晶体生长的机理

晶体生长的机理
晶体生长的机理

第五章

一、什么是成核相变、基本条件

成核相变:在亚稳相中形成小体积新相的相变过程。

条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。

相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。

气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。

二、均匀成核、非均匀成核

不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。

三、均匀成核的临界晶核半径与临界晶核型成功

临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。

ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。

临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。

熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2

四、非均匀成核(体系中各处成核几率不相等的成核过程)

表面张力与接触角的关系:σLB = σSB + σLS cosθ

ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

f(θ)=(2+cosθ)(1-cosθ)2/4≤1→ΔG*C(r*C) ≤ΔG C(r C);ΔG*C(r*C) = Δφ* C

五、点阵匹配原理(“结构相似,尺寸相应”原理)

两个相互接触的晶面结构(点阵类型,晶格常数、原子大小)越近似,它们之间的表面能越小,即使只在接触面的某一方向上结构排列配合得比较好,也会使表面能有所降低。

第六章

一、基本概念:光滑和粗糙界面、侧面生长、连续生长、扭折、螺位错生长、二维成核

粗糙界面:原子的尺度衡量高低不平、存在有厚度为几个原子间距的过渡层。法向“连续生长”,各处成核几率相同,扩散控制。宏观形貌为平界面。

光滑界面:两侧的固液两相截然分开。显示出完整的原子密排晶面,从原子尺度光滑,从宏观来看不平整。小平面界面。在台阶处生长,称为侧面长大。法向不连续生长,二维成核、螺型位错、孪晶面。

台阶:奇异面上的一条连续曲线,线之两侧的晶面有一个生长单元的高度差。扭折-kink-半晶位置:台阶的转折处;近邻数是体内原子近邻数的一半,生长的最佳位置。

二、界面能级图与晶面分类

从原点o出发作出所有可能存在的晶面的法线,取每一法线长度比例于该晶面的界面能大小,这一直线组的端点集合就表示了界面能关于晶面取向的关系,该图即界面能级图。

可确定小单晶的平衡形态:界面能级图的最小内结多面体。

居里·乌尔夫原理:趋于平衡态时,体积不变前提下,晶体将调整自己的形状使本身的总界面能最低。晶体生长定律:为达到上述要求,必须满足:σ1/h1=σ2 /h2=…=σi/h i;σi第i个晶面的表面张力,h i晶面到晶体中心的距离。

晶面分类:奇异面(界面能级图中能量最低方向,尖点,不连续;低指数面,密积面);邻位面(在取向上和奇异面只有小角度偏离的晶面;平台-台阶式界面);非奇异面(和奇异面有较大偏离的晶面;粗糙界面)

表面能的各向异性→邻位面的台阶化(邻位面结构畸变大,界面能大,几组奇异面组成时虽然S增大,但是能量还是降低的);tgθ=-hk(θ:邻位面偏离奇异面的角度;h:台阶高度,k:台阶密度)。台阶棱边能的各向异性→台阶的扭折化;tgθ=-hk(θ:台阶与密排方向的夹角;h:台阶高度,k:扭折密

度)

三、BCF理论

完整光滑突变界面模型(Kossel模型)——二维成核

非完整光滑突变界面模型(Frank模型)——螺位错

如果一个位错的Burgers矢量包含垂直于界面的分量,则这个位错即可成为晶体生长的台阶源——BCF理论

四、Jackson因子、Jackson模型、分类

粗糙突变界面模型(Jackson模型/单原子层界面模型):寻找恒T、P条件下,

体系自由能高低与界面粗糙度的关系。

ΔG/NkT E=αx(1-x)+xlnx+(1-x)ln(1-x)

