破碎红纤维;2)耳聋和痴呆;3)小脑齿状核和次级小叶出现神经元丧失与神经胶质过多症;4)一些病人躯干部有对称性脂肪增多的表现;5)生化上,线粒体复合体I常有缺损,而复合体Ⅳ不易受累,出现的破碎红纤维为COX阴性。

大多数与MERRF有关的mtDNA突变位于tRNALYS基因上,其中A8344G点突变最为常见。有时,MERRF可以与MELAS综合征合并存在,形成MERRF/MELAS重叠综合征(MERRF/MELAS overlap syndrome)。mt-A3243G、T8356C和Gl2147A等点突变可以分别引起MERRF/MELAs 重组综合征。

2.1.4 NARP(neurogenic weakness,ataxia and retinitis pigmentosa)MILS (maternally inherited Leigh syndrome)

NARP是一种母系遗传综合征,主要特征有:1)共济失调、

色素性视网膜炎和外周神经病:2)MRl检查发现NARP,病人的小脑和大脑有轻度弥漫性萎缩,严重者可出现基础神经节损害;3)肌肉活检往往检查不到破碎红纤维。MILS是Leigh氏疾病(Leigh disease)中一种与mtDNA突变有关的神经变性疾病。

NARP和MILS通常由位丁MTA6基因上一个位点的两种异质性突变8993T>G/C引起,疾病的严重程度与异质性水平由关。当突变阈值位干70%~95%之间时可以引起NAPR,当突变阈值高于90%时可以引发母系遗传Leigh氏综合征。这两种综合征还与 mtDNA上其它位点的突变有关,如9176T>C[4]。

2.1.5 线粒体耳聋

Mt-12S rRNA基因是与耳聋相关的一个突变热点,其上的一些点突变(如A1555G、T961C和C1494T等)已经被证实能够引发DEAF(氨基糖苷类诱导性耳聋或非综合征性耳聋);另一个突变热点是mt-tRNASer(UCN)基因,如 A7445G、7472insC和T7511C等也与DEAF 有关;此外,mt-tRNASer(UCN)基因上的点突变A3243G也能够导致MIDD(母系遗传糖尿病伴耳聋综合征)的发生(htp://https://www.360docs.net/doc/0218208079.html,)。

2.2 重组突变

mtDNA重组突变是最早被报道的与人类疾病相关的mtDNA突

变。虽然发生重组 mtDNA片段长度可以从一个碱基到几千个碱基不等,但重组突变主要分为:大片段缺失(deletion)和倍增(duplication)。缺失突变可以单独存在于患者中,也能与倍增同时出现。最常见的一种重组突变是长度在5kb左右,跨越Cytb基因和CoxII基因之间区域(包含tRNAS和蛋白质的编码基因)的单个大片段mtDNA缺失/倍增。这种大片段重组突变通常与一些典型的疾病表型有关,如Pearson氏综合征、KSS(Kearn-Sayre综合征)、CPEO慢性进行性外眼肌麻痹)和Pearson氏骨髓-胰腺综合征。重组突变并不只限于上述几种疾病表型,也能涉及糖尿病、听力丧失和几乎所有线粒体脑肌病[4]。

单个大片段的mtDNA重组突变可能形成于卵子发生时期或胚胎发育早期。与大片段缺失/倍增突变相关的疾病大多为散发性,且复发风险小,据Chinnery等报道患病妇女的下一代发病风险仅为4.11%。

3 体细胞mtDNA突变在衰老和肿瘤中的作用

3.1 体细胞mtDNA突变与衰老

体细胞mtDNA突变会随着衰老而逐渐积累。在40岁以下人群中的骨骼肌中基本检测不到异常mtDNA,而在50岁以上人群骨骼肌中可以发现大量mtDNA重组突变,这些突变可能与肌肉组织的老化有关[13]。有人在一些帕金森病人和正常老年人的黑质神经元中发

现高频率的mtDNA缺失突变(帕金森病人mtDNA突变水平高于正常对照),推测这些突变可能与脑组织的老化有关[14]。体细胞mtDNA突变可能是由于活性氧(ROS)对正常mtDNA的氧化损伤造成的,而这些突变的积累会进一步损害线粒体呼吸链功能,并产生更多的ROS和突变,从而加速衰老进程[15]。

衰老是否由体细胞mtDNA突变直接推动的呢? mtDNA突变体小鼠模型的建立为我们开启了一扇窗户。Trifunovic等[16]利用基因敲入(knock-in)技术来建立mtDNA突变型小鼠,并研究mtDNA突变对小鼠表型的影响,他们发现这些小鼠有明显的早衰表现,如:寿命缩短、体重减轻、骨质疏松、驼背、心脏肥大和生育能力衰退等。Kujoth等对上述mtDNA突变体小鼠的深入研究揭示:mtDNA突变的积累并不与氧化压力标志物有关,也不会导致细胞增值缺陷,而是与凋亡标志物有紧密联系,在正常老龄化小鼠中也能观察到相似水平的凋亡标志物,体细胞mtDNA突变的积累引起的细胞凋亡,可能是推动哺乳动物衰老的核心机制。虽然mtDNA突变体小鼠模型是研究衰老的一个很好的工具,但其实验结果并不能证实mtDNA突变一定会加速哺育动物的自然老化过程,因为正常衰老小鼠体内不可能有如此众多的mtDNA突变分子;况且,不含mtDNA突变体的小鼠模型也可以展示出早衰的表现[17]。mtDNA突变体小鼠模型说明:mtDNA突变的大量积累可以直接导致个体早衰;体mtDNA突变有可能在人类衰老中发挥关键作用。但鉴于这些小鼠体内的mtDNA突变体水平远远高于自然老化

