高考数学思想方法汇总(80页)

高考数学思想方法汇总(80页)
高考数学思想方法汇总(80页)

高考数学思想方法

前言 (2)

第一章高中数学解题基本方法 (3)

一、配方法 (3)

二、换元法 (7)

三、待定系数法 (14)

四、定义法 (19)

五、数学归纳法 (23)

六、参数法 (28)

七、反证法 (32)

八、消去法………………………………………

九、分析与综合法………………………………

十、特殊与一般法………………………………

十一、类比与归纳法…………………………

十二、观察与实验法…………………………

第二章高中数学常用的数学思想 (35)

一、数形结合思想 (35)

二、分类讨论思想 (41)

三、函数与方程思想 (47)

四、转化(化归)思想 (54)

第三章高考热点问题和解题策略 (59)

一、应用问题 (59)

二、探索性问题 (65)

三、选择题解答策略 (71)

四、填空题解答策略 (77)

附录………………………………………………………

一、高考数学试卷分析…………………………

二、两套高考模拟试卷…………………………

三、参考答案……………………………………

前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光.

高考试题主要从以下几个方面对数学思想方法进行考查:

①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;

②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和

演绎等;

④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想

等.

数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用.

数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得.

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”.

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷.

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识.

第一章高中数学解题基本方法

一、配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方.有时也将其称为“凑配法”.

最常见的配方是进行恒等变形,使数学式子出现完全平方.它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题.

配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:

a2+b2=(a+b)2-2ab=(a-b)2+2ab;

a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b

2

)2+(

3

2

b)2;

a2+b2+c2+ab+bc+ca=1

2

[(a+b)2+(b+c)2+(c+a)2]

a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:

1+sin2α=1+2sinαcosα=(sinα+cosα)2;

x2+1

2

x

=(x+

1

x

)2-2=(x-

1

x

)2+2 ;……等等.

Ⅰ、再现性题组:

1. 在正项等比数列{a

n }中,a

1

?a

5

+2a

3

?a

5

+a

3

?a

7

=25,则 a

3

+a

5

=_______.

2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____.

A. 14

B. k<14或k>1

C. k∈R

D. k=14或k=1

3. 已知sin4α+cos4α=1,则sinα+cosα的值为______.

A. 1

B. -1

C. 1或-1

D. 0

4. 函数y=log

1

2

(-2x2+5x+3)的单调递增区间是_____.

A. (-∞, 54]

B. [54,+∞)

C. (-12,54]

D. [54,3)

5. 已知方程x2+(a-2)x+a-1=0的两根x

1、x

2

,则点P(x

1

,x

2

)在圆x2+y2=4上,则实

数a=_____.

【简解】 1小题:利用等比数列性质a

m p

-a

m p

+

=a

m

2,将已知等式左边后配方(a

3

+a

5

2易求.答案是:5.

2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选B.

3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解.选C.

4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解.选D.

5小题:答案3-11.

Ⅱ、示范性题组:

例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____.

A. 23

B. 14

C. 5

D. 6

【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z,则

211

424()()xy yz xz x y z ++=++=??

?

,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式

可得.

【解】设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211

424()()xy yz xz x y z ++=++=??

?

.

长方体所求对角线长为:

x y z 222++=()()x y z xy yz xz ++-++22=

6112-=5

所以选B.

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解.这也是我们使用配方法的一种解题模式.

例2. 设方程x 2+kx +2=0的两实根为p 、q,若(p q )2+(q p

)2

≤7成立,求实数k 的取值范围.

【解】方程x 2

+kx +2=0的两实根为p 、q,由韦达定理得:p +q =-k,pq =2 ,

(p q )2+(q p )2=p q pq 442+()=()()p q p q pq 22222

2

2+-=[()]()p q pq p q pq +--2222222=

()k 2248

4

--≤7, 解得k ≤-10或k ≥10 .

又 ∵p 、q 为方程x 2+kx +2=0的两实根, ∴ △=k 2

-8≥0即k ≥22或k ≤-22

综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10.

【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理.本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式.假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视.

例3. 设非零复数a 、b 满足a 2

+ab +b 2

=0,求(

a a

b +)1998+(b a b

+)1998

. 【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a

b

=ω (ω为1的立方虚

根);或配方为(a +b)2

=ab .则代入所求式即得.

【解】由a 2

+ab +b 2

=0变形得:(a b )2+(a

b

)+1=0 , 设ω=

a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a

,ω3=ω3

=1. 又由a 2

+ab +b 2

=0变形得:(a +b)2

=ab ,

所以 (a a b +)1998+(b a b

+)1998

=(a ab 2)999+(b ab 2)999=(a b )999+(b a )999=ω

999

ω

999

=2 .

【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂.一系列的变换过程,有较大的灵活性,要求我们善于联想和展开.

