电力电子硬开关与软开关技术

电力电子硬开关与软开关技术
电力电子硬开关与软开关技术

电力电子技术第6章-习题-答案

第6章交流—交流变换电路课后复习题及答案 第1部分:填空题 1.改变频率的电路称为变频电路,变频电路有交交变频电路和交直交变频电路两种形式,前者又称为直接变频电路,后者也称为间接变频电路。 2.单相调压电路带电阻负载,其导通控制角α的移相范围为0~180O,随 α 的增大,U o 减小,功率因数λ减小。 3.单相交流调压电路带阻感负载,当控制角α<?(?=arctan(ωL/R) )时,VT1的导通时间 越来越短 ,VT2的导通时间越来越长。 4.根据三相联接形式的不同,三相交流调压电路具有多种形式,TCR属于支路控制三角形联结方式,TCR的控制角 α 的移相范围为90°~ 180°,线电流中所含谐波的次数为 k。 6= ±k ,2,1 ,1 5.晶闸管投切电容器选择晶闸管投入时刻的原则是:该时刻交流电源电压和电容器预充电电压相等。 第2部分:简答题 1.交流调压电路和交流调功电路有什么区别?二者各运用于什么样的负载?为什么? 答:在每半个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。以交流电的周期为单位控制晶闸管的通断。改变通态周期数和断态周期数的比,可以方便地调节输出功率的平均值,这种电路称为交流调功电路。 交流调压电路广泛用于灯光控制及异步电动机的软起动,也用于异步电动机调速。交流调功电路常用于电炉的温度控制,像电炉温度这样的控制对象,其时间常数往往很大,没有必要对交流电源的每个周期进行频繁的控制,只要以周波数为单位进行控制就足够了。 2.简述交流电力电子开关与交流调功电路的区别。 答:交流调功电路和交流电力电子开关都是控制电路的接通和断开,但交流调功电路是以控制电路的平均输出功率为目的,其控制手段是改变控制周期内电路导通周波数和断开周波数的比。而交流电力电子开关并不去控制电路的平均输出功率,通常也没有明确的控制周期,而只是根据需要控制电路的开通和断开。另外,交流电力电子开关的控制频度通常比交流调功电路低得多。 4. 交交变频电路的主要特点和不足是什么?其主要用途是什么? 答:交交变频电路的主要特点是: 只用一次变流效率较高;可方便实现四象限工作,低频输出时的特性接近正弦波。 交交变频电路的主要不足是: 接线复杂,如采用三相桥式电路的三相交交变频器至少要用36只晶闸管;受电网频率和变流电路脉波数的限制,输出频率较低;输出功率因数较低;输入电流谐波含量大,频谱复杂。 主要用途:500千瓦或1000千瓦以下的大功率、低转速的交流调速电路,如轧机主传动装置、鼓风机、球磨机等场合。

电力电子技术作业解答

电力电子技术 作业解答 教材:《电力电子技术》,尹常永田卫华主编

第一章 电力电子器件 1-1晶闸管导通的条件是什么?导通后流过晶闸管的电流由哪些因素决定? 答:晶闸管的导通条件是:(1)要有适当的正向阳极电压;(2)还有有适当的正向门极电压。 导通后流过晶闸管的电流由阳极所接电源和负载决定。 1-2维持晶闸管导通的条件是什么?怎样使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是:流过晶闸管的电流大于维持电流。 利用外加电压和外电路的作用使流过晶闸管的电流降到维持电流以下,可使导通的晶闸管关断。 1-5某元件测得V U DRM 840=,V U RRM 980=,试确定此元件的额定电压是多少,属于哪个电压等级? 答:根据将DRM U 和RRM U 中的较小值按百位取整后作为该晶闸管的额定值,确定此元件的额定电压为800V ,属于8级。 1-11双向晶闸管有哪几种触发方式?常用的是哪几种? 答:双向晶闸管有Ⅰ+、Ⅰ-、Ⅲ+和Ⅲ-四种触发方式。 常用的是:(Ⅰ+、Ⅲ-)或(Ⅰ-、Ⅲ-)。 1-13 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能? 答:因为 GTO 与普通晶闸管在设计和工艺方面有以下几点不同:(1)GTO 在设计时2α较大,这样晶体管 V2控制灵敏,易于 GTO 关断;(2)GTO 导通时的21αα+更接近于 1,普通晶闸管15.121≥+αα,而 GTO 则为05.121≈+αα,GTO 的饱和程度不深,接近于临界饱和,这样为门极控制关断提供了有利条件;(3) 多元集成结构使每个GTO 元阴极面积很小,门极和阴极间的距离大为缩短,使得P2极区所谓的横向电阻很小,从而使从门极抽出较大的电流成为可能。 第二章 电力电子器件的辅助电路 2-5说明电力电子器件缓冲电路的作用是什么?比较晶闸管与其它全控型器件缓冲电路的区别,说明原因。 答:缓冲电路的主要作用是: ⑴ 减少开关过程应力,即抑制d u /d t ,d i /d t ;

