矩阵分析与计算--01-线性空间

机器学习数学基础-矩阵论

1.矩阵和线性变换: 线性变换的定义: 线性映射(linear mapping)是从一个 向量空间V到另一个向量空间W的映射 且保持加法运算和数量乘法运算,而线性 变换(linear transformation)是线性空间V 到其自身的线性映射。 一个矩阵对应了一个线性变换这个说法, 就可以知道这个说法并不严谨。(基) 矩阵是对线性变换的表示;确定了定义域空间与目标空间的两组基,就可以很自然地得到该线性变换的矩阵表示。 两个矩阵相乘,表示了三个线性空间的变换。要想从第一个空间转换到第三个空间,则第一个变换的定义域空间U到目标空间 V1,第二个变换的定义域空间V2到目标 空间W,必须满足V1和V2是一个空间。 矩阵把v'i换成vi的换基矩阵与把vi 换成v'i的换基矩阵这两个矩阵是互逆的.

2恒等变换与伸缩变换 3矩阵对角化 条件: n个线性无关的特征向量;每个特征值的线性无关的特征向量的个数恰好等于该特征值的代数重数;充分条件n个特征值互不相等(充分条件); 代数重数:特征多项式的次数;几何重数:与某一个特征值λ相关联的线性无关的特征向量的最大个数。 所以对角化其实就是要用特征向量组成的基来代替标准基,描述线性变换,使得多个耦合的变量尽可能的解耦。 如果A为实对称阵,则其必可以正交相似对角化。其中U内的每个向量互相正交。即:u1.T=u1.I. 线性变换: 可以发现里面并不涉及矩阵维度的变化。其中中间的对角矩阵相当于对矩阵的每一列(t 特征向量)进行拉伸。两边的同维方阵使用的是同一组基,即上述的线性变换始终在一组基

里面,所以相当于在同一空间内做旋转。在一个n维空间里,标准正交基是唯一存在的,该n维空间里面所有的向量都可由该组正交基线性变换得到。 所以矩阵的对角化涉及到的运动包括:旋转和缩放。 A矩阵将一个向量从x这组基的空间旋转到x这组基的空间,并在每个方向进行了缩放。 4.SVD 证明:AA.T的特征向量组就是P矩阵: 2 ∑∑∑∑∑ T T T T T T T =?=?== A P V A V P AA P V V P P P 得证对A进行矩阵分解得到的P矩阵就是AA.T的特征向量组成的P矩阵。 SVD的一些应用 1.降维 左奇用于行数的压缩。右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。 2.PCA使用SVD求解 PCA求解过程中的协方差矩阵为特征之间(列之间)的关系矩阵(m*m)。而SVD的右奇异矩阵也是关于特征之间(矩阵列之间)的关系,所以PCA里面的协方差矩阵可以通过SVD得到。 SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵,也能求出我们的右奇异矩阵。 3.奇异(乱入的) 若n阶方阵A的行列式不为零,即|A|≠0,则称A为非奇异矩阵或满秩矩阵 4.几何意义: 奇异值分解把线性变换清晰地分解为旋转、缩放、投影这三种基本线性变换。 其中,P为m*m矩阵,Q为n*n矩阵。 =∑。A矩阵的作用是将一个向量从Q 这组正交基向量的其中涉及的变换:AQ P 空间旋转到P这组正交基向量空间,并对每个方向进行了一定的缩放,缩放因子就是各个奇异值。如果Q维度比P大,则表示还进行了投影。

线性代数的起源发展及其意义

线性代数的起源发展及其意义 线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。由于费马和笛卡尔的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因当时对其充分的研究和探索而使其达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善男才将它翻译成为“代数学”,之后一直沿用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现。

线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; 该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数,非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。作

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律

结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 .

(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为 可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即. 1.3.3运算性质(假设运算都是可行的)

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

矩阵论习题一

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()|0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 4.设111213315A ?? ? = ? ??? ,讨论向量(2,3,4)T α=是否在R (A )中。 5.讨论线性空间 P 4[x ]中向量3 2 11P x x x =+++,3 2 223P x x x =-+,323452P x x x =+++的线性相关性。 6.设m n A R ?∈,证明dim R (A )+dim N (A )=n 。 7.设113021211152A -?? ? =-- ? ?--?? ,求矩阵A 的列空间R (A )和零空间N (A )。 8.在22 R ?中,已知两组基 11000E ??= ???,20100E ??= ???,30010E ??= ???,40001E ?? = ??? 10111G ?? = ? ?? ,21011G ??= ???,31101G ??= ???,41110G ??= ???