【另解】由a 2+ab +b 2=0变形得:(

a b )2+(a b )+1=0 ,解出b a

=-±132i 后,化成

三角形式,代入所求表达式的变形式(a b )999+(b

a

)999后,完成后面的运算.此方法用于只是

未-±132

i 联想到ω时进行解题.

假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2

=0解出:a =-±132

i b,

直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算.

Ⅲ、巩固性题组:

1. 函数y =(x -a)2+(x -b)2

(a 、b 为常数)的最小值为_____.

A. 8

B. ()a b -2

2 C. a b 222

+ D.最小值不存在

2. α、β是方程x 2-2ax +a +6=0的两实根,则(α-1)2 +(β-1)2的最小值是_____.

A. -494

B. 8

C. 18

D.不存在

3. 已知x 、y ∈R +,且满足x +3y -1=0,则函数t =2x +8y 有_____.

A.最大值22

B.最大值22

C.最小值22 B.最小值22

4. 椭圆x 2-2ax +3y 2+a 2

-6=0的一个焦点在直线x +y +4=0上,则a =_____.

A. 2

B. -6

C. -2或-6

D. 2或6 5. 化简:218-sin +228+cos 的结果是_____.

A. 2sin4

B. 2sin4-4cos4

C. -2sin4

D. 4cos4-2sin4

6. 设F 1和F 2为双曲线x 2

4

-y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则△F 1PF 2的面积是_________.

7. 若x>-1,则f(x)=x 2

+2x +11

x +的最小值为___________.

8. 已知π2

〈β<α〈34

π,cos(α-β)=1213

,sin(α+β)=-35

,求sin2α的值.(92年高

考题)

9. 设二次函数f(x)=Ax 2

+Bx +C,给定m 、n (m

[(m+n)2

+ m 2

n 2

]+2A[B(m+n)-Cmn]+B 2

+C 2

=0 . ① 解不等式f(x)>0;

② 是否存在一个实数t,使当t ∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t 的取值范围.

10. 设s>1,t>1,m∈R,x=log

s t+log

t

s,y=log

s

4t+log

t

4s+m(log

s

2t+log

t

2s),

①将y表示为x的函数y=f(x),并求出f(x)的定义域;

②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围.

二、换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,

将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用.

换元的方法有:局部换元、三角换元、均值换元等.局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题.

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元.如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,

π

2

],问题变成了熟悉的求三角函数值域.为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x 、y 适合条件x 2+y 2=r 2(r>0)时,则可

作三角代换x =rcos θ、y =rsin θ化为三角问题.

均值换元,如遇到x +y =S 形式时,设x =

S 2+t,y =S

2

-t 等等. 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大.如上几例中的t>0和α∈[0,

π2

]. Ⅰ、再现性题组:

1.y =sinx ·cosx +sinx+cosx 的最大值是_________.

2.设f(x 2

+1)=log a (4-x 4

) (a>1),则f(x)的值域是_______________. 3.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =___________. 4.设实数x 、y 满足x 2

+2xy -1=0,则x +y 的取值范围是___________.

5.方程1313++-x

x

=3的解是_______________.

6.不等式log 2(2x

-1) ·log 2(2

x +1

-2)〈2的解集是_______________.

【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t 22+t -1

2

,对称轴t =-1,

当t =2,y max =1

2

+2;

2小题:设x 2

+1=t (t ≥1),则f(t)=log a [-(t-1)2

+4],所以值域为(-∞,log a 4]; 3小题:已知变形为

1

1

a n +-

1a n =-1,设b n =1a n

,则b 1=-1,b n =-1+(n -1)(-1)=-n,所以a n =-1

n

4小题:设x +y =k,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1; 5小题:设3x =y,则3y 2+2y -1=0,解得y =

1

3

,所以x =-1; 6小题:设log 2(2x -1)=y,则y(y +1)<2,解得-2

4

,log 23). Ⅱ、示范性题组:

例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求1S max

1S min

值.(93年全国高中数学联赛题)

【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设

x S y S ==??

???cos sin α

α

代入①式求S max 和S min 的值. 【解】设x S y S ==?????cos sin α

α

代入①式得: 4S -5S ·sin αcos α=5

解得 S =10

852-sin α

∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤10

3

∴ 1S max +1S min =310+1310=1610=85

此种解法后面求S 最大值和最小值,还可由sin2α=810

S S

-的有界性而求,即解不等式:

|810S S

-|≤1.这种方法是求函数值域时经常用到的“有界法”.

【另解】 由S =x 2+y 2,设x 2=S 2+t,y 2

=S 2-t,t ∈[-S 2,S 2

],

则xy =±S t 22

4-代入①式得:4S ±5S t 224

-=5, 移项平方整理得 100t 2

+39S 2

-160S +100=0 .