浅谈电力电子技术在电子电源中的应用

浅谈电力电子技术在电子电源中的应用 衢州电力局吴丹 电力电子技术无处不在、天生具有节能效果预计全球未来将有95%以上的电能要经过电力电子技术的处理后才能使用。电力电子技术的核心是电力电子元器件电力电子元器件的发展先后经历了整流器时代、逆变器时代和变频器时代,以功率MOSFET和IGBT为代表的功率半导体器件的诞生,标志着传统电力电子技术已经进入现代电力电子时代。CCID预计电力电子器件的年平均增长速度超过20%。IGBT 等新型电力电子器件的年平均增长率超过30%。电力电子装置种类繁多、行业应用范围极广电力电子装置主要包括三大类产品:变频器、电能质量类产品以及电子电源产品。电力电子技术在电力行业的应用涉及发电、输电、配电、其中电力电子技术在电子电源产品中的应用尤为突出。 电子电源就是对公用电网或某种电能进行变换和控制,向各种用电负载提供优质电能的供电设备,其代表有开关电源和不间断电源(UPS)等。其中开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就

是能满足这种条件的电路。 程控交换站,计算机、电视、医疗设备、航天、航海舰艇及家电上,都广泛应用开关电源,开关电源最大的应用领域是在通信行业,美国开关电源中用于通信方面的占开关电源总量的35%。这些开关电源都采用高频化技术,使其体积重量大大减小,能耗和材料也大为降低。 下面介绍一款典型的单片开关电源产品——TOP开关。 1、结构:TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO 220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C 控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。 2、工作原理:TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA与CA构成截止频率为7kHz的低通滤波器。主要特点是: (1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

电力电子复习题

主要损耗:通态损耗.断态损耗 开关损耗《开通损耗.关断损耗》。 通态损耗是器件功率损耗的主要成因。 器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。 电力电子系统:由控制电路、驱动电路、保护电路和以电力电子器件为核心的主电路组成按照器件能够被控制的程度,分为以下三类: 半控型器件(Thyristor) ——通过控制信号可以控制其导通而不能控制其关断。 全控型器件(IGBT,MOSFET) ——通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 不可控器件(Power Diode) ——不能用控制信号来控制其通断, 因此也就不需要驱动电路。 按照驱动电路信号的性质,分为两类: 电流驱动型 ——通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型 ——仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 电力二极管的主要类型 1) 普通二极管 2) 快恢复二极管 3. 肖特基二极管 晶闸管的门极触发电流是从门极流入晶闸管,从阴极流出的

电流定额 1通态平均电流I T(AV) 2维持电流I H 3擎住电流I L 4浪涌电流I TSM 动态参数 除t gt和t q 断态电压临界上升率d u/d t ——指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。 ——电压上升率过大,使充电电流足够大,就会使晶闸管误导通。 通态电流临界上升率d i/d t ——指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 ——如果电流上升太快,可能造成局部过热而使晶闸管损坏。 晶闸管的派生器件 快速晶闸管。双向晶闸管。逆导晶闸管。光控晶闸管 GTR的二次击穿现象与安全工作区 一次击穿:集电极电压升高至击穿电压时,I c迅速增大。 只要I c不超过限度,GTR一般不会损坏,工作特性也不变。 二次击穿:一次击穿发生时,I c突然急剧上升,电压陡然下降。 常常立即导致器件的永久损坏,或者工作特性明显衰变。 安全工作区