粗糙度:x=N’/N固体原子在位置上的比例;X=50%粗糙界面;x=0、1光滑界面。

过冷度很难改变生长模式,即物质一旦确定生长机理也就随之而定。

Jackson因子α=(L0/kT E)·(η1/z)界面相变熵。α>2,光滑界面;α<2,粗糙界面。

L0/kT E——相变熵,决定于物质及相变类型;η1/z——结构因子,反应各向异性,η1界面内配位数,z体配位数。

五、布拉维法则、推论

Bravais法则:晶体上的实际晶面平行于面网密度大(晶面间距大,生长速度慢,高配位数)的面网,而且面网密度越大,相应晶面的重要性越大(晶面本身大小、出现的频率、是否平行于解理面)。

六、界面的动力学转换结论

七、影响形态的外部因素

热、质流动;生长温度、杂质的存在和种类、黏度、结晶速度、环境成分相、P H值

晶体生长的机理

第五章 一、什么是成核相变、基本条件 成核相变:在亚稳相中形成小体积新相的相变过程。 条件:1、热力学条件:ΔG=G S-G L<0;ΔT>0。2、结构条件:能量起伏、结构起伏、浓度起伏、扩散→短程规则排列(大小不等,存在时间短,时聚时散,与固相有相似结构,之间有共享原子)→晶坯→晶胞。 相变驱动力:f=-Δg/ΩS;Δg每个原子由流体相转变成晶体相所引起的自由能降低;ΩS单个原子的体积。 气相生长体系:(T0 P0)→(T0 P1),Δg=-kT0σ,σ=α-1= P1/ P0;溶液生长体系:(C0 T0 P0)→(C1 T0 P0),Δg=-kT0σ,σ=α-1= C1/ C0;熔体生长体系:Δg=-l mΔT/T m,l m单个原子的相变潜热。 二、均匀成核、非均匀成核 不含结晶物质时的成核为一次成核,包括均匀成核(自发产生,不是靠外来的质点或基底诱发)和非均匀成核。 三、均匀成核的临界晶核半径与临界晶核型成功 临界晶核:成核过程中,能稳定存在并继续长大的最小尺寸晶核。 ΔG=ΔG V+ΔG S,球形核ΔG=-4πr3Δg/ΩS+4πr2γSL→r C=2γSLΩS/Δg,r0,且随着r的增加,ΔG不断增大,r>r C时,ΔG<0,且随着r的增加,ΔG减小,r=r C时,往两边都有ΔG<0,称r C为临界半径。 临界晶核型成功:ΔG C(r C)=A CγSL/3由能量起伏提供。 熔体生长体系:r C=2γSLΩS T m/l m ΔT;ΔG C(r C)=16πγ3SLΩ2S T2m/3l2m(ΔT)2 四、非均匀成核(体系中各处成核几率不相等的成核过程) 表面张力与接触角的关系:σLB = σSB + σLS cosθ ΔG*(r)= (-4πr3Δg/ΩS+4πr2σSL)·f(θ);r*C=2γSLΩS/Δg;ΔG*C(r*C)=ΔG C(r C) ·f(θ)

晶体的生长机理及条件对晶型的影响

1.晶体生长机理 理根据经典的晶体生长理论,液相反应体系中晶体生长包括以下步骤:①营养料在水溶液介质里溶解,以离子、分子团的形式进入溶液(溶 解阶段):②由于体系中存在十分有效的热对流以及溶解区和生长区 之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段); ③离子、分子或离子团在生长界面上的吸附、分解与脱附;④吸附物质在界面上的运动;⑤结晶(③、④、⑤统称为结晶阶段)。液相条件下生长的晶体晶面发育完整,晶体的结晶形貌与生长条件密切相关,同种晶体在不同的生长条件下可能有不同的结晶形貌。简单套用经典晶体生长理论不能很好解释许多实验现象,因此在大量实验的基础 上产生了“生长基元”理论模型。。“生长基元"理论模型认为在上述输运阶段②,溶解进入溶液的离子、分子或离子团之间发生反应,形成具有一定几何构型的聚合体一生长基元,生长基元的大小和结构与溶液中的反应条件有关。在一个水溶液反应体系里,同时存在多种形式的生长基元,它们之间建立起动态平衡。某种生长基元越稳定(可从能量和几何构型两方面加以考察),其在体系里出现的几率就越大。在界面上叠合的生长基元必须满足晶面结晶取向的要求,而生长基元在界面上叠合的难易程度决定了该面族的生长速率。从结晶学观点看:生长基元中的正离子与满足一定配位要求的负离子相联结,因此又进一步被称为“负离子配位多面体生长基元"。生长基元模型将晶体的结晶形貌、晶体的结构和生长条件有机地统一起来,很好地解释了许多实验现象。

