镀锌线张力及驱动控制

镀锌线张力及驱动控制
镀锌线张力及驱动控制

张力控制变频收卷的控制原理及在纺织机中的应用

张力控制变频收卷的控制原理及在纺织行业的应用 -------作者:中达电通上海分公司 FAE李强 一.前言: 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷 经 是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不 同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动 时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷 时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基 本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客 户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径启动时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 * 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 减速、停车、再启动时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

气动张力控制系统的建模与仿真

气动张力控制系统的建模与仿真 摘要:本文简单介绍了张力控制的相关知识及气动张力控制系统的组成及工作原理,并对张力控制系统的收卷控制部分进行了数学建模与仿真。建立了比例压力阀控缸开环系统的简化模型,采用PID控制方法,在Matlab仿真平台进行系统模型仿真,得到了系统仿真曲线。 关键词:张力控制气动比例控制系统建模与仿真 近年来,气动技术以其自身独特的传动方式和优点,如清洁、结构简单、气体来源充足和成本相对较低,已在工业自动化领域广泛应用。将气动技术应用于恒张力控制系统已成为一个重要研究领域,PID控制,现代控制理论,智能控制等都被应用到气动系统的控制中。但是气动控制系统,由于气体的可压缩性,阀口非线性及气缸摩擦力等因素的影响,导致了气动伺服系统的强非线性、固有频率低、刚度小、阻尼小等特点,要得到满意的控制伺服系统比较困难。要对气动伺服控制系统进行分析和研究,一般需要首先建立该控制系统的数学模型。 本文通过介绍张力控制的相关知识及气动比例控制系统原理与组成,针对张力控制系统的收卷控制部分建立简单的比例压力阀控缸开环控制系统的数学模型,并在Matlab环境下进行了仿真。 一、张力控制的基础知识 张力控制,简单地说就是要控制物体在设备上输送时物体上相互拉长或绷紧的力。张力控制系统往往是张力传感器和张力控制器的一种系统集成,是一种实现恒张力或者锥度张力控制的自动控制系统,主要应用于造纸、纺织、薄膜、电线等轻工业中,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。在带材或线材的收卷和放卷过程中,为保证生生产的质量和效率,保持恒定张力是很重要的。 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。 1.典型收卷张力控制示意图

张力控制变频收卷的控制原理(汇编)

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

恒张力控制系统

第一章设计说明 课题简介 设计一个恒张力收盘控制系统,就是要控制卷取物体时保持物体相互拉长或者绷紧的力。张力应用于最广泛的造纸、纤维、塑料薄膜、电线、印刷品、磁带等轻工业中,带材或线材的收放卷张力对产品的质量起着至关重要的作用。在收卷和放卷的过程中,为保证生产的质量及效率,保持恒定的张力是很重要的。本系统采用人及交互式的控制方法,由使用者输入设定张力值,通过磁粉制动器、传感器、转换芯片与单片机组成一个闭环系统,使张力恒定在设定值,达到恒张力控制的效果。 设计目的 通过本次课题设计,应用《单片机原理及应用》等所学相关知识及查阅资料,完成恒张力收盘控制系统的设计,以达到理论与实践更好的结合、进一步提高综合运用所学知识和设计的能力的目的。通过本次设计的训练,可以使我在基本思路和基本方法上对基于MCS-51单片机的嵌入式系统设计有一个比较感性的认识,并具备一定程度的设计能力。 设计任务 在本次课程设计中,主要完成如下方面的设计任务: 1、设计单片机系统原理图(A0,PROTEL/CAD或手画); 2、编写系统程序(主程序+子程序); 3、写设计说明书;(设计说明,程序流程图,程序); 4、答辩(十九周周四下午两点); 设计方法 由按键驱动单片机中断,进入按键及显示程序,通过使用者输入数据并通知在LED上显示,输入数据储存在相关区域内备之后使用,返回到主程序后单片机接受由力传感器产生的经AD转换芯片转换后的数字力信号,通过与之前设定值的比较计算,得出控制信号,经DA 转换芯片变为模拟电压信号输入磁粉制动器控制端。若没有键盘中断,则如此往复运行信号检测、运算、输出程序达到动态平衡。