电力电子技术作业1

浙江大学远程教育学院 《电力电子技术》课程作业 姓名: 林岩 学 号: 714066202014 年级: 14秋 学习中心: 宁波电大 ————————————————————————————— 第1章 1.把一个晶闸管与灯泡串联,加上交流电压,如图1-37所示 图 1-37 问:(1)开关S 闭合前灯泡亮不亮?(2)开关S 闭合后灯泡亮不亮?(3)开关S 闭合一段时间后再打开,断开开关后灯泡亮不亮?原因是什么? 答: (1)不亮;(2)亮;(3)不亮,出现电压负半周后晶闸管关断。 2.在夏天工作正常的晶闸管装置到冬天变得不可靠,可能是什么现象和原因?冬天工作正常到夏天变得不可靠又可能是什么现象和原因? 答: 晶闸管的门极参数I GT 、U GT 受温度影响,温度升高时,两者会降低,温度升高时,两者会升高,故会引起题中所述现象。 3.型号为KP100-3,维持电流I H =4mA 的晶闸管,使用在如图1-38电路中是否合理?为什么?(分析时不考虑电压、电流裕量) (a) (b) (c) 图 1-38 习题5图 .答: (1) mA I mA A I H d 42002.010 50100 3 =<==?=

R TM U V U >==3112220故不能维持导通 (2) 而 即晶闸管的最大反向电压超过了其额定电压, 故不能正常工作 (3) I d =160/1=160A>I H I T =I d =160A >1.57×100=157A 故不能正常工作 4.什么是IGBT 的擎住现象?使用中如何避免? 答: IGBT 由于寄生晶闸管的影响,可能是集电极电流过大(静态擎住效应),也可能是d u ce /d t 过大(动态擎住效应),会产生不可控的擎住效应。实际应用中应使IGBT 的漏极电流不超过额定电流,或增加控制极上所接电阻R G 的数值,减小关断时的d u ce /d t ,以避免出现擎住现象。 H d I A I I I >==== 9.957.1/...56.152 10220 2 2

浅谈电力电子技术

浅谈电力电子技术 【摘要】电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛。电力电子技术在电力系统中的应用研究与实际工程也取得了可喜成绩。 【关键词】电力电子电路;电力电子;电子元件 电力电子技术诞生近半个世纪以来,使电气工程、电子技术、自动化技术等领域发生了深刻的变化,同时也给人们的生活带来了巨大的影响。目前,电力电子技术仍以迅猛的速度发展着,新的电力电子器件层出不穷,新的技术不断涌现,其应用范围也不断扩展。不论在全世界还是在我国,电力电子慢慢的被人所熟知,下面我们就电力电子电路和其应用、结构等进行简单阐述。 1.电力电子电路 1.1 电子电路的概念 电子电路时利用电力电子器件对工业电能进行变换和控制的大功率电子电路。因为电路中无旋转元、部件,故又称静止式变流电路,以区别于传统的旋转式变流电路(由电动机和发电机组成的变流电路)。电力电子电路始见于20世纪30年代,包括由气体闸流管和汞弧整流管组成的低频变流电路和由高频电子管组成的变流电路。它们构成了第一代电力电子电路。60年代由晶闸管组成了第二代电路,泛称半导体电力电子电路(又称半导体变流电路)。80年代,由于可关断晶闸管(GTO)和双极型功率晶体管(GTR)等新型器件的实用化,又逐渐在不同领域中取代了普通晶闸管并形成第三代电路。由于它们具有控制极关断和工作频带较宽的优点,使电力电子电路具有更佳的技术和经济性能,获得了更为广泛的应用。 1.2 电力电子电路的特征 电力电子器件一般都工作在开关状态导通时(通态)阻抗很小,接近于短路,电压降接近于零,而电流由外电路决定阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。作电路分析时,为简单起见往往用理想开关来代替 1.3 典型电力电子电路的系统结构 电力电子电路的系统包括以下三种: (1)电力电子器件:如功率二极管、晶闸管、功率MOSFET、IGBT、MCT