∴ 39S 2

-160S +100≤0 解得:

1013≤S ≤10

3

∴ 1S max +1S min =310+1310=1610=85

【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2

与三角公式cos 2

α+sin 2

α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题.第二种解法属于“均值换元法”,主要是由等式S =x 2

+y 2

而按照均值换元的思路,设x 2

S 2+t 、y 2=S 2

-t,减少了元的个数,问题且容易求解.另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法.

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b,y =a -b,这称为“和差换元法”,换元后有可能简化代数式.本题设x =a +b,y =a -b,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,5

3

],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=

1013+2013a 2∈[1013,10

3

],再求1S max +1S min 的值.

例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B,

1

cos A +1cos C

=-2cos B ,求

cos

A C

-2

的值.(96年全国理) 【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得

A C

B +=??

?12060°=°;由“A +C =120°”进行均值换元,则设A C =°α

=°-α

6060+??? ,再代入可求cos α即cos A C

-2

.

【解】由△ABC 中已知A +C =2B,可得 A C B +=???

12060°

=°,

由A +C =120°,设A C =°α

=°-α6060+???

,代入已知等式得:

1

cos A +1cos C =160cos()?+α+160cos()?-α=1123

2

cos sin αα-+

1123

2

cos sin αα+=cos cos sin ααα143422-=cos cos α

α234-=-22, 解得:cos α=22, 即:cos A C

-2

=22.

【另解】由A +C =2B,得A +C =120°,B =60°.所以

1

cos A +1cos C

=-2cos B

=-22,设1

cos A =-2+m,1cos C =-2-m ,

所以cosA =12-+m ,cosC =1

2--m

,两式分别相加、相减得:

cosA+cosC=2cos A C

+

2

cos

A C

-

2

=cos

A C

-

2

22

2

2

m-

,

cosA-cosC=-2sin A C

+

2

sin

A C

-

2

=-3sin

A C

-

2

2

2

2

m

m-

,

即:sin A C

-

2

=-

2

32

2

m

m

()

-

,=-

22

2

2

m-

,代入sin2

A C

-

2

+cos2

A C

-

2

=1整理得:

3m4-16m-12=0,解出m2=6,代入cos A C

-

2

22

2

2

m-

2

2

.

【注】本题两种解法由“A+C=120°”、“

1

cos A

1

cos C

=-22”分别进行均值

换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练.假如未想到进行均值换元,也可由三角运算直接解出:由A+C=2B,

得A+C=120°,B=60°.所以

1

cos A

1

cos C

=-

2

cos B

=-22,即cosA+cosC=-

22cosAcosC,和积互化得:

2cos A C

+

2

cos

A C

-

2

=-2[cos(A+C)+cos(A-C),即cos

A C

-

2

2

2

-2cos(A-C)

2

2

-2(2cos2

A C

-

2

-1),整理得:42cos2

A C

-

2

+2cos

A C

-

2

-32=0,

解得:cos A C

-

2

2

2

例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值. 【解】设sinx+cosx=t,则t∈[-2,2],由(sinx+

cosx)2=1+2sinx·cosx得:sinx·cosx=t21 2

-

∴ f(x)=g(t)=-1

2

(t-2a)2+

1

2

(a>0),t∈[-2,2]

t=-2时,取最小值:-2a2-22a-1 2

当2a≥2时,t=2,取最大值:-2a2+22a-1

2

当0<2a≤2时,t=2a,取最大值:1

2

.

∴ f(x)的最小值为-2a2-22a-1

2

,最大值为

1

2

2

2

222

1

2

2

2

2

()

()

<<

-+-≥

?

?

??

?

?

?

a

a a a

.

【注】 此题属于局部换元法,设sinx +cosx =t 后,抓住sinx +cosx 与sinx ·cosx 的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解.换元过程中一定要注意新的参数的范围(t ∈[-2,2])与sinx +cosx 对应,否则将会出错.本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论.

一般地,在遇到题目已知和未知中含有sinx 与cosx 的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx ±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究.

例4. 设对所于有实数x,不等式x 2

log 241()a a ++2x log 221

a

a ++log 2()a a +1422

>0恒成立,求a 的取值范围.(87年全国理)

【分析】不等式中log 241()a a +、 log 221

a

a +、log 2()a a +1422三项有何联系?进行对

数式的有关变形后不难发现,再实施换元法.

【解】 设log 2

21a a +=t,则log 241()a a +=log 2812()a a +=3+log 2a a

+1

2=3-

log 221a a +=3-t,log 2()a a +1422=2log 2

a a

+1

2=-2t, 代入后原不等式简化为(3-t )x 2

+2tx -2t>0,它对一切实数x 恒成立,所以:

3048302

->=+-

t t t t ?(),解得t t t <<>???306或 ∴ t<0即log 221a a +<0 0<21

a a +<1,解得0

元,关键是发现已知不等式中log 241()a a +、 log 221

a

a +、log 2()a a +1422

三项之间的联系.在解决不等式恒成立问题时,使用了“判别式法”.另外,本题还要求对数运算十分熟练.一般

地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点.