商业轮转机的张力控制详解

商业轮转机的张力控制详解 前言:随着商业印刷市场的扩展,商业轮转机在商业印刷中表现出来了越来越重要的作用,但也给商业轮转机印刷质量和精度提出了更高的要求。轮转印刷过程中通常由于张力的影响使印刷品套印和折页不准,给印刷带来很多不良品,从而影响生产成本和市场的信誉。下文以桑拿C800为例分析商业轮转印刷张力控。 C800商业轮转印刷的显著特点是纸带从开卷到进入折页滚筒都是在绷紧状态下完成的,套准、烘干、冷却、加湿及裁切等前后纸带长度上百米,因此纸带张力稳定是保证正常印刷的首要条件现从五个方面分析纸带的张力控制。 送纸部分:送纸部分从纸的入口到印刷单元包括了一次张力和二次张力,一次张力采用的是轴制动方式,在纸卷芯部轴端设置刹车片和刹车盘,通过气压方式加载制动力,即气动式张力控制系统。保证纸卷以平稳的速度放纸,并通过浮动机构及张力检测电路,消除或减轻由于纸卷不圆、偏心、一头松、一头紧等本身原因造成的张力波动,并可在印刷过程中对纸卷不断变小引起的张力变化进行自动调整。如(图一) 图一:1纸筒也是张力控制器所在、2和4导纸棍、3浮动机构 电器控制原理图如(图二)

分析:供纸部的张力控制部分由刹车片、制动器、浮动辊等组成,为了使纸带张力保持恒定,纸卷制动器必须能够根据纸带张力的波动情况自动进行调整以保证纸带匀速、平稳地进入印刷装置。在机器平稳运行过程中,应保证纸带张力稳定在给定值上,在启动和刹车时防止纸带过载和随意松卷。在印刷过程中,随着纸卷直径不断减小,为保持纸带张力的恒定,需要对制动力矩进行相应的调整。在印刷过程中,纸带的线速度保持不变,而纸卷的角速度却随着纸卷直径的减小不断增大。在不考虑由角加速度产生的惯性力矩和阻力矩的前提下,为保证纸带稳定运行,应该满足下面的条件:F X R= T X r F为纸带张力,R为纸卷半径,T为纸卷轴芯的制动力,r为纸卷轴芯制动力半径。可以看出,随着纸卷半径的减小,如果不改变制动力的大小,纸带所受到的张力会越来越大,最终会使纸带被拉断。因此,在保持纸带张力稳定的前提下,随着纸卷半径的减小,制动力必须按照一定的规律随之减小。简而言之,就是刹车片与刹车盘接触后产生一定的摩擦力,从而使纸带具有一定的张力,浮动辊在张力的作用下产生摆动,通过一个电子检测元件将张力的变化转化为电信号,控制刹车盘电压,从而达到控制摩擦力大小的目的,实现纸带张力的自动控制。刹车片与刹车盘的间距应在1?2mm之间。 二次张力为无级变速控制:无级变速控制是通过电机的转速来控制张力的大小其控制原理图如(图三) 图三中:1铬棍、2电机传动的胶棍(又叫送纸棍)、3和4导纸棍、5浮动