电力电子技术期末复习考卷综合

一、填空题: 1、电力电子技术的两个分支是电力电子器件制造技术和 变流技术 。 2、举例说明一个电力电子技术的应用实例 变频器、 调光台灯等 。 3、电力电子承担电能的变换或控制任务,主要为①交流变直流(AC —DC )、②直流变交流(DC —AC )、③直流变直流(DC —DC )、④交流变交流(AC —AC )四种。 4、为了减小电力电子器件本身的损耗提高效率,电力电子器件一般都工作在 开关状态,但是其自身的功率损耗(开通损耗、关断损耗)通常任远大于信息电子器件,在其工作是一般都需要安装 散热器 。 5、电力电子技术的一个重要特征是为避免功率损耗过大,电力电子器件总是工作在开关状态,其损耗包括 三个方面:通态损耗、断态损耗和 开关损耗 。 6、通常取晶闸管的断态重复峰值电压UDRM 和反向重复峰值电压URRM 中较 小 标值作为该器件的额电电压。选用时,额定电压要留有一定的裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍。 7、只有当阳极电流小于 维持 电流时,晶闸管才会由导通转为截止。导通:正向电压、触发电流 (移相触发方式) 8、半控桥整流带大电感负载不加续流二极管电路中,电路可能会出现 失控 现象,为了避免单相桥式 半控整流电路的失控,可以在加入 续流二极管 来防止失控。 9、整流电路中,变压器的漏抗会产生换相重叠角,使整流输出的直流电压平均值 降低 。 10、从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为 触发角 。 ☆从晶闸管导通到关断称为导通角。 ☆单相全控带电阻性负载触发角为180度 ☆三相全控带阻感性负载触发角为90度 11、单相全波可控整流电路中,晶闸管承受的最大反向电压为 2√2U1 。(电源相电压为U1) 三相半波可控整流电路中,晶闸管承受的最大反向电压为 。(电源相电压为U 2) 12、四种换流方式分别为 器件换流 、电网换流 、 负载换流 、 强迫换流 。 13、强迫换流需要设置附加的换流电路,给与欲关断的晶闸管强迫施加反压或反电流而关断。 14、直流—直流变流电路,包括 直接直流变流电路 电路和 间接直流变流电路 。(是否有交流环节) 15、直流斩波电路只能实现直流 电压大小 或者极性反转的作用。 ☆6种斩波电路:电压大小变换:降压斩波电路(buck 变换器)、升压斩波电路、 Cuk 斩波电路、Sepic 斩波电路、Zeta 斩波电路 升压斩波电路输出电压的计算公式 U= 1E β=1- ɑ 。 降压斩波电路输出电压计算公式: U=ɑE ɑ=占空比,E=电源电压 ☆直流斩波电路的三种控制方式是PWM 、 频率调制型 、 混合型 。 16、交流电力控制电路包括 交流调压电路 ,即在没半个周波内通过对晶闸管开通相位的控制,调节输出电压有效值的电路, 调功电路 即以交流电的周期为单位控制晶闸管的通断,改变通态周期数和断态周期数的比,调节输出功率平均值的电路, 交流电力电子开关即控制串入电路中晶闸管根据需要接通或断开的电路。

电力电子器件大全及使用方法详解(DOC 42页)