几种矩阵完备算法的研究与实现_矩阵分析仿真大作业

几种矩阵完备算法的研究与实现 ——《矩阵分析》课程仿真作业报告* 刘鹏飞 电?系2016210858 摘要 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵恢复可以通过 求解?个与核范数有关的凸优化问题来实现。由此诞?了许多矩阵恢复的算 法,?如FPC算法等。FPC算法虽然实现简单,但其迭代速度较慢。在此基 础上,APG算法经过改进,能够提升迭代速度。但最?化核范数并不是求解 矩阵完备问题的唯??法,其中OptSpace算法构造了?个在流形上的优化问 题,相?于前两种算法能够以更?的精度恢复出原始矩阵。本?主要总结了 FPC、APG和OptSpace三种算法的步骤。特别地,对于OptSpace算法,本 ?提出了求解其中两个?优化问题的具体算法。最后,本?通过仿真实验和理 论分析?较了三种算法的特点,并给出了OptSpace算法的精度?于APG算 法的解释。 关键词:矩阵完备,核范数,FPC,APG,OptSpace 1介绍 1.1矩阵完备及其算法综述 矩阵完备是指从??部分已知的矩阵元素中恢复出整个矩阵。它在计算机视觉、推荐系统以及社交?络等??具有?泛的应?。矩阵完备可以描述成这样?个问题:对于?个m×n的矩阵M,其秩为r,我们只有对M中的部分采样,记*报告中所涉及到的仿真代码可在https://https://www.360docs.net/doc/0218693401.html,/s/1jHRcY8m下载 1

这些采样位置组成的集合为?,那么是否有可能从已知的部分元素中恢复出整个矩阵M。假如M为低秩矩阵,并且已知的元素?够多并且?够均匀地分布在整个矩阵中,那么我们可以通过解如下优化问题来恢复出原始矩阵[1]: min rank(W) s.t.W ij=M ij,(i,j)∈?(1-1)但是,问题(1-1)是?个NP难的?凸问题。在?定条件下,问题(1-1)可以转化成?个最?化核范数的问题。对于矩阵W m×n,W的核范数定义为其奇异值之和,即 ∥W∥?=min(m,n) ∑ k=1 σk(W)(1-2) 其中,σk(W)表?W第k?的奇异值。问题(1-1)可以转化成: min∥W∥? s.t.W ij=M ij,(i,j)∈?(1-3)对于(1-3)中带等式约束的问题,进?步地,可以将它凸松弛成?个?约束的 优化问题[2][3][4]: min 1 2 ∥A(W)?b∥22+μ∥W∥?(1-4) 其中,b是由矩阵中采样位置对应的元素组成的p×1维向量,p=|?|(|·|表?集合的势);A:R m×n?→R p是?个线性映射,A(W)=(W ij)|(i,j)∈?;μ是?个可以调整的参数。 对于(1-4)中的?约束问题,?献[2][3]分别提出了Fixed Point Continuation (FPC)和Singular Value Thresholding(SVT)的算法。本?认为,这两种算法虽然出发点不同,但其实质都是梯度下降法,没有本质的差别,在算法实现上也基本?样。因此,本?只研究其中?种,即FPC算法。FPC算法虽然实现简单,但其迭代速度慢,效率不?。在此基础上,?献[4]做出了改进,提出?种Accelerated Proximal Gradient Singular Value Thresholding(APG)算法(该算法是在SVT算法上改进的,本?认为FPC和SVT实质上是?种算法,故不做区别),能够?幅度地提?收敛速度。 前?提到的?种算法,都是从(1-1)中的最?化秩的问题出发,经过?步步凸松弛得到的。与上述基本思路不同,?献[5]提出了OptSpace算法,它实质上是通过解另?种优化问题来实现矩阵完备: min F(W)= ∑ (i;j)∈? ∥M ij?W ij∥2 s.t.rank(W)=r(1-5)

线性代数发展史

线性代数发展史 一行列式 行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。 1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy) 1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。 1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述 此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作, 但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现. 行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数). 二矩阵代数 矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。 矩阵的性质研究是在行列式理论研究中逐渐发展的. 凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上) 尔后矩阵作为一种独立的数学分支迅速发展起来. 20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。 如今,矩阵已成为一种重要的数学工具,它的理论和方法在数学和其他科技领域(如数值分析、优化理论、微分方程、概率统计、运筹学、控制论、系统工程、数量经济等)都有广泛应用,甚至经济管理、社会科学等方而亦然。 三向量 向量概念是由复数概念扩张而来。1843年哈密顿(w.R Hsmil仍n)的“四元数”概念引入的同时,引入了向量概念,从而开创它的计算与理论研究 1844年,德国数学家格拉斯(G.H.Grassmann)发表<线性扩张论>,提出“n维超复数”概念.即n元有序数组,相当于今天的向量概念.此外他还定义了超复数的运算,且将Euclid几何的许多概念拓广至高维空间.