张力控制系统

张力控制系统MAGPOWR (美塞斯MC01/400/830/1898)往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。 工作原理 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等,下图为一个典型的闭环张力控制系统。 人工控制 MAGPOWR <1ll人工张力控制系统是适合于收卷,点到点和一些特定的放卷应用场合使用的低成本解决方案. 我们的手动电源供应器可以让f~ 淌除剩磁,15可以通过莫独特的皮向电流性能而用到制动器或离合器的完整的功率范围。该系统最适合应用于: ( 1 )需要自然锥角的收卷场合 ( 2 )卷装成形保持不变的点到点应用场合 ( 3 )从满卷到卷芯的放卷过程中允许有少量张力变化的场合 人工电源供给采用电流调节方式,当离合器或制动器从环境温度变化到工作温度时,莫输出仍保持不变。 可选用带有跳结器的90VDC 和24VDC 电压供给,额定电流可以调节,还可匹配磁粉制动器满足榕的应用需求。 可选安装方式DIN 标准导轨(C E) .撞墙式安装,印刷电路板。 张力控制系统(3张) 控制方式

硅片多线切割技术详解

硅片多线切割技术详解 太阳能光伏网 2012-4-9 硅片是半导体和光伏领域的主要生产材料。硅片多线切割技术是目前世界上比较先进的硅片加工技术,它不同于传统的刀锯片、砂轮片等切割方式,也不同于先进的激光切割和内圆切割,它的原理是通过一根高速运动的钢线带动附着在钢丝上的切割刃料对硅棒进行摩擦,从而达到切割效果。在整个过程中,钢线通过十几个导线轮的引导,在主线辊上形成一张线网,而待加工工件通过工作台的下降实现工件的进给。硅片多线切割技术与其他技术相比有:效率高,产能高,精度高等优点。是目前采用最广泛的硅片切割技术。 多线切割技术是硅加工行业、太阳能光伏行业内的标志性革新,它替代了原有的内圆切割设备,所切晶片与内圆切片工艺相比具有弯曲度(BOW)、翘曲度(WARP)小,平行度(TAPER)好,总厚度公差(TTA)离散性小,刃口切割损耗小,表面损伤层浅,晶片表面粗糙度小等等诸多优点。 太阳能硅片的线切割机理就是机器导轮在高速运转中带动钢线,从而由钢线将聚乙二醇和碳化硅微粉混合的砂浆送到切割区,在钢线的高速运转中与压在线网上的工件连续发生摩擦完成切割的过程。 在整个切割过程中,对硅片的质量以及成品率起主要作用的是切割液的粘度、碳化硅微粉的粒型及粒度、砂浆的粘度、砂浆的流量、钢线的速度、钢线的张力以及工件的进给速度等。 一、切割液(PEG)的粘度 由于在整个切割过程中,碳化硅微粉是悬浮在切割液上而通过钢线进行切割的,所以切割液主要起悬浮和冷却的作用。 1、切割液的粘度是碳化硅微粉悬浮的重要保证。由于不同的机器开发设计的系统思维不同,因而对砂浆的粘度也不同,即要求切割液的粘度也有不同。例如瑞士线切割机要求切割液的粘度不低于55,而NTC要求22-25,安永则低至18。只有符合机器要求的切割标准的粘度,才能在切割的过程中保证碳化硅微粉的均匀悬浮分布以及砂浆稳定地通过砂浆管道随钢线进入切割区。 2、由于带着砂浆的钢线在切割硅料的过程中,会因为摩擦发生高温,所以切割液的粘度又对冷却起着重要作用。如果粘度不达标,就会导致液的流动性差,不能将温度降下来而造成灼伤片或者出现断线,因此切割液的粘度又确保了整个过程的温度控制。 二、碳化硅微粉的粒型及粒度

什么是张力控制

什么是张力控制? 最佳答案 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且

张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。有较强的实用性和理论指导性。 关键词: 张力变频矢量转矩卷径 引言: 在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。其控制性能已能和直流控制性能相媲美。由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。 张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。 速度模式下的张力闭环控制 速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。 同步匹配频率指令的公式如下: F=(V×p×i)/(π×D) 其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径 变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。 这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。 转矩模式下的张力控制 一、转矩模式下的张力开环控制

张力控制解释

张力控制变频收卷的控制原理 2007年7月23日 中国工业设备网 本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 (6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