的人类,并且小鼠与人类的生理条件也存在明显差异,因而,mtDNA 突变在人类衰老中的确切作用和机制还有待于深入探讨。

3.2 突变与肿瘤

长期以来人们怀疑线粒体缺陷(包括mtDNA突变)可能对癌症的发展起重要作用。虽然人们从很多肿瘤细胞中都观察到体细胞mtDNA突变,但这些突变导致肿瘤发生的确切机制却鲜为人知。Petros 等报道:MTCOX I基因突变在11%~12%前列腺癌患者出现,同比只在7.8%的健康对照中出现;癌症患者MTCOX I基因上的突变位点在进化上更加保守;MTATP6基因上的T8993G点突变能够加速PC3前列腺癌细胞在裸鼠中形成肿瘤,并且可以促进肿瘤组织产生更多的ROS.Ohta 等向裸鼠体内植入含突变型或野生型mtDNA的转线粒体杂交瘤细胞,并观察老鼠体内所形成的肿瘤的形态,发现突变型mtDNA可以明显促进肿瘤的生长。如果向含突变型mtDNA的转线粒体杂交瘤细胞的细胞核中导入一段与突变基因互补的正常线粒体基因,再用新构建的瘤细胞去感染裸鼠,那么突变型mtDNA促肿瘤生长作用会受到明显抑制,提示mtDNA突变有可能通过阻止肿瘤细胞的调亡来促进肿瘤或癌症的发展[18]。

4 结语

近年来,与mtDNA突变相关的研究日新月异。mtDNA突变之所以能引起人们的广泛关注,是因为:1)mtDNA突变已经成为人类遗

传性疾病的重要病因;2)mtDNA突变(主要是序列多态性)可以为人类起源、进化和迁徙规律的研究[19],以及法医学鉴定提供可靠的遗传学证据;3)体细胞mtDNA突变有可能在衰老和肿瘤中发挥关键作用。然而,至今为止,人们还没有从分子水平上阐明mtDNA突变的致病机制;也无法根治mtDNA疾病。对于体细胞mtDNA 突变在衰老和癌症中的作用上仍然不清。可以预见,在未来的一段时期内,还将围绕着这些难题继续展开研究。

【参考文献】

[1] Wallace DC.Mitochondrial diseases in man and mouse[J].Science,1999,283(5407):1482-1488.

[2]DiMauro S,Schon EA.Mitochondrial respiratory-chain diseases[J].N Eng1 J Med,2003,348(26):2656-2668.

[3] Ghelli A,Zanna C,Porcelli AM,et al.Leber’s hereditary optic neuropath(LHON)pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial Cells Incubated with Galactose Medium[J].J Biol Chem,2003,278:4145-4150.

[4] Brandon MC,Lott MT,Nguyen KC,et al.MITOMAP:

a human mitochondrial genome database-2004 update[J].Nucleic Acids Res,2005,33:D611-613.

[5]Schaefer AM,Taylor RW.The epidemiology of mitochondrial disorders-past,present and future[J].Biochim Biophys Acta,2004,1659:115-120.

[6] Giles RE.Blanc H,Cann HM,WaIlace DC.Maternal inheritance of human mitoch ondrial DNA[J].Proc Nat1 Acad Sci U S A,l980,77(11):6715-6719.

[7] St John J,Sakkas D,Dimitriadi K,et al.Failure of elimination of paternal mitochondrial DNA in abnormal embryos[J].Lancet,2000,355(9199):200.

[8] Cao L,Shitara H,Horii T,et al.The mitochondrial bottleneck Occurs without reduction of mtDNA content in female mouse germ cells[J].Nat Genet,2007,39(3):386-390.

[9] Carelli V,Achilli A,Valentino ML,et al.Haplogroup effects and recombination of mitochondrial DNA:novel clues from the analysis of Leber hereditary optic neuropathy

pedigrees[J].Am J Hum Genet,2006,78(4):564-574.

[10] Li R,Qu J,Zhou X,et al.The mitochondrial tRNA(Thr)A15951G mutation may influence the phenotypic expression of the LHON-associated ND4 G11778A mutation in a Chinese family[J].Gene,2006,376(1):79-86.

[11] Hudson G,Keers S,Yu Wai,et al.Identification of an X-chromosomal locu and haplotype Modulating the phcnotype of a mitochondrial DNA disorder[J].Am J Hum Genet 2005;77(6):1086-1091.

[12] Zeviani M,Muntoni F,Savarese N,et al.A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA(Lys)gene[J].Eur J Hum Genet,1993,1(1):80-87.

[13] Melone MA,Tessa A,Petrine S,et al Revelation of a new mitochondrial DNA mutation(G12147A)in a MELAS/MERFF phenotype[J].Arch Neurol,2004,61(2):269-272.

[14] Bender A,Krishnan KJ,Moiris CM,et al. High

levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease[J].Nat Genet,2006,38(5):515-517.

[15] Harman D.Free radical theory of aging[J].Mutat Res,1992,275(3-6):257-266.

[16] Trifunovic A,Wredenberg A,Falkenherg M,et al.Premature ageing in mice expressing defective mitochondrial DNA polymerase[J].Nature,2004.429(6990):417-423.

[17]Vermulst M,Bielas JH,Kujoth GC,et al.Mitochondrial point mutations do not limit the natural lifespan of mice[J].Nat Genet,2007,39(4):540-543.

[18] Ohta S.Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticaneer drugsJ].Oncogene,2006,25(34):4768-4776.