线性代数发展史

线性代数发展史 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其着作《解伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 ,1704-1752) 在其着作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝 祖 ,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德 蒙 ,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。

08矩阵论

2008年硕士生《矩阵论》试卷 任课教师 . 学院专业 学号 姓名 . 一、填空题(共20分) 1. (4分) n 阶实对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间, 其维数等于 ,其一组基为 。 n 阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间, 其维数等于 ,其一组基为 。 2.(3分) 设A 是线性空间n V 到线性空间m V 的线性算子,则A 在不同基偶下对应的矩阵是 关系;B 为线性空间n V 上的线性变换,则B 在不同基下对应的矩阵是 关系;设n V 是欧氏空间,则两组不同基的度量矩阵是 关系。 3. (3分) 如果n 阶矩阵A 的特征多项式和最小多项式相同,则A 的Smith 标准形 为 。 4. (3分)设(1,,0,1)T X i =-,则1||||X = ,2||||X = , ||||X ∞= 。 5. (4分)设122212221A ?? ?= ? ??? ,1||||A = ,||||A ∞= , ()A ρ= ,2()cond A = 。 6. (3分) 设A=0.10.30.70.6?? ??? ,则矩阵幂级数2k E A A A +++++ 是否绝对收敛? 。若是,其级数的和是 。 二、是否题(每题2分,共10分) 1.所有n 阶实对称矩阵与反对称矩阵的全体构成线性空间。 ( ) 2.线性变换A 是正交变换的充要条件是保持任意两个向量的夹角不变。 ( )

3.设(),()[]m n A B P λλλ?∈,则()A B λλ和() 相抵的充分必要条件是它们有相同的初等因子。 ( ) 4. 单位矩阵的算子范数是所有与向量范数||||x 相容的矩阵范数||||I 中值最小的一个。 ( ) 5.设矩阵序列{()k A }:2,,,,k I A A A ,则lim 0k k A →∞ =的充要条件为()1A ρ<。 三、计算题(共50分) 1. (10分) 在22R ?中, 求由基(I) : 11000A ??= ???, 20100A ??= ???,30010A ??= ???,40 00 1A ??= ??? 到基(II): 11100B ??= ???, 20110B ??= ???, 30011B ??= ???, 42001B ?? = ??? 的过渡矩阵及 1234x x x x α?? = ??? 在基(II ):1B , 2B , 3B , 4B 下的坐标. 2.(10分)在3R 中,设α=123向量(x ,x ,x ),线性变换定义为 A 23123123()(22,23,23)x x x x x x x x α=---+---+。 求3R 中的一组基,使A 在该基下的矩阵为对角阵。

数学家与线性代数

数学家与线性代数 在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而—、二次方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。1683年关孝和(日本人)最早引入行列式概念(一说为莱布尼兹)。关于行列式理论最系统的论述,则是雅可比1841年的《论行列式的形成与性质》一书。在逻辑上,矩阵的概念先于行列式的概念;而在历史上,次序正相反。凯莱在1855年引入了矩阵的概念,定义了矩阵的运算,零矩阵和单位矩阵,逆矩阵等等,在1858年发表了关于这个课题的第一篇重要文章《矩阵论的研究报告》。19世纪,行列式和矩阵受到人们极大的关注,出现了千余篇关于这两个课题的文章。但是,它们在数学上并不是大的改革,而是速记的一种表达式。不过已经证明它们是高度有用的工具。 莱布尼兹(Gottfriend Wilhelm Leibniz,德国数学家、物理学家和哲学家,1646~1716) 莱布尼兹1646年7月1日,出生于德国东部莱比锡的一个书香之家,是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。 1661年,15岁的莱布尼兹进入莱比锡大学学习法律,在听了教授讲授的欧几里得的《几何原本》的课程后,莱布尼茨对数学产生了浓厚的兴趣。 1667年,莱布尼兹发表了他的第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学的才华,后来的一系列工作使他成为数理逻辑的创始人。 1672年,莱布尼茨深受惠更斯的启发,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作,开始创造性的工作。 莱布尼兹一生没有结婚,没有在大学当教授。他平时从不进教堂,因此他有一个绰号Lovenix,即什么也不信的人。1793年,汉诺威人为他建立了纪念碑;1883年,在莱比锡的一座教堂附近竖起了他的一座立式雕像;1983年,汉诺威市政府照原样重修了被毁于第二次世界大战中的“莱布尼兹故居”,供人们瞻仰。