例5. 已知sin θx =cos θy ,且cos 22θx +sin 22

θ

y =10322()x y + (②式),求x y 的值.

【解】 设

sin θx

=cos θy =k,则sin θ=kx,cos θ=ky,且sin 2θ+cos 2

θ=

k 2

(x 2

+y 2

)=1,代入②式得: k y x 222+k x y 222

=10

322()x y +=1032k 即:y x 22+x y 22=

103

设x y 22=t,则t +1t =103

, 解得:t =3或1

3 ∴x y =±3或±33

【另解】 由x y =sin cos θθ=tg θ,将等式②两边同时除以cos 22

θ

x ,再表示成含tg θ的式

子:1+tg 4θ=()()

1103112

2+?+tg tg θθ

=103tg 2θ,设tg 2θ=t,则3t 2—10t +3=0,

∴t =3或1

3

, 解得x y =±3或±33.

【注】 第一种解法由

sin θx

=cos θ

y 而进行等量代换,进行换元,减少了变量的个数.

第二种解法将已知变形为x y =sin cos θ

θ

,不难发现进行结果为tg θ,再进行换元和变形.两种

解法要求代数变形比较熟练.在解高次方程时,都使用了换元法使方程次数降低.

例6. 实数x 、y 满足()x -192+()y +1162

=1,若x +y -k>0恒成立,求k 的范围.

【分析】由已知条件()x -192+()y +116

2=1,可以发现它与a 2+b 2

=1有相似之处,于是

实施三角换元.

【解】由()x -192+()y +1162=1,设x -13=cos θ,y +1

4

=sin θ,

即:x y =+=-+???1314cos sin θθ

代入不等式x +y -k>0得:

3cos θ+4sin θ-k>0,即k<3cos θ+4sin θ=5sin(θ+ψ) 所以k<-5时不等式恒成立.

【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围.一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”.

+by +c>0 (a>0)所表示的区域为直线ax +by +c =0.此题不等式恒成立问题化为图形问题:椭圆上的点始终

位于平面上x +y -k>0的区域.即当直线x +y -k =0在与椭圆下部相切的切线之下时.当直线与椭圆相切时,方程组16191144

022()()x y x y k -++=+-=???有相等的一组实数解,消元后由△=0可求得k =-3,所以k<-3时原不等式恒成立.

x +y -k>0 k 平面区域

Ⅲ、巩固性题组:

1. 已知f(x 3)=lgx (x>0),则f(4)的值为_____.

A. 2lg2

B. 13

lg2 C. 23

lg2 D. 23

lg4

2. 函数y =(x +1)4

+2的单调增区间是______.

A. [-2,+∞)

B. [-1,+∞) D. (-∞,+∞)

C. (-∞,-1]

3. 设等差数列{a n }的公差d =12

,且S 100=145,则a 1+a 3+a 5+……+a 99的值为

_____.

A. 85

B. 72.5

C. 60

D. 52.5 4. 已知x 2+4y 2=4x,则x +y 的范围是_________________.

5. 已知a ≥0,b ≥0,a +b =1,则a +12

+b +12

的范围是____________.

6. 不等式x >ax +32

的解集是(4,b),则a =________,b =_______.

7. 函数y =2x +x +1的值域是________________.

8. 在等比数列{a n }中,a 1+a 2+…+a 10=2,a 11+a 12+…+a 30=12,求a 31+a 32+…+a 60.

9. 实数m 在什么范围内取值,对任意实数x,不等式sin 2x +2mcosx +4m -1<0恒成立. 10. 已知矩形ABCD,顶点C(4,4),A 点在曲线x 2

+y 2

=2 (x>0,y>0)上移动,且AB 、AD 始终平行x 轴、y 轴,求矩形ABCD 的最小面积.

三、待定系数法

要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a 值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等.

待定系数法解题的关键是依据已知,正确列出等式或方程.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解

析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解.

使用待定系数法,它解题的基本步骤是:

第一步,确定所求问题含有待定系数的解析式;

第二步,根据恒等的条件,列出一组含待定系数的方程; 第三步,解方程组或者消去待定系数,从而使问题得到解决. 如何列出一组含待定系数的方程,主要从以下几方面着手分析: ① 利用对应系数相等列方程; ② 由恒等的概念用数值代入法列方程; ③ 利用定义本身的属性列方程; ④ 利用几何条件列方程.

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程.

Ⅰ、再现性题组:

1. 设f(x)=x 2+m,f(x)的反函数f -1

(x)=nx -5,那么m 、n 的值依次为_____.

A. 52 , -2

B. -52 , 2

C. 52 , 2

D. -5

2

,-2

2. 二次不等式ax 2

+bx +2>0的解集是(-12,13

),则a +b 的值是_____.