[19] Macaulay V,Hill C,Achilli A,et al.Single,rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes[J].Science,2005,308(5724):

1034-1036.

线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________) 作者:齐科研相蕾陈静宋玉国霍正浩杨泽 【关键词】线粒体DNA 基因突变疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。 1 线粒体DNA的遗传学特征 线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。 1.1 母系遗传 Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。 1.2 异质性和突变负荷 核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

线粒体功能障碍与人体疾病的研究进展样本

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目: 线粒体疾病的最新研究进展 作者: 朱刚刚 学号: 07730 指导教师: 谢放 完成日期: -7-16 线粒体疾病的最新研究进展

摘要: 本文为了对线粒体疾病研究的最新进展进行论述, 分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词: 线粒体、线粒体tDNA、线粒体疾病。 引言: 线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、 O型糖尿病、心肌病及衰老等,有人统称为线 粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1 线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而成的封闭囊状结构, 从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的”隔舱板”理论, 最新提出的三维重构模型认为: (1)外膜与内质网或细胞骨架连接形成网络; (2)内外膜间随机分布横跨两端, 宽20nm 的接触点; (3)内膜经过界面与嵴膜接口部分相连, 并不直接向内延伸形成嵴膜; (4)嵴膜非”隔舱板”式而是管状或扁平状, 相互间可连接或融合, 呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间: 外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子通道蛋白; 内膜中有电子传递链(呼吸链)复合物I~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-ducing factor, AIF)和Procaspase 2、 3、 9及其它酶蛋白; 电压依赖性阴离子通道(VDAC)、 ADP/ATP转换蛋白(ANT)和线粒体膜转运孔 (mitochondrialper-meabletransition pore, MPTP)存在于接触点; 三羧酸循环(TCA cycle)酶系、存储钙离子的致密颗粒及线粒体基因组则包含于基质中。【1】与核基因组(nDNA)不同, mtDNA 结构简单, 仅含16 569 个碱基, 编码2 种rRNA、 22 种tRNA和13种参与呼吸链形成的多肽。一般裸露且不含内含子, 既

线粒体自噬研究概论

线粒体自噬 线粒体自噬研究概论 关于线粒体自噬 线粒体自噬(mitophagy)是指细胞通过自噬的机制选择性地清除线粒体的过程。选择性清除受损伤或功能不完整的线粒体对于整个线粒体网络的功能完整性和细胞生存来说十分关键。 线粒体自噬主要的作用有几个方面: 1.选择性清除功能受损的线粒体 2.选择性调节细胞内线粒体数量 3.通过线粒体影响诸多生理和病理学过程 Fig:The pathways of mitophagy for quality control and clearance of mitochondria Cell Death and Differentiation(2013)20,31–42

线粒体自噬的信号通路 1)Pink/Parkin pathway 2)Bnip3/Nix pathway 3)FUNDC1pathway Fig.Mitophagy pathway:Pink1/Parkin OR Bnip3/Nix Pink1/Parkin pathway:E3泛素连接酶Parkin和蛋白激酶Pink1一起介导了线粒体膜电位下降,引起的线粒体自噬的发生,当线粒体损伤后,线粒体膜电位下降,引起Pink1蛋白在损伤线粒体上的积累,能够吸引Parkin到损伤的线粒体上。Parkin使得线粒体外膜上的很多蛋白发生泛素化,从而能够募集其他一些相关蛋白,介导线粒体自噬的发生。

线粒体自噬 汉恒线粒体自噬研究工具与研究方法 汉恒生物有多种线粒体自噬病毒研究工具可以提供,便于直接感染目的细胞后直观地观察线粒体自噬的变化 一、汉恒线粒体自噬表型研究工具 1)Ad-GFP-LC3腺病毒病毒系统,可高效感染目的细胞,表达GFP-LC3,感染感染后细胞可在荧光显微镜下实时观察自噬的整体水平(由于GFP荧光偏弱,暂停Ad-GFP-LC3销售, 慢病毒单标LV-GFP-LC3荧光正常,正常销售); 2)Ad-HBmTur-Mito腺病毒系统(红光标记),为汉恒生物自主研发的线粒体特异性定位荧光探针(pHBmTur-Mito)可准确定位标记线粒体,结合汉恒独家推出的双荧光LC3细胞自噬腺病毒的使用,即可准确实时地追踪线粒体自噬的动态过程; 使用方法:Ad-GFP-LC3+Ad-HBmTur-Mito共感染目的细胞,confocal检测双荧光共定位的情况,如果共定位,则存在线粒体自噬!(下图说明:红色标记为线粒体,绿色标记自噬小体,二者有共定位时代表自噬发生) 二、汉恒线粒体自噬通路研究工具 1)Ad-Parkin-EGFP 2)Ad-Bnip3-EGFP+Ad-Nix-EGFP 3)Ad-FUNDC1-EGFP