南京理工大学硕士研究生矩阵分析与计算试题答案

20XX 年南京理工大学硕士研究生 《矩阵分析与计算》考试(A 卷)参考答案 注意:所有试题答案都写在答题纸上,写在试卷上无效 一、(12分)设矩阵0.60.50.10.3A ??=????,计算21,,F A A A A ∞。 解:10.8, 1.1,F A A A ∞=== …………. 9 分 0.370.330.330.34T A A ??=???? m a x ()0.6853T A A λ≈, …………. 2 分 从而20.8278A == …………. 1 分 二、(15分)求矩阵141130001A -????=--?????? 的初等因子及Jordan 标准形。 解:初等因子 21,(1)λλ-+ …………. 10 分 Jordan 矩阵1111J ????=-????-?? …………. 5 分 三、(20分)已知1011011,11121A b ????????==???????????? (1)求A 的满秩分解;(2)求A +;(3)用广义逆矩阵方法判断线性方程组Ax b =是否有解;(4)求Ax b =的极小范数解或极小范数最小二乘解,并指出所求的是哪种解. 解:(1)101010101111A FG ??????==?????????? …………. 6 分

(2) 54114519112A +-????=-?????? …………. 6 分 (3) []21123 T b A b A += ≠,方程组无解; …………. 4 分 (4)极小范数最小二乘解为[]021129 T b x A +== …………. 4 分 四、(10分)利用盖尔圆隔离定理证明205141011210A i ????=?????? 有三互异特征值。 解:取(1,1,3)D diag =,则1B DAD -=的三个行盖尔园隔离,因此矩阵有3个互异特征值. ………….10 分 五、(10分)用LU 分解求解方程组 1234102040101312431301035x x x x ??????????????????=???????????????? ?? 解: 1020110200101011011243121210 10301012??????????????????=?????????????????? …………. 5 分 求解得到(2,2,1,1)T x = …………. 5分 六、(10分)利用幂法计算矩阵 1319????-?? 的按模最大特征值及对应特征向量。(取初始向量(1,1)T ,结果保留4位有效数字) 解: max 8.6055λ≈, 特征向量(0.3945,1)T ………… 10分

线性代数之理解矩阵

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。 比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数 的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。 事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的 范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一 代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知 的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中 发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本 质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵就是一个按照长方阵列排列得复数或实数集合、矩阵就是高等代数学中得常见工具,也常见于统计分析等应用数学学科中、在物理学中,矩阵于电路学、力学、光学与量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵得运算就是数值分析领域得重要问题。将矩阵分解为简单矩阵得组合可以在理论与实际应用上简化矩阵得运算。在电力系统方面,矩阵知识已有广泛深入得应用,本文将在介绍矩阵基本运算与运算规则得基础上,简要介绍其在电力系统新能源领域建模方面得应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统得紧密结合。 1矩阵得运算及其运算规则 1。1矩阵得加法与减法 1、1、1运算规则 设矩阵,,?则 ?简言之,两个矩阵相加减,即它们相同位置得元素相加减!?注意:只有对于两个行数、列数分别相等得矩阵(即同型矩阵),加减法运算才有意义,即加减运算就是可行得. 1。1、2运算性质 满足交换律与结合律

交换律;?结合律. 1.2矩阵与数得乘法 ?1。2、1运算规则?数乘矩阵A,就就是将数乘矩阵A中得每一个元素,记为或.?特别地,称称为得负矩阵。 1。2、2运算性质?满足结合律与分配律?结合律:(λμ)A=λ(μA);(λ+μ)A=λA+μA.?分配律:λ(A+B)=λA+λB. 1、2、3典型举例?已知两个矩阵 满足矩阵方程,求未知矩阵、?解由已知条件知 1、3矩阵与矩阵得乘法 ?1。3.1运算规则?设,,则A与B得乘积就是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C得第行第列得元素由A得第行元素与B得第列元素对应相乘,再取乘积之与、 1、3、2典型例题