A. 10

B. -10

C. 14

D. -14 3. 在(1-x 3

)(1+x )10

的展开式中,x 5

的系数是_____. A. -297 B.-252 C. 297 D. 207 4. 函数y =a -bcos3x (b<0)的最大值为

32,最小值为-1

2

,则y =-4asin3bx 的最小正周期是_____.

5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________.

6. 与双曲线x 2

-y 2

4

=1有共同的渐近线,且过点(2,2)的双曲线的方程是

____________.

【简解】1小题:由f(x)=

x 2+m 求出f -1

(x)=2x -2m,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13

是方程ax 2

+bx +2=0的两根,代入两

根,列出关于系数a 、b 的方程组,易求得a +b,选D ;

3小题:分析x 5

的系数由C 105

与(-1)C 102

两项组成,相加后得x 5

的系数,选D ; 4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案

23

π

; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;

6小题:设双曲线方程x2-y2

4

=λ,点(2,2)代入求得λ=3,即得方程

x2

3

y2

12

=1.

Ⅱ、示范性题组:

例1. 已知函数y=mx x n

x

2

2

43

1

++

+

的最大值为7,最小值为-1,求此函数式.

【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”.

【解】函数式变形为: (y-m)x2-43x+(y-n)=0, x∈R, 由已知得y-m≠0 ∴△=(-43)2-4(y-m)(y-n)≥0 即: y2-(m+n)y+(mn-12)≤0 ①

不等式①的解集为(-1,7),则-1、7是方程y2-(m+n)y+(mn-12)=0的两根,

代入两根得:

1120

497120

+++-=

-++-=

?

?

?

()

()

m n mn

m n mn

解得:

m

n

=

=

?

?

?

5

1

m

n

=

=

?

?

?

1

5

∴ y=5431

1

2

2

x x

x

++

+

或者y=

x x

x

2

2

435

1

++

+

此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y2-6y-7≤0,然后与不等式①比较系

数而得:

m n

mn

+=

-=-

?

?

?

6

127

,解出m、n而求得函数式y.

【注】在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n.两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解.本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x 的一元二次方程,可知其有解,利用△≥0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程.

例 2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程.

【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了.设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,

再将焦点与长轴较近端点的距离转化为a-c的值后列出

第二个方程.

【解】设椭圆长轴2a、短轴2b、焦距2c,则|BF’|

=a

a b c

a a b

a c

222

222

2

105

=+

+=

-=-

?

?

?

?

?

()解得:

a

b

=

=

?

?

?

??

10

5

∴所求椭圆方程是:x2

10

y2

5

=1

F’

B

也可有垂直关系推证出等腰Rt △BB ’F ’后,由其性质推证出等腰Rt △B ’O ’F ’,再进行

如下列式: b c a c a b c =-=-=+???

?

?105222 ,更容易求出a 、b 的值.

【注】 圆锥曲线中,参数(a 、b 、c 、e 、p )的确定,是待定系数法的生动体现;如何确

定,要抓住已知条件,将其转换成表达式.在曲线的平移中,几何数据(a 、b 、c 、e )不变,本题就利用了这一特征,列出关于a -c 的等式.

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入.

例3. 是否存在常数a 、b 、c,使得等式1·22+2·32+…+n(n +1)2=

n n ()

+112

(an 2+bn +c)对一切自然数n 都成立?并证明你的结论. (89年全国高考题)

【分析】是否存在,不妨假设存在.由已知等式对一切自然数n 都成立,取特殊值n =1、2、3列出关于a 、b 、c 的方程组,解方程组求出a 、b 、c 的值,再用数学归纳法证明等式对所有自然数n 都成立.

【解】假设存在a 、b 、c 使得等式成立,令:n =1,得4=16(a +b +c);n =2,得22=1

2

(4a +2b +c);n =3,得70=9a +3b +c.整理得:

a b c a b c a b C ++=++=++=?????2442449370,解得a b c ===????

?3

1110, 于是对n =1、2、3,等式1·22

+2·32

+…+n(n +1)2

=n n ()+112

(3n 2

+11n +10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:

假设对n =k 时等式成立,即1·22

+2·32

+…+k(k +1)2

=k k ()+112

(3k 2

+11k +10);

当n =k +1时,1·22+2·32+…+k(k +1)2+(k +1)(k +2)2=k k ()+112

(3k 2

+11k +

10) +(k +1)(k +2)2=k k ()+112(k +2)(3k +5)+(k +1)(k +2)2=()()k k ++1212(3k

2

+5k +12k +24)=()()k k ++1212

[3(k +1)2

+11(k +1)+10],

也就是说,等式对n =k +1也成立.