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

第章线粒体遗传与线粒体疾病

第十三章线粒体疾病 广义的线粒体病(mitochondrial disease)指以线粒体功能异常为主要病因的一大类疾病。除线粒体基因组缺陷直接导致的疾病外,编码线粒体蛋白的核DNA突变也可引起线粒体病,但这类疾病表现为孟德尔遗传方式。目前发现还有一类线粒体疾病,可能涉及到mtDNA 与nDNA的共同改变,认为是基因组间交流的通讯缺陷。通常所指的线粒体疾病为狭义的概念,即线粒体DNA突变所致的线粒体功能异常。 第一节疾病过程中的线粒体变化 线粒体对外界环境因素的变化很敏感,一些环境因素的影响可直接造成线粒体功能的异常。例如在有害物质渗入(中毒)、病毒入侵(感染)等情况下,线粒体亦可发生肿胀甚至破裂,肿胀后的体积有的比正常体积大3~4倍。如人体原发性肝癌细胞癌变过程中,线粒体嵴的数目逐渐下降而最终成为液泡状线粒体;缺血性损伤时的线粒体也会出现结构变异如凝集、肿胀等;坏血病患者的病变组织中有时也可见2到3个线粒体融合成一个大的线粒体的现象,称为线粒体球;一些细胞病变时,可看到线粒体中累积大量的脂肪或蛋白质,有时可见线粒体基质颗粒大量增加,这些物质的充塞往往影响线粒体功能甚至导致细胞死亡;如线粒体在微波照射下会发生亚微结构的变化,从而导致功能上的改变;氰化物、CO等物质可阻断呼吸链上的电子传递,造成生物氧化中断、细胞死亡;随着年龄的增长,线粒体的氧化磷酸化能力下降等等。在这些情况下,线粒体常作为细胞病变或损伤时最敏感的指标之一,成为分子细胞病理学检查的重要依据。

第二节线粒体疾病的分类 根据不同的角度,线粒体疾病可以有不同的分类。从临床角度,线粒体疾病主要涉及心、脑等组织器官或系统;从病因和病理机制角度,线粒体疾病有生化分类和遗传分类之别。 一、生化分类 根据线粒体所涉及的代谢功能,线粒体疾病可分为以下5种类型:底物转运缺陷、底物利用缺陷、Krebs循环缺陷、电子传导缺陷和氧化磷酸化偶联缺陷(表13-1)。 表13-1 线粒体疾病的生化分类 二、遗传分类 根据缺陷的遗传原因,线粒体疾病分为核DNA(nDNA)缺陷、mtDNA缺陷以及nDNA和mtDNA联合缺陷3种类型(表13-2)。 表13-2 线粒体疾病的遗传分类

遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展 湛江师范学院 09生本3班黄佳玲 2009574310 摘要:自从孟德尔发现遗传定律的一个多世纪以来,人们对生物的遗传特性锲而不舍地深入研究。从假设到实验,从宏观到微观,遗传学的羽翼日渐丰满。从遗传因子到基因,从基因的概念到基因的本质、功能,基因的概念逐渐扩展,人们对基因的认识逐渐深化。可以说,基因概念的发展史,就是人们对基因认识的发展史,就是遗传学的发展史。而分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:遗传学分子遗传学重组DNA技术 几千年来,人类对生物及人类自身的生殖、变异、遗传等现象的认识不断深入和发展。人类从古代就注意到遗传和变异的现象,并通过人工选择获得所需要的新品种。从19世纪起就对遗传和变异开始作系统的研究。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后互相交融的不同发展阶段[1]。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。它的早期研究都用微生物为材料,其形成和发展与微生物遗传学和生物化学也有密切关系。 分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。 早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢。直到1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端,它为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,奠定了成功的基础。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构[2],其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理[3]相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发

细胞遗传学复习资料

细胞遗传学复习资料 第二章染色体的形态结构 Chromosome: A molecular of DNA, and associated protein bound together. Each chromosome contains: Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin. 染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较 深的、纤细的网状物。 染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目 和形态的细胞结构,是遗传物质的最主要的载体。 研究染色体形态最适合的时期: ?有丝分裂中期 ?减数分裂第一次分裂前期I的粗线期 第一节有丝分裂中期染色体 大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。NA为物镜的数值孔径) 同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。 小麦:染色体平均长度11.2 μm,总长235.4 μm。 在细胞周期中,染色体处于动态的收缩过程中。 绝对长度:实际测量值。 相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。 染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。 着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division. 着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。 着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。 着丝粒所连接的两部分称为染色体臂(arm)。 着丝点:具有聚合微管蛋白的作用,是微管组织中心(microtubule organized center, MTOC),因而与细胞分裂过程中牵引染色体移动的驱动力有关系。 1.按着丝粒位置将染色体分为几种类型: 1)中着丝粒染色体 2)近中着丝粒染色体 3)亚中着丝粒染色体 4)亚端着丝粒染色体 5)近端着丝粒染色体 6)端着丝粒染色体 臂比(arm ratio,A)=长臂/短臂(q/p或L/S) 着丝粒指数(Centromeric Index,C)=短臂长度(p)/染色体长度(p+q)×100% 动粒(Kinetochore): 为着丝粒的外层结构,是细胞分裂时纺锤体微管附着部位。 动粒的类型: ?固定位置动粒( localized kinetochore)

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

遗传学进展概述(选修课论文)