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

SIMetrix在“开关电源及其软开关技术”教学中的应用

SIMetrix 在“开关电源及其软开关技术”教学中的应用 为了完善专业的知识结构、配合学校培养应用型人才的办学思路,华南理工大学广州学院电气工程学院为本科生开设了“开关电源及其软开关技术”这门课程。该课程是“电力电子技术” 的后续课程,系统地介绍了开关电源电路的结构组成、工作原理、设计方法和开发过程,其综合性、工程性和实用性很强。目前,课程在教学中存在的主要问题:第一,虽然在课堂教学中使用了多媒体课件,但依然需要花费大量精力对电路工作原理及其波形进行描述和分析,学生仅凭听讲还是很难深入理解。第二,在本科生中开设该课程的高校较少,在市场上很难找到针对该课程的实验装置,学生学习的理论知识得不到很好的验证。第三,开关电源的硬件开发是一项知识面要求宽、难度大又危险的复杂技术工作,受时间、空间、物质条件等因素限制,在这方面不能做过多要求,因此学生动手能力得不到真正的锻炼。 为了弥补以上不足,本文提出在课程教学中引入SIMetrix 仿真工具。借助该仿真软件,学生更容易理解理论知识,还可以在课堂外对所学的知识加以验证以及进行一些设计应用,从而激发学习的兴趣并增强实践能力。 一、SIMetrix 仿真软件介绍 特点一:包含丰富的器件模型。模型库不仅包含了理想的电路元件,同时还提供了比较通用的、常见的半导体器件和各类应用广泛的

集成电路控制芯片,在此基础上足以构建完整的开关电源系统。 特点二:先进的测量功能。波形可通过选择检测器然后点击原理图生成,或在原理图上放入固定的检测器生成,可在仿真后甚至仿真时查看波形,非常方便。 特点三:强大的波形处理功能。为波形分析提供RMS、frequency、-3dB、FFT等40多种函数,选择这些函数可获得计算结果并显示在波形旁边。 特点四:具有多种分析功能。包括瞬态分析、交流分析、直流分析、噪声分析、传输函数分析等,每种分析功能下又提供多种扫描模式,如频率扫描、器件扫描、参数扫描、模型参数扫描、温度扫描、蒙特卡罗扫描等等。 此外,SIMetrix 仿真软件的仿真结果与实际非常接近,用户图形界面友好,仿真直观,使用者容易掌握。 二、基于UC3842的反激电路仿真实例分析 反激变换器具有高可靠性、高效率、电路拓扑简洁、输入输出电气隔离、升/ 降压范围宽、易于多路输出等优点,是小功率开关电源的理想电路拓扑。UC3842是SIMetrix仿真工具模型库 自带的集成芯片,其外围器件少、性能良好、价格低廉。综上所述,以UC3842空制的反激电源为仿真实例,电路简单且具有代表性,满足初学者的基本学习要求,具体的仿真电路如图1 所示 1. 仿真电路原理 (1)主电路原理。交流输入电压经D1-D4 组成的桥式整流

大工春电力电子技术经验在线作业

大工春电力电子技术经 验在线作业 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

(单选题)1:软开关电路根据软开关技术发展的历程,可以分成几类电路,下列哪项不属于其发展分类?()A:整流电路 B:准谐振电路 C:零开关PWM电路 D:零转换PWM电路 正确答案: (单选题)2:()是最早出现的软开关电路。 A:准谐振电路 B:零开关PWM电路 C:零转换PWM电路 D:以上都不正确 正确答案: (单选题)3:直流电动机可逆电力拖动系统能够在()个象限运行。 A:1 B:2 C:3 D:4 正确答案: (单选题)4:下列选项中不是交流电力控制电路的控制方法的是?() A:改变电压值 B:改变电流值

C:不改变频率 D:改变频率 正确答案: (单选题)5:下列哪个选项与其他三项不是同一概念?() A:直接变频电路 B:交交直接变频电路 C:周波变流器 D:交流变频电路? 正确答案: (单选题)6:下列不属于单相交-交变频电路的输入输出特性的是()。A:输出上限频率 B:输出功率因数 C:输出电压谐波 D:输入电流谐波 正确答案: (多选题)7:UPS广泛应用于下列哪些场合中?() A:银行 B:交通 C:医疗设备 D:工厂自动化机器 正确答案: (多选题)8:斩波电路应用于下列哪些选项下,负载会出现反电动势?()A:用于电子电路的供电电源