综上所述,当a =8、b =11、c =10时,题设的等式对一切自然数n 都成立. 【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到.此种解法中,也体现了方程思想和特殊值法.对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行.本题如果记得两个特殊数列13

+23

+…+n 3

、12

+22

+…+n 2

求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n +1)2

=n 3

+2n 2

+n 得S n =1·22

+2·32

+…+n(n +1)2

=(13

+23

+…+n 3

)+2(12

+22

+…+n 2

)+(1+2+…+

n)=n n 2214()++2×n n n ()()++1216+n n ()+12

=n n ()+112(3n 2+11n +10),综上所述,

当a =8、b =11、c =10时,题设的等式对一切自然数n 都成立. 例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm 的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x 为何值时,矩形盒子容积最大,最大容积是多少?

【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究.

【解】 依题意,矩形盒子底边边长为(30-2x)cm,底边宽为(14-2x)cm,高为xcm. ∴ 盒子容积 V =(30-2x)(14-2x)x =4(15-x)(7-x)x , 显然:15-x>0,7-x>0,x>0.

设V =4

ab

(15a -ax)(7b -bx)x (a>0,b>0) 要使用均值不等式,则--+=-=-=???

a b a ax b bx x 10

157

解得:a =

1

4, b =34

, x =3 . 从而V =643(154-x 4)(214-34x)x ≤643(1542143

+)3=64

3×27=576.

所以当x =3时,矩形盒子的容积最大,最大容积是576cm 3

.

【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用“待定系数法”求.本题解答中也可以令V =

4ab (15a -ax)(7-x)bx 或 4

ab

(15-x)(7a -ax)bx,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了

“凑配法”和“函数思想”.

Ⅲ、巩固性题组:

1. 函数y =log a x 的x ∈[2,+∞)上恒有|y|>1,则a 的取值范围是_____.

A. 2>a>12

且a ≠1 B. 0

或12或0

2. 方程x 2+px +q =0与x 2

+qx +p =0只有一个公共根,则其余两个不同根之和为_____.

A. 1

B. -1

C. p +q

D. 无法确定 3. 如果函数y =sin2x +a ·cos2x 的图像关于直线x =-π8

对称,那么a =_____.

A. 2

B. -2

C. 1

D. -1

4. 满足C n 0+1·C n 1+2·C n 2+…+n ·C n n

<500的最大正整数是_____. A. 4 B. 5 C. 6 D. 7 5. 无穷等比数列{a n }的前n 项和为S n =a -12

n , 则所有项的和等于_____.

A. -12

B. 1

C. 12

D.与a 有关

6.(1+kx)9=b

0+b

1

x+b

2

x2+…+b

9

x9,若b

+b

1

+b

2

+…+b

9

=-1,则k=

______.

7.经过两直线11x-3y-9=0与12x+y-19=0的交点,且过点(3,-2)的直线方程为

_____________.

8. 正三棱锥底面边长为2,侧棱和底面所成角为60°,过底面一边作截面,使其与底面成30°角,则截面面积为______________.

9. 设y=f(x)是一次函数,已知f(8)=15,且f(2)、f(5)、(f14)成等比数列,求f(1)+f(2)+…+f(m)的值.

10. 设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y=2x+7和抛物线截得的线段长是410, 求抛物线的方程.

四、定义法

所谓定义法,就是直接用数学定义解题.数学中的定理、公式、性质和法则等,都是由定义和公理推演出来.定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念.

定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点.简单地说,定义是基本概念对数学实体的高度抽象.用定义法解题,是最直接的方法,本讲让我们回到定义中去.

Ⅰ、再现性题组:

1.已知集合A中有2个元素,集合B中有7个元素,A∪B的元素个数为n,则______.

A. 2≤n≤9

B. 7≤n≤9

C. 5≤n≤9

D. 5≤n≤7

2.设MP、OM、AT分别是46°角的正弦线、余弦线和正切线,则_____.

A. MP

B. OM

C. AT<

D. OM

3.复数z

1=a+2i,z

2

=-2+i,如果|z

1

|< |z

2

|,则实数a的取值范围是_____.

A. -1

B. a>1

C. a>0

D. a<-1或a>1

4.椭圆x2

25

y2

9

=1上有一点P,它到左准线的距离为

5

2

,那么P点到右焦点的距离为

_____.

A. 8 C. 7.5 C. 75

4

D. 3

5.奇函数f(x)的最小正周期为T,则f(-T

2

)的值为_____.

A. T

B. 0

C. T

2

D. 不能确定

6.正三棱台的侧棱与底面成45°角,则其侧面与底面所成角的正切值为_____. 【简解】1小题:利用并集定义,选B;

2小题:利用三角函数线定义,作出图形,选B;

3小题:利用复数模的定义得a222

+<5,选A;

4小题:利用椭圆的第二定义得到||

PF

5

2

=e=

4

5

,选A;

5小题:利用周期函数、奇函数的定义得到f(-T

2

)=f(

T

2

)=-f(-

T

2

),选B;

6小题:利用线面角、面面角的定义,答案2. Ⅱ、示范性题组:

例1. 已知z=1+i, ①设w=z2+3z-4,求w的三角形式;②如果z az b z z

2

21

++

-+

=1-i,求实数a、b的值.(94年全国理)

【分析】代入z进行运算化简后,运用复数三角形式和复数相等的定义解答.