遗传学进展概述 作者:戴宝生 克隆水稻分蘖的主控基因MOC1 据国家自然科学基金委员会2003年5月23日报道,最近,我国科学家成功分离和克隆了水稻分蘖的主控基因MOC1,该成果是由中国科学院遗传与发育研究所李家洋院士及其合作者在国内独立完成的。该研究结果已发表在Nature,2003,422:618上,这是我国分子遗传学基础研究领域的第一篇源自国内的Nature文章,标志着我国植物功能基因研究取得了重大突破。 分蘖是水稻等禾本科作物在发育过程中的一个重要的分枝现象,也是一个重要的农艺性状,它直接确定作物的穗数并进而影响产量。虽然对水稻分蘖的形态学、组织学及突变体都有过很多描述,但是控制分蘖的分子机制一直没有弄清。自1996年起,在国家科技部、国家自然科学基金委员会和中国科学院的共同资助下,李家洋和中国农业科学院国家水稻研究所的钱前博士等开始进行此方面的研究。经过不懈努力,项目组鉴定了一株分蘖的极端突变体——单杆突变体MOC1。通过遗传图谱定位克隆技术,分离鉴定了在水稻分蘖调控中起重要作用的基因MOC1,它的缺失可造成分蘖的停止。进一步的功能分析表明,该基因可编码一个属于GRAS家族的转录因子,该转录因子主要在腋芽中表达,功能是促进分蘖和促进腋芽的生长。对这一重要基因的深入研究,将有望解释禾本科作物分蘖调控的分子机制,对于水稻高产品种的培育有重要的理论和应用价值 走出“基因决定论”的误区 自从基因一词在20世纪初进入科学家的词汇表以来,它不仅是生物学家最为常用的词汇之一,也成为当今普通大众最为熟悉的科学术语之一。随着遗传学和分子生物学的进步,人们不仅知道了基因的化学性质——DNA序列,而且还认识到了基因的功能——编码蛋白质的氨基酸序列。由此,逐渐形成了一种广为流行的“基因决定论”:生命的各种性质和活动都是受基因控制的,甚至人类的精神活动也在基因的控制之下。不久前,芬兰赫尔辛基大学和瑞典卡罗林斯卡医学院的研究人员在某些患有诵读困难的病人中,发现了一种名为“DYXC1”的基因发生了突变。也就是说,人类的阅读可能受到这种“DYXC1”基因的控制。不可否认,基因对生命具有非常重要的作用,基因的异常通常就会导致生命的异常。但是,作为开放的复杂系统,生命活动从来就不是由一种因素就能完全决定的。当前越来越多的证据,正在向“基因决定论”挑战。科学家正在以一种全新的视野来理解生命现象。 不再是“垃圾” 随着基因组研究的深入,人们发现,在多细胞真核生物的基因组中,基因仅是其全部DNA 序列的一小部分。在人类基因组中,全部基因序列只占基因组的2%左右。基因组内的非基因序列曾一度被研究者称为“垃圾DNA”(junk DNA)。这些“垃圾DNA”中至少有一半是

人类线粒体病的遗传学研究及治疗进展

第31卷第3期济宁医学院学报2008年9月Vol131,No.3J O URNAL OF JIN ING M EDICAL COLLEGE Sep,2008 人类线粒体病的遗传学研究及治疗进展 郭岩1陈磊2高立1综述关晶1审校 (1济宁医学院2济宁医学院附属医院) 线粒体普遍存在于真核细胞的细胞质中,它是细胞物质氧化的主要场所和能量供给中心。线粒体是细胞核外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德尔遗传方式,具有半自主性。线粒体病(m itochondr i opa t hy)是指因遗传缺损引起线粒体代谢酶的缺陷,导致AT P合成障碍、能量来源不足而出现的一组多系统疾病,因此,也被称为线粒体细胞病(m itochondr i a lcy topathy)[1,2]。 1线粒体基因组的特点 线粒体基因组是一个环状双DNA,核酸序列和组成比较保守,人类的线粒体基因组由16569bp组成,其外环为重(H)链,内环为轻(L)链,除一段非编码区(D-loop区)外,均为编码区,共编码13个多肽、22个t R NA和2个r RNA[3]。D-loop区是一大小约1000bp的调控区,其包含有重链复制起始点、保守序列节段、轻链启动子、重链启动子及终止结合序列等,几乎所有与m t DNA复制、转录和翻译相关的调控序列都位于该区。 2线粒体病的种类 线粒体病是遗传缺损引起线粒体代谢酶缺陷,使AT P合成障碍、能量来源不足导致的一组异质性病变。m t DNA有很高的突变率[4],当一种突变产生时,细胞同时含有野生型、突变型二种m t DNA时,称为异质性。异质细胞分裂时,突变和野生m t DNA随机分布到子细胞中。经过很多代的传递, m t DNA表型向野生型或突变型m t DNA占优势方向漂变,这一过程称为复制分离。随着突变型比例的增多,细胞获得能量的能力下降直到降低至阈值,即细胞或组织正常功能所必需的最小能量输出,超过这一点,就出现疾病症状[5]。一般情况下,线粒体病患者会有以上的两个至多个病症,其中的一些往往同时发生,以至于我们把它们归类为某综合征[6]。 2.1肌阵挛性癫痫伴肌肉蓬毛样红纤维综合征(M ERR F) 是由于m t DNA8344或8356发生了点突变造成的一种罕见的、杂质性母系遗传病,具有多系统紊乱的症状,包括肌阵挛性癫痫的短暂发作、不能够协调肌肉运动(共济失调)、肌细胞减少(肌病)、轻度痴呆、耳聋、脊髓神经退化等等。患者肌纤维紊乱、粗糙,线粒体形态异常并在骨骼肌细胞中积累,用Gom or iT r ichrom e染色显示为红色,称破碎红纤维。M ER-R F病一般在童年初发,病情可持续若干年[7]。 2.2慢性进行性眼外肌麻痹综合征(K SS) 病因尚未明确,50%有家族史,认为系线粒体肌病的一个亚型;也有人提到自身免疫或脂质代谢异常。20岁前起 技术的进展,期待更敏感、更特异的方法面世,这对于病理状态中细胞凋亡的研究将具有重要意义。 参考文献 [1]李跃林,李丽,邓卓军.实验性脂肪性肝病大鼠肝细胞凋亡与组织 病理的对比研究.河北医药,2004,26:9292 [2]B axa D M,Luo X,Yos h i m ura FK.Gen istei n i nduces apoptos i s i n T l y m pho m a cell s v i a m itochondri al da m age.Nu tr C ancer,2005,51 (1):93 [3]Rob ert W,N i co l e G,E li sabeth G,M anfred W.Tw o2col or,fl uores2 cence2based m i crop late assay f or apoptosis d etecti on.B io T ech2 n i ques,2002,32(3):666 [4]S aafi EL,Konarko w ska B,z h ang S,et a1.U ltrastruct u ral ev i dence t h at apop t os i s is t h e m echan i s m by w h i ch hum an a m yli n evokes deat h i n RINm5F pan creatic i s l et beta-cells.cell B i ol Lnt,2001,25:339 [5]袁兰,陈英玉.用激光扫描共聚焦显微镜原位检测细胞凋亡1新 技术应用,2003,(1):47 [6]王晓翔1细胞凋亡检测方法的研究进展1体育科技2005,26 (3):43 [7]Bai J,C ederb au m A I.Cycl ohexi m i de p rotects H epG2cells fro m se2 rum w it hdra w al i nduced apop tosis by d ecreasi ng p53and phospho2 rylated p53level s.J Phar m acol Exp Ther,2006,319(3):1435 [8]Ravagnan L,Roum i er T,K roe m er G.M it ochondria,the k ill er organ- ell es and t heir w eapons.J CellPhysi o,l2002,192:131 [9]Chaturved i R,S ri vastava RK,H i sats une A,Shankar S,L illehoj EP, K i m KC.Augm entati on of Fas li gand2i ndu ced apoptosis by M UC1 m uci n.Int J Onco,l2005,26(5):1169 [10]Pavlovs ky Z,Vagunda V.Apop t os i s2sel ect ed m et hod s of detecti on of apoptosis and as soci ated regu l atory f act ors on ti ssue secti on s of t um ors.C esk Pat o,l2003,39(1):6 [11]张丽娟1细胞凋亡的检测方法及其在药物流产中的应用1医学 综述,200814(11):1660 [12]Lecoeu rH.Nu clear apop t os i s detecti on by n o w cyt o m etry::i nfl uen ce of endogenou s endonu cl eases.E xp C ellR es,2002,277(1):1 [13]Dobru cki J,Darz ynk i e w i cz Z.Ch ro m ati n condensation and sens i ti vity of DNA i n s i tu t o den aturati on duri ng cell cycl e and apop tos i s-a con f ocalm i croscopy s t udy.M icron,2001,32(7):645 [14]尹琰,寿伟璋.流式细胞术Annex i nV细胞凋亡检测方法探讨.东 南大学学报,2003,22:169 [15]Span L P,Penn i ngs AH,V ier w i nden G,et a.l The dyna m i c proces s of apop t osis anal yzed by fl o w cyto m etry us i ng Annexi nV/p rop i d i um i o- d i d e and am odifi ed i n sit u end abeli ng tec hn iqu e.C yt o m etry,2002, 47(1):24 (收稿日期2008-06-11) # 260 #