B:用于拖动直流电动机 C:用于带蓄电池负载 D:以上均不是 正确答案: (多选题)9:下列属于基本斩波电路的是()。 A:降压斩波电路 B:升压斩波电路 C:升降压斩波电路 D:Cuk斩波电路 正确答案: (多选题)10:下列哪些属于UPS按照工作原理的分类?() A:后备式 B:在线式 C:离线式 D:在线互动式 正确答案: (多选题)11:下列各项交流电力电子开关的说法,正确的是()。A:需要控制电路的平均输入功率 B:要有明确的控制周期 C:要根据实际需要控制电路的接通 D:要根据实际需要控制电路的断开 正确答案: (多选题)12:下列哪些电路的变压器中流过的是直流脉动电流?()

浅谈电力电子技术的发展及应用

浅谈电力电子技术的发展及应用 发表时间:2017-11-06T13:35:33.807Z 来源:《电力设备》2017年第18期作者:王鹏 [导读] 摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。 (南瑞集团公司(国网电力科学研究院)国电南瑞科技股份有限公司江苏省南京市 210000) 摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。 关键词:电力电子技术;发展;具体应用 1电力电子技术的相关概念 电力电子技术又称为功率电子技术,主要是对各种电子电力器件,以及与之构成的可控制、转换电能的相关装置及电路展开研究。此技术不仅是电工学在电子领域或弱电中的分支,同时也是电子学在电动领域或强电中的分支,总体来说,是结合强弱电的一门新型学科。当前,我国科技发展迅猛,电力电子技术也愈发重要,其可优化电能的使用情况,达到高效节能的目的。除此之外,通过应用电力电子技术,可有效改造相关传统产业,促进机电一体化发展,并且还能统一功率及信息化处理,在有机结合微电子技术的基础上,促进电子技术的进一步改革与发展。 2电力电子技术的发展历程 自上世纪五十年代诞生第一只晶闸管以来,电力电子技术就获得了显著发展,并在电气传动技术领域占据了重要的一席之地。以下就电力电子技术的发展历程展开探究。 2.1晶闸管整流时代 工频(也即50Hz)交流发电机为大功率工业用电的主要来源,在实际应用过程给中,以直流形式消费的电能约占20%,例如牵引(包括地铁机车、电气机车、城市无轨电车等)、直流传动(造纸及轧钢)、电解(包括化工原料及有色金属)等领域。为将工频交流电高效率地转变为直流电,就需要应用到大功率的硅整流器。在20世纪60、70年代,人们加大了大功率硅整流器的开发及应用力度,国内还曾掀起开办硅整流器厂的热潮,现阶段我国大部分的硅整流器制造厂就是于那个时代建成的,那一时期也被称为电力电子技术晶闸管时代。 2.2逆变时代 自20世纪70年代以后,自关断器件被制造出来并投入实际应用中,此时,电力电子技术便进入到逆变时代。当时,在世界范围内爆发了能源危机,而具备显著节能效果的交流电机变频调速因此获得了迅速的发展。其中,将直流电逆变为频率为0至100Hz的交流电为变频调速的关键性技术,而应用在大功率逆变中的晶闸管、门极可关断晶闸管、巨型功率晶体管等便迅速成为当时众多电力电子技术的主要组成部分。尽管当时电力电子技术已实现逆变以及整流等功能,但工作频率比较低,且只是在中低频率的范围内。 2.3现代变频器时代 自20世纪80年代以后,人们加大了大规模集成电路技术的应用力度,这为电力电子技术的发展奠定了扎实的基础。在集成电路技术中,高压大电流以及精细加工两种技术得到了有机结合。其中,传统采用低频技术处理问题为主的电力电子学,以及集大电流、高压、高频于一身的,以功率IGBT与MOSFET为代表的功率半导体复合器件,均朝着以高频处理问题为主的现代电力电子学方向进行转变。此种现象显示,当时已进入到了电力电子的现代变频器时代。在此时期,集成电路技术被大规模应用在各种新型的器件中,并不断朝着模块化及复合化的方向发展,不但有效缩小了电力电子器件的体积,使其结构更加紧凑,而且还能将不同器件的优点进行综合。总体而言,随着这些新型器件的飞速发展,交流电机变频调速的频率更高,性能也更加可靠、完善,这为电力电子技术的高频发展,以及用电设备的小型轻量化、节材节能高效化、机电一体化提供了非常重要的基础支持。 3电力电子技术的具体应用 3.1在交通运输中的具体应用 随着时代的进步与发展,电力电子技术在众多领域得到了非常广泛的应用,例如在电气化铁道交通中,电气机车中的交流机车便应用到了变频装置,而直流机车则应用到了整流装置。同时,在磁悬浮列车中的牵引电机传动以及各种辅助电源等方面,也应用到了电子电力技术,可以说,磁悬浮列车的顺利运行离不开电力电子技术的支持。除此之外,在电动汽车的电机方面,为了发挥出控制驱动的作用,同样需要对电子装置展开合理应用。而在飞机、船舶等交通运输工具方面,其对电源的应用也存在着不小的差异,因此,科学应用电力电子技术就具有关键性的作用。 3.2在家电中的具体应用 在人们日常生活中的各种家电方面,电力电子技术也得到了较为广泛的应用,给人们的生活带来了极大的便利。例如,生活中常见的洗衣机,通过应用电力电子技术,便可有效替代手工劳动,人们只需在洗衣机中放入脏衣服,再按下按钮,便可借助电力电子技术的相关功能完成洗衣服的整个过程。其次,厨房中常见的洗碗机,其应用电力电子技术的原理与洗衣机的应用原理大致相同;而空调器通过应用电力电子技术,可起到显著的节能效果,经大量实践研究证明,其节约的电能约占30%及以上;在工作效率方面,电频荧光灯要明显高于平常使用的普通白炽灯。 3.3在发电环节中的具体应用 经分析得知,我国经济快速发展离不开能源的支持,在经济建设不断深入的大背景下,消耗了大量的能源,特别是电能。现阶段,经济发展的一项关键条件便是有机结合电力与工业,正是由于电能具有利用率高、稳定性高等显著优势,因而其消耗量呈现出不断增加的趋势。分析我国工业发展的整体情况可知,当前的工业用电还存在一系列不了合理的情况,导致电力能源的严重浪费。随着可持续发展理念的提出与实行,人们对节约电能也愈发重视。而通过应用电力电子技术,便可有效节约原材料,优化各种电力设备的性能,最终充分降低电能的消耗程度。 3.4在电力节能中的具体应用 近些年来,我国不断加大对水力发电、风力发电等新能源的开发及利用力度,其中涉及到发电机电流频率的转换。具体来说,水头的流量及压力对水力发电的功率起到了决定性的作用,而这会影响到机组最佳转速的变化。此时,为实现有效功率的最大化,就需要对转子励磁电流频率进行调整,从而实现机组的变速运行。此外,在大型发电机中,也应用到了晶闸管整流自并励的方式来实现相对静止励磁的