【解】由z=1+i,有w=z2+3z-4=(1+i)2+3()

1+i-4=2i+3(1-i)-4=-

1-i,w的三角形式是2(cos 5

4

π

+isin

5

4

π

);

由z=1+i,有z az b

z z

2

21

++

-+

()()

()()

11

111

2

2

++++

+-++

i a i b

i i

()()

a b a i

i

+++2

=(a+2)-(a

+b)i.

由题设条件知:(a+2)-(a+b)i=1+i;

根据复数相等的定义,得:

a

a b

+=

-+=-

?

?

?

21

1

()

,

解得

a

b

=-

=

?

?

?

1

2

.

【注】求复数的三角形式,一般直接利用复数的三角形式定义求解.利用复数相等的定义,由实部、虚部分别相等而建立方程组,这是复数中经常遇到的.

例2. 已知f(x)=-x n+cx,f(2)=-14,f(4)=-252,求y=log

2

2

f(x)的定义域,判定

在(

2

2

3

,1)上的单调性.

【分析】要判断函数的单调性,必须首先确定n与c的值求出函数的解析式,再利用函数

的单调性定义判断.

【解】

f c

f c

n

n

()

()

22214

444252

=-+=-

=-+=-

?

?

?

??

解得:

n

c

=

=

?

?

?

4

1

∴ f(x)=-x4+x 解f(x)>0得:0

2

2

3

1

2

<1, 则f(x

1

)-f(x

2

)=-x

1

4+x

1

-(-x

2

4+x

2

=(x

1-x

2

)[1-(x

1

+x

2

)( x

1

2+x

2

2)],

∵ x

1+x

2

>2

3, x

1

2+x

2

2>

4

2

3

∴ (x

1

+x

2

)( x

1

2+x

2

2)〉2

4

2

3

=1

∴ f(x

1)-f(x

2

)>0即f(x)在(

2

2

3

,1)上是减函数

2

2

<1 ∴ y=log

2

2

f(x) 在(

2

2

3

,1)上是增函数.

【注】关于函数的性质:奇偶性、单调性、周期性

的判断,一般都是直接应用定义解题.本题还在求n、c

的过程中,运用了待定系数法和换元法.

例3. 如图,已知A’B’C’—ABC是正三棱柱,D是

AC中点.

①证明:AB’∥平面DBC’;

②假设AB’⊥BC’,求二面角D—BC’—C的度数.

(94年全国理)

【分析】由线面平行的定义来证①问,即通过证AB’平行平面DBC’内的一条直线而得;由二面角的平面角的定义作出平面角,通过解三角形而求②问.

【解】①连接B’C交BC’于O, 连接OD

∵ A’B’C’—ABC是正三棱柱

∴四边形B’BCC’是矩形

∴ O是B’C中点

△AB’C中, D是AC中点∴ AB’∥OD

∴ AB’∥平面DBC’

②作DH⊥BC于H,连接OH ∴ DH⊥平面BC’C

∵ AB’∥OD, AB’⊥BC’∴ BC’⊥OD

∴ BC’⊥OH 即∠DOH为所求二面角的平面角.

设AC=1,作OE⊥BC于E,则DH=1

2

sin60°=

3

4

,BH=

3

4

,EH=

1

4

B’

高考数学高考必备知识点总结精华版

高考前重点知识 第一章?集合 (一)、集合:集合元素的特征:确定性、互异性.无序性. 工集合的性质:①任何一个集合是它本身的子集,记为A胃A ; ②空集是任何集合的子集,记为。包A ; ③空集是任何非空集合的真子集; ①〃个元素的子集有2〃个.〃个元素的真子集有2〃 -1个.〃个元素的非空真子集有2〃-2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题。逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题。逆否命题. 交:A,且x e B} 2、集合运算:交、并、补产AU6Q{xlxeA或xe* 未卜:或A o {% £ (/, 且x任A} (三)简易逻辑 构成复合命题的形式:p或q (记作〃pvq〃); p且q (记作〃p 八q〃);mEp(i己作、q〃) o 工〃或〃‘〃且"、"非"的真假判断 种命题的形式及相互关系: 原命题:若P则q;逆命题:若q则p; 否命题:若1 P则1 q ;逆否命题:若1 q则]Po ④、原命题为真,它的逆命题不一定为真。 i命题为真它的否命题不一定为真。