细胞遗传学论文

细胞融合技术的发展及其应用 摘要 细胞融合技术作为细胞工程的一项核心技术在农业、医药、环保等领域得到迅速发展和应用,且其应用领域不断扩大。本文简述了细胞融合技术技术中的常用方法:仙台病毒(HVJ)诱导法、聚乙二醇(PEG)化学诱导法、电融合诱导法、激光诱导法及此技术的最新研究进展:空间细胞融合技术、离子束细胞融合技术、非对称细胞融合技术等。该技术不仅为核质关系、基因定位、基因调控、遗传互补、细胞免疫、疾病发生、膜蛋白动力学等理论领域的研究提供了有力的手段,而且被广泛应用于免疫学、遗传学、发育生物学,在实际应用中特别是在单克隆抗体、抗肿瘤疫苗及动植物远缘杂交育种和微生物茵种选育,绘制基因图谱等方面具有十分重要的意义。随着细胞融合技术的不断改进和完善,动物、植物及微生物细胞融合技术无论在基础理论研究还是在实际应用产生的影响将日益显著。 关键词:细胞融合;方法;应用;进展 细胞融合技术是近年来迅速发展起来的一项新生物工程技术。所谓细胞融合指在外力(诱导剂或促融剂)作用下,两个或两个以上的异源(种、属间)细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合,并形成杂种细胞的现象称为细胞融合(cell fusion)或细胞杂交(cell hybridization)[1]。利用现代科学技术,把来自于不同种生物的单个细胞融合成一个细胞,这个新细胞(杂合细胞)得到了来自两个细胞的遗传物质(包括细胞核的染色体组合和核外基因),将具有新的遗传学或生物学特性。目前,通过原生质体融合进行体细胞杂交已成为细胞工程研究的重要内容之一[2]。 细胞融合技术不仅为核质相互关系、基因调控、遗传互补、肿瘤发生、基因定位、衰老控制等领域的研究提供了有力的手段,而且在遗传学、动植物远缘杂交育种、发生生物学、免疫医学以及医药、食品、农业等方面都有广泛的应用价值。特别是在单克隆抗体的制备、哺乳动物的克隆以及抗癌疫苗的研发等技术中,细胞融合技术已成为关键技术。随着研究的不断深入,细胞融合技术的应用领域越来越广,产生的影响也日益显著。本文就其目前的研究进展及其应用进行综述。