2晶体生长的影响条件 对于水热合成,晶粒的形成经历了“溶解一结晶"两个阶段。水热法制备常采用固体粉末或新配制的凝胶作为前驱物,所谓“溶解”是指在水热反应初期,前驱物微粒之间的团聚和联结遭到破坏,以使微粒自身在水热介质中溶解,以离子或离子团的形式进入溶液,进而成核、结晶而形成晶粒。在水热条件下,晶体自由生长,晶体各个面族的生长习性可以得到充分显露,由于水热条件下晶体生长是在非受迫的情况下进行,所以生长温度压力、溶液、溶液流向和温度梯度对晶体各个面族的生长速率影响很明显,表现在晶体的结晶形态变化。总的来说,在水热合成中影响材料形貌、大小、结构的因素主要有温度、原材料的种类、浓度、比例、pH值、反应时间、有机物添加剂等 (1)反应温度 反应温度提供合成材料的原动力,因此反应制备过程需要高于一定的温度,不同的材料,不同的体系差别很大。一般温度越高,产物的直径越大,而结晶性会更好,并且容易形成其稳定相。 (2)原料 原料的种类对产物的形貌、大小有很大的影响。在液相反应体系中,不同的原料直接决定了溶液中生成先驱体的浓度,先驱体发生化学反应生成产物达到一定的过饱和度时,结晶析出生长晶体。因此原料的不同得到先驱体的反应特性也不同,如水解速率、浓度等,从而影响产物的形态。 (3)其它条件

晶体生长机理与晶体形貌的控制

晶体生长机理与晶体形貌的控制 张凯1003011020 摘要:本文综述了晶体生长与晶体形貌的基本理论和研究进展,介绍了层生长理论,分析了研究晶体宏观形貌与内部结构关系的3种主要理论,即布拉维法则、周期键链理论和负离子配位多面体生长基元理论。 关键词:晶体生长机理晶体结构晶体形貌晶体 1.引言 固态物质分为晶体和非晶体。从宏观上看,晶体都有自己独特的、呈对称性的形状。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。今天,晶体学与晶体生长学都发展到了非常高的理论水平,虽然也不断地有一些晶体形貌方面的研究成果,但都停留在观察、测量、描述、推测生长机理的水平上。然而,在高新技术与前沿理论突飞猛进的今天,晶体形貌学必然也会受到冲击与挑战,积极地迎接挑战,与前沿科学理论技术接轨,晶体形貌学就会有新的突破,并且与历史上 一样也会对其它科学的发展做出贡献。 2.层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位置是具有三面凹入角的位置。质点在此位置上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多,释放出能量最大的位置。质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹人角,是最有利的生长位置;其次是S阶梯面,具有二面凹入角的位置;最不利的生长位置是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体的层生长理论,用它可以解释如下的一些生长现象。 1)晶体常生长成为面平、棱直的多面体形态。 2)在晶体生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状