多线切割原理

多线切割原理 1、目的:正确、安全的操作切片机,为保证安全作业。 2、使用于NTC442DM机型的操作。 3、主要内容: A:多线切割的原理: a砂的作用是切割b液的作用是悬浮c钢线的作用是承载 故切割原理是融合在切割液中的碳化硅在高速运行的钢线带动下完成切割的作用 B料浆的作用及其质量控制的重要性: a:料浆的作用是切割,它是切割的主体,并且在切割的过程中还起到了一定的冷却、散热、润滑的作用。 b:新料浆只能有砂和液组成,不能有其他任何杂物。在使用后的料浆里还有玻璃碎粉、钢屑、硅粉、胶条等。更换砂浆主要是控制这些在料浆里比例小于7-8%,只有这样才能保证料浆的切割能力,如果砂浆的配置不正确,或者含有大量的杂质,教会导致跳线、短线、等,由此产出的硅片会出现线痕、色差、厚薄不均甚至报废。 C:机器的运行方式和切割过程中料浆的运行 NTC多线切割机采取的是下压式进给。出于晶棒的外形关系,料浆的流量姚随着晶棒的形状的改变而改变,这样才能保证硅片的表面质量。在机器上是采用图表的方式对砂浆流量进行设定和表示的。 D:切割前的检查项目及机器内的卫生: a:钢线的绕线状况(压线、表面不平整等及张力是否正常) b:接触轮和各个导轮的磨损状况及稳定性 c: 主辊上是否有跳线,杂物;钢线的通路是否正确。 d:主辊上是否有碎片,胶条等杂物都必须处理干净。 e:各个导轮及接触轮是否转动正常,摆轮臂上是否有沉积砂浆,摆动是否自如。 f:参数,由于换线筒等操作需要更改的参数必须在切割前作更改。 g:喷嘴必须清理,必须观察出料浆流出是否均匀,是否有段帘。 h:料浆必须在启动前过滤干净,料浆中不能有杂物。 I:晶棒是否与线网对其,避免因晶棒斜面引起爬坡现象。 j:检查晶棒是否锁紧。 跳线产生的原因及处理方式 1主辊上的导线槽损坏(处理方法:在线网上下贴好胶带包好走线处理) 2主辊上有杂物(处理方法:将主辊擦拭干净,如不能擦拭干净需要用压缩空气将主辊上底上的杂质吹掉,必要时需要将张力动切后将线网剪除后进行清理) 3钢线在通过导轮是未在槽内,导致钢线磨损,从而导致高线在主辊上扭曲(处理方法同1)4切割过程中产生的碎片导致(处理方法同2) 跳线的的主要形式有 1一个主辊有一个主辊有 2两个主辊上都有,就是并槽、跳槽 3交叉线,两根钢线换槽导致刚线交叉

张力控制原理介绍

第二章张力控制原理介绍 2.1 典型收卷张力控制示意图 浮动辊 F 牵引辊 收卷 图2 带浮动辊张力反馈 收卷 F 牵引辊 图1 无张力反馈 3 2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其

可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩4擦补偿可以克服系统阻力对张力产生的影响。 3、闭环速度控制模式 闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。 该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率