遗传学发展历史及研究进展

遗传学发展历史及研究进展 【摘要】从1900年孟德尔的遗传学理论被重新发现时,遗传学才被典礼在科学的基础上。本世纪,遗传学已成为生物科学领域中发展最快的一门学科,几乎所有的生物学科都可以与遗传学形成交叉学科。遗传学作为自然科学的一个学科,有其建立、发展和不断完善的进程。 【关键词】历史进程发展趋势研究进展 什么是遗传学(Genetics)?遗传学就是研究生物的遗传与变异的科学。遗传是生物的一种属性,是生命世界的一种自然现象。遗传使生物体的特征得以延续,变异造成了生物体间的差别,遗传与变异构成生物进化的基础。与所有的学科一样,遗传学也是在人们的生产实践活动中发展起来的,是与生产实践紧密联系在一起的。从遗传学的建立、发展来看,研究遗传学的意义是十分深刻的。 一、遗传学的历史进程 1.远古时代 在远古时代,祖先们稚嫩的思维认为生物和非生物之间不存在什么区别,所有的东西都认为是活的。但是,祖先们在研究过程中都发现了一个事实——有些东西可以自我繁衍。“龙生龙,凤生凤”之类的俗语,可以算的上是最早的遗传学概念。在生产实践中,产生了实用遗传学,祖先们开始控制种畜的交配,选育优良的种子,淘汰较差的种畜和种子,以满足他们的需求。 2.中世纪 中世纪有一种观念严重地阻碍了科学的发展——自然发生论(Spontaneous Generation)。然而十七世纪一位意大利科学家雷迪用实验成功地否定了自然发生论。接下来,荷兰一位业余的科学家列文·虎克发明了显微镜并发现了细胞、证实了精细胞的存在和了解到多种生物都是拥有性别的。与此同时,科学家威廉·哈维也开始研究女性在生殖过程中的作用。到十九世纪为止,科学家们已发现动物和植物都有性别,自然生长论几近穷途末路。 3.十九世纪 十九世纪是一个不断进步的时代,科学家们和生产实践的工作者们碰到的问题不断地促进了对基因的探索。通过大量努力的探索,遗传规律开始被发现。一位来自奥地利布鲁恩的修道士,他用豌豆作为实验材料,进行了大量研究遗传问题的育种试验,1866年,他发表了《植物杂交试验》的论文,揭示了性状分离和独立分配的遗传规律。他就是现代遗传学的创始人——孟德尔。然而,当时的科学家正热衷于研究达尔文的进化论而忽视了这一重大发现。直到1900年,孟德尔遗传规律才被重新发现,这也标志着现代遗传学的开端。 二、现代遗传学的发展