晶核的形成和长大

第六讲晶核的长大 第五节晶核长大 一、主要内容: 液固界面的微观结构 晶体的长大机制 液固界面前沿液体中的温度梯度 晶体生长的界面形状-晶体形态 长大速度 晶粒大小的控制 二、要点: 液固界面的微观结构,光滑界面,粗糙界面的概念,杰克逊因子,不同金属结晶时的液固界面,晶体的长大机制,二维晶核长大机制,螺型位错长大机制,垂直长大机制, 液固界面前沿液体中的温度梯度,正温度梯度,负温度梯度。晶体生长的界面形状,晶体形态,树枝晶,等轴晶,长大速度,晶粒大小的控制 三、方法说明: 通过对液固界面的微观结构的讨论,说明金属型界面和非金属型界面的不同,结晶后的晶界相界的形态也不同,即晶粒的形状不同,晶粒的形状和大小对金属的性能有直接影响。液相中的温度梯度对金属的生长速度和生长方式有直接的影响,通过以上的讨论使学生对如何判断金属中的相,和如何得到所需的晶粒大小和形状有一个清楚的认识。 授课内容: 形核之后,晶体长大,其涉及到长大的形态,长大方式和长大速率。长大形态常反映出凝固后晶体的性质,而长大方式决定了长大速率,也就是决定结晶动力学的重要因素。 晶核长大的条件:第一要求液相能不断的向晶体扩散供应原子, 第二要求晶体表面能够不断的牢固的接纳这些原子。 晶核长大需要在过冷的液体中进行,但是需要的过冷度要比形核时的小。 一、固液界面的微观结构 液固界面的微观结构分为两类:光滑界面和粗糙界面 1、光滑界面:如图,在界面的上部,所有原子都处于液体状态,在界面的下部所有的 原子都处于固体状态。这种界面通常为固相的密排面,呈曲折的锯齿状又称为小平面界面。 2、粗糙界面:如图,从微观尺寸看这种界面是平整的,当从原子的尺度看这种界面是 高低不平的,液固界面的原子犬牙交错的分布着,所以又叫非小平面界面。 3、如果界面上有近0%或100%的位置为晶体原子所占有,则界面是光滑界面。 界面自由能的变化可用公式表示: 二、晶体长大机制 1、二维晶核长大机制 光滑界面时晶体的长大只能依靠二维形核机制方式长大。 2、螺型位错长大机制 晶体长大时,难免形成缺陷。实际上,具有光滑界面的晶体是以这种方式长大的,比二维机制方式长大快得多。 3、垂直长大机制 垂直长大速度很快,大部分金属晶体均以这种方式长大。 三、固液界面前沿液体中的温度梯度

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

晶体生长理论1

晶体生长理论 特征 表面的光滑与否是和晶体结构、材料特征、晶面取向以及温度等因素有关。P.哈特曼提出的周期键理论在于根据晶面中周期性键链数来确定其光滑的程度。更属物理的理论则是建立在晶面的统计力学基础上。K.A.杰克孙的理论阐明相变熵与表面光滑性的关系;伯顿与卡布雷拉的理论指出在一定的临界温度,表面可能发生光滑-粗糙转变。近年来对这些问题有更加深入的理论探讨,而且,晶面的计算机模拟直观地再现了过去的理论设想,并且推广到非平衡的状态。晶体生长的输运理论及形态稳定性晶体生长在空间上是不连续的过程,结晶只发生在固体-流体界面上。在流体和固体内部都存在热量和质量输运过程。这一类型的输运问题通常可以采用宏观物理学的方法来处理,即化为边界条件下偏微分方程的求解。当然这种边值问题是有其特殊性的,即随着晶体的长大,边界在移动。早在1891年J.斯忒藩首先处理了极区冰层长厚的问题,所以这类问题被称为斯忒藩问题。斯忒藩问题的外部边界条件应模拟生长系统的实际情况。能求出解析解的仅限于少数简单的几何形状的情况。在流体相中传热和传质可以通过对流来实现,因而流体中的热传导与溶质扩散往往局限于固液界面处的边界层中。这样,就可以将流体力学的边界层理论引用到相应的斯忒藩问题之中。但晶体生长的流体效应亦有其复杂的一面,特别是牵涉到流动的失稳和非稳态流动等问题。要进行确切的理论计算极其困难,因而往往求助于模拟性的实验或晶体生长层的剖析。 重要问题 在晶体生长形态学中还有一个重要问题,就是形态的稳定性:具体来说,就是生长界面是否能够持续地保持下去。有些界面虽然能够满足斯忒藩问题的解,但实际上却并不出现,因为这种界面对于干扰是不稳定的。设想某一平界面在某瞬时受到干扰,使界面局部突出。它随时间的演变将有两种可能性:一是干扰的振幅逐渐衰减,最终界面恢复原状,表明原界面是稳定的;另一种情况是干扰振幅逐渐增大,则表明原来的平界面是不稳定的,可能转化为凹凸不平的胞状界面,或甚至于发展为枝晶(den-drites)。对于纯的材料,正的温度梯度(熔体温度高于凝固点)使界面稳定,而负的温度梯度(熔体温度低于凝固点)则导致界面失稳。通常生长晶体总是在正的温度梯度条件下进行的,但也经常观测到平界面的失稳。50年代中B.查尔默斯提出溶质引起的组分过冷的效应来解释。到60年代初W.W.马林斯与R.F.塞克卡用自洽的动力学方法来处理界面稳定性问题,导出更正确的稳定性判据,并可以追踪界面失稳和初期的演变过程。界面稳定性理论也被推广应用于共晶合金的凝固、枝晶生长以及光滑界面失稳等问题,目前还在继续发展之中。