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

电力电子技术-西南大学作业教程文件

电力电子技术-西南大学2016年作业

第一批 单选题 题目说明: (10.0分)1.IGBT属于()控制型元件 A.A:电流 B.B:电压 C.C:电阻 D.D:频率 (10.0分)2.触发电路中的触发信号应具有() A.A:足够大的触发功率 B.B:足够小的触发功率 C.C:尽可能缓的前沿 D.D:尽可能窄的宽度 (10.0分)3. 对于单相交交变频电路如下图,在t1~t2时间段内,P组晶闸管变流装置与N组晶闸管变流装置的工作状态是()

A.A:P组阻断,N组整流 B.B:P组阻断,N组逆变 C.C:N组阻断,P组整流 D.D:N组阻断,P组逆变 (10.0分)4.电流型逆变器中间直流环节贮能元件是() A.A:电容 B.B:电感 C.C:蓄电池 D.D:电动机 (10.0分)5.单相半波可控整流电阻性负载电路中,控制角a的最大移相范围是() A.A:90° B.B:120° C.C:150° D.D:180° (10.0分)6.具有自关断能力的电力半导体器件称为() A.A:全控型器件 B.B:半控型器件 C.C:不控型器件 D.D:触发型器件 (10.0分)7.IGBT是一个复合型的器件,它是()