2013细胞遗传学试题

一、名词解释 细胞遗传学(Cytogenetics)是建立在遗传学(genetics) 和细胞学(cytology) 相结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律。是遗传学中最早发展起来的学科,也是最基本的学科。 染色体数目:不同种类的动植物染色体数目是相对恒定的,在动植物的体细胞中,染色体往往是成对存在的,以2n表示;而性细胞中的染色体则为体细胞中的一半,以n表示。 三体(trisomic):是指在双体(2n)染色体中某同源染色体多了一条额外的染色体。2n+1,2m+1+1(双三体)三体一般都能存活、都能繁殖,都会表现与其亲本性状有所不同的变异。 初级三体(primary trisomy)添加的染色体和染色体组中的一对染色体完全同源 次级三体(Secondary trisomy)添加的一条是等臂染色体(两臂组成一样)。 补偿三体(compensating trisomic)一个个体缺少一条染色体,而在遗传上为另外2条分别涉及该染色体2个臂的易位染色体所补偿。用2n-1+c+c表示染色体组成(c代表易位染色体)。 平衡隐性致死:各个复合组内含有一个隐性致死基因。纯合时合子死亡,但v和g组内的致死基因并不是等位的,在杂结合的情况下可以互补,合子得以成活,这种现象叫平衡隐性致死 1、附着X染色体:指两条X染色体在着丝粒一端连在一起的染色体,在减数分裂中部发生分离,像一条染色体一样,其性连锁和性决定行为与一般果蝇不同。 2、交叉一面说:F.A Janssens 等认为在显微镜下观察到的细胞学交叉是遗传学交叉的直接结果,双线期看到的圆环是由姐妹染色单体构成的,二价体中只有一个减数面,因此成为交叉一面说。其要点是:⑴交叉等于交换,认为交叉就表示交换,是非姐妹染色单体间交换的结果。⑵先有交换,后有交叉。⑶双线期所看到的圆环(减数面)都是姐妹染色单体在一起。 3、舒尔兹·雷德菲尔德效应:在倒位杂合体中,倒位二价体自身交换频率的下降,往往会导致其它二价体交换频率的提高,使细胞中整个染色体的交换频率维持不变。 4、B染色体:在有些真核生物中除常染色体(也称为A染色体)外,还存在一些形态较小、类型和数量多样的额外染色体,我们称之为B染色体,也可称之为副染色体、额外的染色体或超数染色体。 5、核仁组织区:在大多数生物中,次缢痕通常出现在核仁所在的区域,在前期与核仁联系在一起,并参与末期核仁的形成,因此此区域被成为核仁组织区。 6、新着丝粒:是一种次级着丝粒(secondary centromere),它是细胞分裂时除了正常的着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 7、G带:是在染色体的全部长度上显示丰富的带纹。现也叫高分辨G带,高分辩带。 8、单端单体:缺失一对同源染色体,但保留由该对同源染色体中的1条染色体臂形成的端着丝粒染色体,染色体组成为2n-2+t。9、染色体消减:指多倍体或混倍体组织回复到二倍体亲本之一原来的染色体数目的趋势。 10、二体异代换系:染色体代换也可以发生在不同的染色体组之间,被代换的个体称为异源染色体代换系或称异代换系,涉及1对外源染色体代换的个体称二体异代换系。 11、灯刷染色体:两栖类卵母细胞减数分裂前期Ⅰ中形成的巨大染色体。由纤细的DNA中轴和许多成对的DNA侧袢组成,形似灯刷状。灯刷染色体是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。 12、双减数:对于四价体来说,同一区段的分离在减数分离之后,仍然可能发生后减数分离,结果是原来为姐妹染色单体的两个区段,最后同时进入一个子细胞中,这就是双减数。 13、交叉两面说:该学说认为平常所见到的交叉,并不代表一个染色体的实质交换,而是先在交叉处发生断裂,由断裂端重接才产生交换。要点:(1)交叉步等于交换。因为染色体向两极移动时,交叉产生断裂后再重接,如果非姐妹染色单体连在一起,就发生交换。(2)交叉是因,交换是果。(3)均等面与减数面总是交替排列。 二、染色体组分析(genome analysis):是阐明生物的染色体组的构成,特别是指利用染色体配对,了解染色体之间的同源性,分析染色体组的演变以及物种起源和进化的情况。从而为物种起源和进化的研究提供客观根据,为调查异源染色体的附加、代换乃至易位提供细胞学证明。常用的染色体组分析方法:①研究杂种F1减数分裂时染色体的联会行为。②单倍体减数分裂时染色体的联会行为。 ③原位杂交法。 要想对这一植物进行染色体组来源的分析,其方法可为:将此物种(被测种)与可能的物种A、B、C(基本种)分别进行杂交。然后观察杂交子代在减数分裂过程中染色体的配对行为。 ◆如果被测种与基本种的杂交子代减数分裂过程中发现相当于基本种染色体基数的二价体,便说明异源多倍体的一个染色体组来源于这一基本种。 ◆当有几个物种符合时,染色体联会最广泛最紧密的那个物种就被认为是真正的祖先。 ◆分析是否正确,还要做检验:就是把视为祖先的几个基本种进行人工合成多倍体,当合成的和天然的异源多倍体彼此非常相似,并具有可孕的后代时,就可确定分析是正确的。 三多线染色体的形态特征与结构特点? ⑴多线性:染色体(染色单体,DNA)反复进行纵向分裂,数目增加,但不分离,成为平行的一束染色体,这样在间期核内染色体增加了很多倍而形成多线的现象,称为多线性。每条多线染色体的纤丝数目是种特异的,最多可达4000多。 ⑵巨大性:正常的染色体只有在细胞分裂时才能看到,在细胞间期只能看到染色质,而多线染色体在间期唾液腺细胞里就可以看到。 ⑶体细胞联会:即体细胞中的同源染色体进行联会。在果蝇的幼虫唾液腺体细胞中,经过多次DNA的复制形成的染色体通过染色体配对聚合在一起,形成4条多线染色体,此时细胞内染色体的数目为正常体细胞染色体数目的一半,即单倍体数。但每一条多线染色体实际上代表着两条紧密联会的同源染色体,从而使得两条同源染色体从外观上看起来像是独立的一条染色体,4条多线染色体在染色中心通过着丝粒区域结合在一起。植物的多线染色体在形态与动物总的有一些差异。最明显的差异是同源染色体的不配对,除偶尔在泻根中有配对的情况外。

细胞遗传学

染色体原位杂交技术在植物研究中的应用 摘要:染色体原位杂交(chromosome in situ hybridization,CISH)是一种新兴的日趋完善的技术。本文从以下几个方面对其在植物研究中的应用进行了综述:(1)外源染色质及远缘杂种的鉴定;(2)多倍体起源、非整倍体的鉴定;(3)植物基因工程及基因表达研究;(4)物种进化及亲缘关系的探讨;(5)植物基因物理图谱的构建等。 关键词:染色体原位杂交;植物;细胞遗传学 Abstract: In situ hybridization (chromosome in situ hybridization, CISH) is an emerging maturing technology. Its application in plant research are reviewed as follows: (1) exogenous chromatin and Identification of distant hybrids; (2) polyploid origin, identification of aneuploidy; (3) plant genetic engineering and gene expression studies; (4) the evolution of species and of kinship; (5)physical map construction of plant genes. Keywords: in situ hybridization; plants; cytogenetic 引言 原位杂交技术最早是由Gall和Parue[1]利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。该技术是从Southern和Northern杂交技术衍生而来的,其中染色体原位杂交在原位杂交技术中应用最为广泛。染色体原位杂交技术是根据核酸分子碱基互补配对原则,利用标记的DNA或寡核苷酸等探针同染色体上的DNA进行杂交,从而对染色体的待测核酸进行定位、定性或相对定量分析。 早期的染色体原位杂交技术,由于使用的探针为放射性标记,虽然该方法对于组织及染色体样本制备的要求不太高,且具有较高的灵敏度,但它不安全、不稳定、背景不理想,周期长,因而该技术发展较慢;然而20世纪80年代以后,非放射性探针的使用及PCR技术的发明,使得染色体原位杂交技术在动物及人类遗传学和分子生物学研究中迅速得到了广泛的应用,但在植物研究中一直很难有突破性的进展[2,3]。原因主要是由于植物细胞较低的有丝分裂指数和细胞壁的存在。随着植物染色体制备技术的改进,染色体显带技术、荧光标记技术、检测技术及电镜技术的发展和完善,染色体原位杂交技术在植物学研究上展示了更加广阔的应用前景。 1染色体原位杂交技术在植物研究中的应用

相关文档
最新文档