针状晶体生长机理

Journal of Crystal Growth 310(2008)110–115 Crystallization mechanisms of acicular crystals Franc -ois Puel a ,Elodie Verdurand a ,Pascal Taulelle b ,Christine Bebon a ,Didier Colson a , Jean-Paul Klein a ,Ste phane Veesler b,?a LAGEP,UMR CNRS 5007,Universite ′Lyon 1,CPE Lyon,Ba ?t.308G,43Bd du 11novembre 1918,F-69622Villeurbanne Cedex,France b Centre de Recherche en Matie `re Condense ′e et Nanosciences (CRMCN)1—CNRS,Campus de Luminy,Case 913,F-13288Marseille Cedex 09,France Received 10September 2007;accepted 3October 2007 Communicated by K.Sato Available online 9October 2007 Abstract In this contribution,we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals.For all organic crystals studied in this article,layer-by-layer growth of the lateral faces is very slow and clear,as soon as the supersaturation is high enough,there is competition between growth and surface-activated secondary nucleation.This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis;this is explained by regular over-and inter-growths as in the case of twinning.And when supersaturation is even higher,nucleation is fast and random. In an industrial continuous crystallization,the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles,which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds,thus leading to slower growing faces.When an activated mechanism is involved such as a secondary surface nucleation,it is no longer possible to obtain a steady state.Therefore,the crystal number,size and habit vary signi?cantly with time,leading to troubles in the downstream processing operations and to modi?cations of the ?nal solid-speci?c properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals,and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.r 2007Elsevier B.V.All rights reserved. PACS:81.10.Aj;81.10.Dn;78.30.Jw Keywords:A1.Crystal morphology;A2.Growth from solutions;https://www.360docs.net/doc/023463941.html,anic compounds 1.Introduction Many organic molecules exhibit anisotropic structural properties in their crystalline form,which gives rise to acicular or needle-like crystals.In the chemical and pharmaceutical industry,crystallization from solution is used as a separation technique,and this crystal habit is usually not desirable,especially when the internal length-to-width ratio is high,as it will lead to problems in downstream processes (?ltration,drying,storage,handling,etc.). A better understanding of the mechanisms of nucleation and growth of these needle-like crystals will therefore lead to better control of crystallization processes.In the literature,papers on molecular modeling of these needle-like crystals [1–3]suggest that in the case of needle-like crystals,there is no slow-growing face in the needle direction.Practical aspects have been also studied for a few years now in our different research teams [4–6]. In this contribution,we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular https://www.360docs.net/doc/023463941.html,/locate/jcrysgro 0022-0248/$-see front matter r 2007Elsevier B.V.All rights reserved.doi:10.1016/j.jcrysgro.2007.10.006 ?Corresponding author.Tel.:+33662922866;fax:+33491418916. E-mail address:veesler@crmcn.univ-mrs.fr (S.Veesler). 1 Laboratory associated to the Universities Aix-Marseille II and III.