线性代数的基本概念

《线性代数》根据“卓越工程师教育培养计划”的基本要求,突出基本概念、基本理论、基本技能,注重培养学生数学素质。教材在满足教学要求的前提下,适当降低理论推导的要求,但重视阐明基本理论的脉络。习题配置 中也突出基本题、概念题和与工程相关的实际应用题等。 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这 个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促 成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线 性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数 学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 矩阵和行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封 信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解 伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学 家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具 使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相 分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开 行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明 了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年, 柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列 式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。 19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士?西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学 的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要 条件这一结果,但没有给出证明。 继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数 行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几 何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。 矩阵矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重 要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个 述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为 了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列 式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先 引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了 关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念, 指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩

线性代数基础学习书单

线性代数基础学习书单 线性代数是很传统的课程,国内还比较喜欢叫做高等代数,这就更加传统了。一般地,在我们的高等代数里,除了线性空间外,还有大量的矩阵论,一点点多项式理论。大致来说,线性代数可以从两个角度去看它,一是它的几何理论,即线性空间以及线性空间里的线性变换;二是代数方法,那就是矩阵论了。“所谓线性代数学,就是或者直接研究线性空间的几何问题,或者将线性空间的一些几何问题化为化为矩阵问题。所以线性空间理论和矩阵论实际上是相伴而生的。”(许以超,线性代数与矩阵论(第二版)·序言,p.ii) 至于多项式,在这里主要是一个将平面上的几何问题化为代数多项式问题来解决的方案,这是平面解析几何的问题。那么,多项式要不要学,光是看看那么多线性代数教科书里都要包含一章来讲多项式,就知道答案是肯定的。几何问题其实都可以是线性问题,这样,间接地,多项式也就跟线性代数挂上了钩。 不过,是否可以把多项式分出去就是一个值得考虑的问题了。我觉得多项式还是不要放在线性代数课程中为好,一则费时,二则也讲不透。事实上,很多老师会把本来放在前头的多项式挪到后面来讲,甚至干脆就不讲。有一门课叫做“整数与多项式”,不过现在很少在大学课堂里出现了。整数理论是属于数论的,但加减乘除跟多项式是一样的,比较一下算术基本定理和代数基本定理就知道了。另外,多项式其实也不是一个简单的问题,更不只限于跟整数挂钩。在多项式环中,我们有带余除法,若表示为分式,就扩展到有理域了,更进一步,我们去求根的话,那就有实根甚至复根,再则,还有多元多项式的问题。这显然不是在一本线性代数教科书的一章之内就可以交代清楚的。 当代线性代数课是比较注重空间理论的。这是符合线性代数本质的,因为在线性空间里,毕竟都是几何对象。首先得弄清楚这门课的对象,这一点是毫无疑义的。所以,刚开始学习线性代数时,应该把注意力集中在这方面。等到对此有了一个比较透彻的理解时,就该开始苦练矩阵计算的功夫了。矩阵是一种代数方法,虽然它看起来比线性空间理论要古老些,但现代数学的发展却是越来越重代数了,要想把线性代数的水平从本科程度上提高一下的话,代数基本功是重要的——以后可能不一定要用到矩阵论,但作为大一基础课,矩阵论是一个最好的也是最初的代数训练。另外,矩阵论已经相当成熟,有着一整套标准计算技巧和方法,很有实用价值。 还有两个问题要引起注意。一是要看到线性代数与其他课程的关系。比如,很多学校不是从一年级上学期就开这门课的,而是从下学期开,美国有些极端的做法甚至在大三才开课。这种情况其实就暗示了学习线性代数是需要一点其他知识的,尤其是微积分或者说数学分析的知识;另外,当微积分学到多元的时候,在高维空间里说话,也就需要一点线性代数的支持了。线性代数不跟其他东西联系起来,那是没有用的。 第二个问题是,线性代数仍在快速发展中,新的结果很多,要在基础课中追时髦是不太现实的。而且,实际上在本科阶段把它学好了,就已经可以在这个领域里开始做研究了(这一点比其他课都要划算)。所以,我认为在学这门课时,还是把眼睛紧盯着基础为上。 补充一点:线性代数是一门很基础的课程,但是,它不容易学。我觉得比较好的办法是,在学过一本基础教材后,那些“语言”不再是问题的时候,再去读一本高级一点的教材,然后再回头看过来。美国是有第二课程的,可以在这里面找找,或者读一本研究生水平的书。对于初学者,还是从容易入手的开始—— 1. 李尚志,线性代数(数学专业用),高等教育出版社,2006 这本书是我觉得比较适合作为初学者入门的教材的。它不算是一本有分量的书,但绝对是一本很好的引论。这是对它的评论:“1.不是从定义出发,而是从问题出发来展开课程内容,

相关文档
最新文档