线切割电极丝张力控制及调节机构的设计

*2017年广东省高校省级重点平台和重大科研项目(2017GGXJK054);2017年广州市高校创新创业重点平台(201709P07);2016年广州工程技术职业学院重点资助项目(zjd201612) 煤矿机械 Coal Mine Machinery Vol.39No.09Sep.2018 第39卷第09期2018年09月 doi :10.13436/j.mkjx.201809033 线切割电极丝张力控制及调节机构的设计* 袁根华 (广州工程技术职业学院,广州510075) 摘要:分析了线切割电极丝张力不稳定对于加工质量等方面产生的影响,分析了张力不稳定 是电极丝紧丝不到位、加工过程电极丝伸缩量变化太大等原因导致电极丝调节机构无法调节的结果。在研究现有几种调节机构的优缺点的基础上,设计了一种紧丝与调节一体化的调节机构,实现了电极丝加工过程中大的伸缩量的有效调节。 关键词:线切割;电极丝张力;调节机构中图分类号:TG76 文献标志码:A 文章编号:1003-0794(2018)09-0095-04 Tension Control and Adjustment Mechanism Design of Electrode Wire in WEDM Yuan Genhua (Guangzhou Institute of Technology,Guangzhou 510075,China ) Abstract:The influence of electrode wire unstable tension for processing quality and so on in WEDM is analyzed,and the resulting what the electrode wire adjustment mechanism can not adjust for the bad tauten of electrode wire and is analyzed.On the basis of studying the advantages and disadvantages of several adjustment mechanisms,integration adjustment mechanism having tauten and adjustment is designed,to achievie effective adjustment of large stretching amount of electrode wire on machining process. Key words:WEDM;electrode wire tension;adjustment mechanism 0 前言 线切割尤其快走丝线切割是我国机床切削加工中使用范围相当广泛,机床保有量较大的一种特种电加工设备,快走丝线切割不仅仅在中低精度的模具加工中使用,也在一些因材料与形状等原因而导致传统加工难以加工的零件制造中发挥独特的作用。线切割是依靠电极丝作为放电电极,与工件间形成脉冲放电产生高温从而蚀除金属得到零件的加工表面与形状的一种特种电加工操作。电极丝在加工过程中保持张力的稳定对于加工质量、加工效率、加工稳定性等有重要影响,但快走丝线切割电极丝在加工过程中伸长与缩小的较大变化对于需要电极丝张力保持基本稳定的要求形成了挑战。 1电极丝张力对线切割加工的影响 快走丝线切割机床的电极丝整齐排列在储丝丝 筒上,丝筒受左右行程开关的控制正反转动同时左右运动,使得电极丝切割工件时上下做往复循环运动,从而在电极丝寿命期内得以重复循环使用(见图 1)。电极丝在循环往复运动的加工过程中,受调力 锤的作用,保持着一定的张力,对于工件的加工稳定性、加工质量、加工效率、电极丝的寿命等都有着很大影响。 图1 快走丝线切割加工时电极丝运行示意图 1.调力锤 2.后上导轮3、4、9.导电块5.前上导轮 6.电极丝7.工 件8.前下导轮10.后下导轮11.储丝筒 如果张力过小,电极丝在运行时与导电块的接触不良,造成导电块的传电能力不足,放电产生高温蚀除金属的能量时强时弱,放电火花时有时无,切割的速度不稳定,机床自动跟踪难度加大;能够有效切割的总时间短,加工效率不高。此外,张力过小,电极丝运行时与导向轮的接触也不良,电极丝运行时抖动大,在接触加工工件时的抖动,将直接引起工件加工的水平面XY 方向的切割曲线不准确,切面的粗糙度值增大,垂直Z方向的切割断面直线性差。导电不良与电极丝抖动的双重叠加作用,会造成零件切割的平面形状上的误差与尺寸的误差增大;同时由于在这种情况下,电极丝损耗的各处不均匀性增大,电极丝容易过早断丝,图1为快走丝线切割加工时电极丝运行示意图,电极丝不仅是寿命低,加工成本高,换丝引起的加工效率也低。 如果张力过大,电极丝与各导轮、导电块、储丝 1 2 3 4 5 6 7 8 9 10 11 95 万方数据

张力控制系统中的张力控制与变频

张力控制系统中的张力控制与变频

————————————————————————————————作者:————————————————————————————————日期:

张力控制系统中的张力控制与变频 1.力控制原理。以造纸机的张力控制为例,在图1a)所示的张力控制示意图中,传动电动机M的张力实际值是位于它前面的张力传感器的实际值。通过检测该处的张力情况,来控制传动电动机M的速度,从而形成一个张力闭环。电动机M的速度加快,则纸幅拉紧,张力的实际值就会上升;相反,速度降低,则纸幅松垂,张力的实际值就下降。 在这里,纸幅张力的设定值为T设定,实际值为T实际,经过张力控制器(T-控制)的PID调节器后,再乘以3%的偏移量,作为该传动点速度设定值的一个组成部分。原来传动的速度设定值(V设定)加上该组成部分,就是速度环(V-控制)的输入值,然后即可进行速度控制。在这里设置3%偏移量的目的就是通过传动速度的改变而使张力得到有效的控制。

图1 张力控制示意图 在图1b)所示的张力控制原理中,T-控制就是张力控制模块的实现,包括自动和手动两种方式。张力控制模块投运前需先检测判定现在的张力实际值是否在可投运的范围之内,否则就不能投运,此时按手动投运按钮或当自动投运信号为“1”时,即进入张力控制模块的循环中。张力PID模块的退出,它的条件为相关部位检测到断纸信号或按手动退出按钮。 2.力控制软件流程。这里以某一点的张力控制为例,采用plc语言编程进行张力软件的设计,其示意如图2示。由此可以推广到多点张力控制中去。 ①读取张力设定值。张力设定值的输入可从工艺控制台上进行,并可通过脉冲开关的动作对设定值微调,以符合实际纸幅稳定运行的需要。 ②读取张力实际值。张力实际值的产生是从PLC的模拟量板中获取的,调用相应的功能块程序。本过程读取张力的模拟量值后,在输出端得到标准化的量值,并可通过“高限”和“低限”参数来设置量程。从模拟量输入板读出的模拟量值首先变换为右边对齐的定点数(以标称范围为基础)。 ③张力控制投入判断。张力控制是否投入取决于工艺的需要和纸幅是否已经上卷,纸幅是否断裂,在其他逻辑块中进行手动按钮投入或自动信号投入的设定,以及自动退出。因此这里需要判断张力控制是否投入,如已投入,则进入张力PID控制模块,否则就只显示数值和

张力控制

力控制变频收卷方案 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆然联合机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年。而且经常要维护, 维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给很多客户带来了很多不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动。 2.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作。 * 使用先进的控制算法:卷径的递归运算;空心卷径启动时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 *因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再启动时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 * 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。 二. 变频收卷系统构成 1.系统框图

2.变频收卷的控制原理 * 卷径的计算原理:根据V1=V2来计算收卷的卷径。因为V1=ω1*R1,V2=ω2*Rx.因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即 L1/Δt=L2/ΔtΔn1*C1=i*Δn2*C2(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比) Δn1*π*D1=Δn2*π*D2/iD2=Δn1*D1*i/Δn2,因为Δn2=ΔP2/P2(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的线数).Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC.那么D2=D1*i*P2/ΔP2,这样收卷盘头的卷径就得到了. * 收卷的动态过程分析 要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、停车、启动都能保证张力的恒定.需要进行转矩的补偿.整个系统要启动起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在启动的瞬间起作用;正常运行时要克服滑动摩擦力产生的滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系.在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、启动转矩;克服了这些因素,还要克服负载转矩,通

张力控制器原理

1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转 距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿, 这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解, 用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。 尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系 统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 * 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本 上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 * 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

台达张力控制变频收卷的控制原理

台达张力控制变频收卷的控制原理 24人阅读 | 0条评论发布于:2011-8-19 18:49:36 一、前言: 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二、张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求 (1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 (6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。 三、变频收卷的控制原理及调试过程 3.1 卷径的计算原理 根据V1=V2来计算收卷的卷径。因为V1=ω1*R1, V2=ω2*Rx。因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即L1/Δt=L2/Δt,Δn1*C1=Δn2*C2/i(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比) Δn1*π*D1=Δn2*π*D2/i D2=Δn1*D1*i/Δn2,因为Δn2=ΔP2/P2(ΔP2---收卷编码

相关文档
最新文档