晶体的生长模式

晶体的生长模式 晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。 晶体生长理论简介 自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。 下面简单介绍几种重要的晶体生长理论和模型。 .晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。 .界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。 .PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。

NaCo2O4晶体的生长形貌和生长机理英文

第41卷第3期 人工晶体学报Vol.41No.32012年6月JOURNAL OF SYNTHETIC CRYSTALS June ,2012 Growth ,Morphology and Growth Mechanism of NaCo 2O 4Crystals HAN Shu-juan 1,WANG Ji-yang 1,LI Jing 1,GUO Yong-jie 1,WANG Yong-zheng 1, ZHAO Lan-ling 1,YAO Shu-hua 2,CHEN Yan-bin 2,Boughton R.I.3 (1.State Key Laboratory of Crystal Materials ,Shandong University ,Jinan 250100,China ; 2.College of Materials Science and Engineering ,Nanjing University ,Nanjing 210093,China ; 3.Department of Physics and Astronomy ,Bowling Green State University ,Bowling Green ,Ohio 43403,USA ) (Received 28September 2011, accepted 5March 2012)Abstract :Millimetre-sized NaCo 2O 4crystals were grown from a molten flux based on NaCl-Na 2CO 3by spontaneous nucleation method.Details of the preparation and growth procedures are provided.The as- grown crystals were characterized by X-ray powder diffraction (XRPD ).The morphology and growth mechanism were investigated by scanning electron microscopy (SEM )and atomic force microscopy (AFM ).The results show that the obtained crystal are well crystallized and indexed in a hexagonal crystal system with lattice parameters a =b =0.2842nm ,c =1.0894nm ,and V =0.0761997nm 3.The growth of NaCo 2O 4single crystals was controlled by a two-dimensional (2D )layer-by-layer mechanism acting along the c -axis.Furthermore ,the morphology of the crystals was also interpreted in the viewpoint of anionic coordination polyhedron growth units. Key words :layered compounds ;crystal growth ;microstructure Received date :2011-09-28;accepted date :2012-03-05 Foundation item :National Natural Science Foundation of China (50872066);National Fundamental Research Project (2010CB833103);Graduate Independent Innovation Foundation of Shandong University (GIIFSDU ) Biography :HAN Shu-juan (1983-),female ,from Shandong province ,Doctor.E-mail :shujuanhan84@163.com Corresponding author :WANG Ji-yang ,professor.E-mail address :jywang@sdu.edu.cn CLC number :O78Document code :A Article ID :1000-985X (2012)03-0573-05 NaCo 2O 4晶体的生长,形貌和生长机理研究 韩树娟1,王继扬1,李静1,郭永解1,王永政1,赵兰玲1, 姚淑华2,陈延彬2, Boughton R.I.3(1.山东大学晶体材料国家重点实验室,济南250100;2.南京大学材料科学与工程学院,南京210093; 3.博林格林州立大学天文和物理学系,俄亥俄博林格林43403) 摘要:采用自发成核方法,以NaCl-Na 2CO 3为助熔剂,生长了毫米级的NaCo 2O 4晶体。通过X 射线衍射对晶体作了 表征。利用扫描电子显微镜和原子力显微镜研究了晶体的形貌和生长机理。结果表明:所得晶体是NaCo 2O 4,属于 六方晶系,晶胞参数:a =b =0.2842nm ,c =1.0894nm ,V =0.0761997nm 3。NaCo 2O 4晶体是沿c 轴层状生长的,同 时从阴离子配位多面体的角度分析了晶体的形貌。 关键词:层状化合物;晶体生长;微观结构

晶体生长原理与技术

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

三种晶体生长理论

三种晶体生长理论: 一、层生长理论 科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。 (2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造 (图8-3)。它表明晶面是平行向外推移生长的。 (3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。 (4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。 然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层的顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶面表面不平坦,成为阶梯状,称为晶面阶梯。 层生长模型虽然有其正确的方面,在实际晶体生长过程中并非完全按照二维层生长的机制进行。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已生长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶体生长就需要用其他的生长机制加以解释。