A.A:GTR驱动的MOSFET B.B:MOSFET驱动的GTR C.C:MOSFET驱动的晶闸管 D.D:MOSFET驱动的GTO (10.0分)8.从晶闸管开始承受正向电压的到晶闸管导通时刻的电度角称为()。 A.A:控制角 B.B:延迟角 C.C:滞后角 D.D:重叠角 (10.0分)9.将直流电能转换为交流电能供给负载的变流器是() A.A:有源逆变器 B.B:A/D变换器 C.C:D/A变换器 D.D:无源逆变器 (10.0分)10.已经导通的晶闸管的可被关断的条件是流过晶闸管的电流() A.A:减小至维持电流以下 B.B:减小至擎住电流以下 C.C:减小至门极触发电流以下 D.D:减小至5A以下

浅谈电力电子技术在电力系统中的应用与发展趋势

浅谈电力电子技术在电力系统中的应用与发展趋势 李洪新 胜利油田滨南采油厂山东省滨州市256606 摘要,概述性地介绍电力电子技术在电力系统中的各类应用,重点在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用.以及电力电子技术的发展趋势。 关键词s直流输电;电力电子;微电子;发电机;换流技术 前言 电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。电力电子技术广泛应用于国民经济、人民生活和现代化军事装备等众多领域,是传统产业改造,高新技术发展和国防工业进步的重要支柱。据估算,现代化国家所用电能的90%以上都将利用电力电子技术进行各种处理,可大量节约电能和提高用电设备的性能。发电和远距离输电的现代化技术更大量需要电力电子技术。 经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用,以及电力电子技术的发展趋势。 l电力电子技术和微电子技术 1947年晶体管发明之后,到50年代末开始向两个方向发展。一个是以1958年集成电路的诞生为标志的微电子技术,它面向处理,其特点是加工线条越来越细,集成度越来越高,功能越来越全。目前生产水平典型线宽为0.5-0.6微米,典型产品为16Mb的动态随机存储器(DRAM)和PowerPC及Pentium(奔腾)微处理器。研制水平还远高于此。微电子技术的发展带动了一系列高新技术的兴起,标志着第一次电子技术革命的开始,其应用几乎遍及所有领域。 1957年晶闸管的问世标志着电力电子技术的开端,它面向电力处理,其特点是功率越来越大,性能越来越高,派生器件越来越多。到70年代末期80年代初为传统电力电子技术已经衍生出快速晶闸管、逆导晶闸管、不对称晶闸管、光控晶闸管等整个家族。 80年代以来,微电子技术和电力电子技术在各自发展的基础上,又逐渐走向结合。电力电子器件在工艺和结构上,大量采用微电子微细加工技术的工艺方法和加工设备,使传统电力电子器件的高电压、大电流、深注入技术与微细加工技术有机结合,统一在一块芯片上。目前,典型电力电子器件的最细线条可达2-3微米。从此产生现代电力电子技术,开始了第二次电子技术革命。 电力电子技术与微电子技术结合,首先出现了多种全控型器件。它们的功能特点是实现了自关断,从而避免了传统电力电子器件关断时所需的强迫换流电路。其结构特点是,一个器件由多个元胞并联,大面积集成。例如,1000A的门极关断晶闸管(GTO)含有近千个单元(GTO)。一个40A/IOOV的电力MOS场效应管(VDMOS),有3.5万个元胞并联,最小间距3微米,整个制造过程共i00多道工序,全部利用微电子MOS集成电路制造技术。其中关键工艺为离子注入、细线光刻、外延、自对准双扩散、薄栅氧化、表面钝化及背面金属化等。一个300A的静电感应晶闸管(SITH)含有5万个元胞,而一个50A/500V的MOS控制晶闸管(McT)则含有10万个元胞并联。

相关文档
最新文档