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

晶体的长大机制

晶体的长大机制 界面微观结构不同长大机制不同: 界面的微观结构不同,则其接纳液相中迁移过来的原子的能力也不同,因此在晶体长大时将有不同的机制。 () 一二维晶核长大机制 光滑界面为什么只能是二维晶核长大: 当固液界面为光滑界面时,若液相原子单个的扩散迀移到界面上是很难形成稳定状态的,这是由于它所带来的表面能的增加,远大于其体积自甶能的降低。在这种情况下,晶体的长大只能依靠所谓的二维晶核方式 二维晶核长大机制: ●即依靠液相中的结构起伏和能量起伏,使一定大小的原子集团差不多同时降 落到光滑界面上,形成具有一个原子厚度并且有一定宽度的平面原子集团,如图2-20所示 ●根据热力学的分析,这个原子集团带来的体积自由能的降低必须大于其表面 能的增加,它才能在光滑界面上形成稳定状态。 ●它好像是润湿角0 θ时的非均匀形核一样,形成了一个大于临界半径的晶 = 核。这种晶核即为二维晶核。 ●二维晶核形成后,它的四周就出现了台阶,后迁移来的液相原子一个个填充 到这些台阶处,这样所增加的表面能较小。 ●直到整个界面铺满一层原子后,便又变成了光滑界面,而后又需要新的二维 晶核的形成,否则成长即告中断 二维晶核长大速度:

晶体以这种方式长大时,其长大速度十分缓慢 长大速度 单位时间内晶核长大的线速度称为长大速度,用G表示,单位为1- cm ?s () 二螺型位错长大机制 在通常情况下具有光滑界面的晶体其长大速度比按二维晶核长大方式快得多 这是由于在晶体长大时,总是难以避免形成种种缺陷,这些缺陷所造成的界面台阶使原子容易向上堆砌,因而长大速度大为加快 图2-21表示光滑界面出现螺形位错露头时的晶体长大过程 ●螺型位错在晶体表面露头处,即在晶体表面形成台阶,这样,液相原子一个个 地堆砌到这些台阶处,新增加的表面能很小,完全可以被体积自由能的降低所补偿 ●每铺一排原子,台阶即向前移动一个原子间距 ●所以,台阶各处沿着晶体表面向前移动的线速度相等。 ●但由于台阶的起始点不动,所以台阶各处相对于起始点移动的角速度不等。 ●离起始点越近,角速度越大,离起始点越远,则角速度越小。 ●于是随着原子的铺展,台阶先是发生弯曲,而后即以起始点为中心回旋起来, 如图2-22所示 ●这种台阶永远不会消失,所以这个过程也就一直进行下去 ●台阶每横扫界面一次,晶体就增厚一个原子间距,但由于中心回旋的速度快, 中心必将突出起来,形成螺钉状的晶体。 螺旋上升的晶面叫做生长蜷线 图2-23为SiC品体的生长蜷线,是用光学显微镜观察的结果

晶体生长理论综述教学文案

综述晶体生长理论的发展现状 1前言 晶体生长理论是用以阐明晶体生长这一物理化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。 近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。可以预言,未来晶体生长理论研究必将有更大的发展[1]。 2晶体生长理论的综述 自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2],晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。本文主要对晶体平衡形态理论、界面生长理论、PBC理论、晶体逆向生长等理论作简要的介绍。 2.1晶体平衡形态理论 晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。

08级晶体生长理论考试试题

08级研究生《晶体生长理论》考试试题 论述题(共100分,每题25分) 一、试述晶体生长的平衡形态理论。 二、试论述晶体界面模型的优缺点。 三、试从单原子(单分子)出发推导临界核原子团的大小和形核功。 四、晶体生长理论的基本科学问题有那些?你认为那些问题有待进一步深入研究? 08级研究生《晶体生长理论》考试试题 论述题(共100分,每题25分) 一、试述晶体生长的平衡形态理论。 二、试论述晶体界面模型的优缺点。 三、试从单原子(单分子)出发推导临界核原子团的大小和形核功。 四、晶体生长理论的基本科学问题有那些?你认为那些问题有待进一步深入研究?

第一章引论 § 1.1 晶体学发展简史 人类对晶体的认识是从具有规则外形的矿物岩石开始的。早在史前,人类为了生存,用石头做成各种石器,作为劳动工具和自卫武器。在采集石头的同时,也就发现了各种外形规则的矿物岩石。例如,在我国周口店的中国猿人遗址中就有用水晶等矿物岩石做成的工具。人们把这些有规则外形的矿物岩石叫做晶体,这是人类认识晶体的开始。随着时间的推移,人们发现有规则外形的晶体种类越来越多,其中不少是对人类有用的矿物晶体。经过长期的观察和比较,后来人们发现这些矿物晶体最具有代表性的特点,是各种晶体都有它特有的外形。 晶体结晶学作为一门科学萌芽于17世纪人们对矿物晶体外形的规则性研究。1669年,意大利科学家斯丹诺(Nicolaus Steno)对水晶、金刚石,黄铁矿等各种晶体进行了大量的研究,发现了晶面角守恒定律。当时,斯丹诺指出:晶体是从外表面长大的,即新的物质包围在已经结晶的外表晶面上。因此,各个晶面都按原来的方向平行地向外发展。在生长过程中,各个晶面的大小虽然都在变化,但它们既然平行地向外发展,其间交角就不应当改变。换句话说,对于同一物质的不同晶体,晶面的大小、形状和个数都可能不同,但相应的晶面之间的夹角都是固定不变的。例如石英晶体(即水晶)可以有各种不同的外形[如图1.1所示],但其中a和b面夹角总是141 o47′,b和c面夹角总是120 o00′,c和a面夹角总是113 o08′。 图1.1 石英晶体的外形 晶面角守恒定律的发现,使人们认识到可以从晶体外形来鉴别各种不同的矿物和其它晶体。为此,法国学者得利[Rome Del' Lsle (1736~1790)]利用他的学生克兰诺(Carangeot)发明的测角仪,对大量矿物晶体进行了晶面角测定,得出了面角恒等普遍规律。利用晶面角守恒定律进行晶体鉴定的方法很可靠,即使外形很相近的两种晶体也不会发生混淆。例如,方解石有一个晶角为101 o55′,而外形同它很相近的智利硝石,相应的晶面角是102 o41.5′,其间之差不到1o,用肉眼是分辨不出来的,可是用测角仪却很容易发现它们的差别。 晶体面角守恒定律的发现促使人们注意到晶体内部构造问题。即晶体为什么会有规则外形、它的内在本质究竟是什么。一次偶然的事件成为认识晶体内部构造问题的启示。17世纪,斯丹诺的老师丹麦学者巴尔托林[Erasmus Bartolins(1625~1690年)]有一次在对晶体进行研究的时候,不慎将一大块的冰洲石晶体摔到地上。他懊恼非常,因为冰洲石晶体是很难弄到的天然晶体,尤其是大块的。当他以十分惋惜的心情扑到地上去捡拾冰洲石碎块的时候,他惊奇地发现所有的碎块都与大块的冰洲石晶体一样,具有规则的完全相同的斜方六面体外形。这一意外的发现,使巴尔托林欣喜若狂,他不但不再为失手打碎冰洲石晶体而懊恼,甚至还特意把一块冰洲石再敲碎,看看是否也会得到形状相同的碎块。结果他发现了晶体的解理性,即晶体总是沿一定的晶面碎裂。遗憾的是,他没有再进一步思考这样继续碎裂下去最终将如何,以致使人们对晶体内部结构的认识推迟了100多年。值得一提的是巴尔托林曾在

相关文档
最新文档