@、原命题为真,它的逆否命题一定为真。 6、如果已知p=q那么我们说,P是q的充分条件,q是P的必要条 件。 若p=q且q = p,则称p是q的充要条件,记为p<=>q. 一.函数的性质 (工)定义域:(2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:/(—x) = /(x),②奇函数:/(—x) = -/(X) ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点 对称;c.求/(-X);&比较/(T)与/(X)或/(T)与—/(X)的关系。 (4 )函数的单调性 定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1f X2, 。语当X1VX2时,都有f(XT)Vf(X2),则说f(X)在这个区间上是增函数; (2语当X1f(X)则说f(X)在这个区间上是减函数? 二.指数函数与对数函数 指数函数> = /(〃>。且"。1)的图象和性质

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

高考数学思想方法汇总(80页)

高考数学思想方法 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光. 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等. 数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用. 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得. 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”. 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷. 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识. 第一章高中数学解题基本方法 一、配方法

高考数学必备知识点总结

高考重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补. {|,}{|} {,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。

6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求 )(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

高三数学个人教学工作总结

高三数学个人教学工作总结 人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面是橙子整理收集的高三数学的教学工作总结,欢迎大家阅读参考! 高三数学教学工作总结【一】本学期我担任高三(5)班的数学教学和高三(6)班班主任,在这学期我结合本校的实际条件和学生的实际情况,勤勤恳恳,扎扎实实的工作,使本学期的工作有计划,有组织,有步骤地开展。具体工作总结如下: 一、面向全体学生,进一步要求班主任加强家校联系。 我们打破了过去只等到学生犯错后才和学生家长联系的情况,我要求班主任经常与学生家长联系,即时了解学生的家庭情况,同时也把学生在校的情况反馈给学生家长,特别是那些学困生。我们经常以年级教师商讨年级班级工作中存在的优点与不足;经常交流特殊生教育的心得,同时也把老师教育的具体情况反馈给学生家长。对于个别学生还请家长到学校来协助教育。以上措施的实行已见成效,获得社会家长的好评。 二、教学方面 1、做好备课工作。在教学中,我始终坚持预先备好课,在教学中我归纳了以下几点备课原则:扣大纲,抓重点;备教材、备学生、备教法;能围绕本课时教学目的、要求,根据学生的实际情况,把复杂的内容进行变换,取其精华,有取有舍;环节齐,有后记等等,紧

跟课改,上好每一节课。教学目的明确,能认真钻研教材,了解学生,研究教法,突破重难点,善于创设学习情境,激发学习热情,能有序地开展教学活动,体现分层教学,各类学生主动地发展。严把课堂教学质量关等。 2、认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。 3、抓好培优扶差工作。我认识到要想提高教学质量,培优扶差工作至关重要,只有把优生培养好了,优秀率才能升高,班级才有榜样;也只有把差生的转化工作做好,才能提高合格率,并为营造一个良好的班集体扫清障碍,利于班级良好学风的形成。因此,我坚持做到有计划、有效果、有记录、有辅导、有鼓励、努力提高合格率和优秀率。对学生的表现都做出公正、准确的评价,发放积分卡以此来调动学生的学习积极性,鼓励学生不断进步。总之,一份耕耘,一份收获。在以后的工作中,我一定会取长补短,争取做得更好。努力提高自己综合素质,做一名学生喜欢的教师。 高三数学教学工作总结【二】在本学期中,本人担任了高三(23)班和(24)班的数学教学工作。还记得当初学校通知我连任高三的时候,觉得压力还是挺大的。作为年轻教师,教学经验不足,对高考的把握始终不够。特别又是高三(23)和(24)班都是文科班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

最新全国新课标高考理科数学考试大纲

全国新课标高考文科数学考试大纲 I.命题指导思想 坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能. II.考试内容与要求 一.考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. (1)了解 要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解 要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等. (3)掌握 要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决

高中数学必修一集合经典习题

集合练习题 一、选择题(每小题5分,计5×12=60分) 1.下列集合中,结果是空集的为() (A)(B) (C)(D) 2.设集合,,则() (A)(B) (C)(D) 3.下列表示①②③④中,正确的个数为( ) (A)1 (B)2 (C)3 (D)4 4.满足的集合的个数为() (A)6 (B) 7 (C) 8 (D)9 5.若集合、、,满足,,则与之间的关系为() (A)(B)(C)(D) 6.下列集合中,表示方程组的解集的是() (A)(B)(C)(D) 7.设,,若,则实数的取值范围是() (A)(B)(C)(D) 8.已知全集合,,,那么 是() (A)(B)(C)(D) 9.已知集合,则等于() (A)(B) (C)(D) 10.已知集合,,那么() (A)(B)(C)(D) 11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()

(A)(B) (C)(D) 12.设全集,若,, ,则下列结论正确的是() (A)且(B)且 (C)且(D)且 二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合 14.用描述法表示平面内不在第一与第三象限的点的集合为 15.设全集,,,则的值为 16.若集合只有一个元素,则实数的值为三、解答题(共计74分) 17.(本小题满分12分)若,求实数的值。 18.(本小题满分12分)设全集合,, ,求,,, 19.(本小题满分12分)设全集,集合与集合,且,求,

20.(本小题满分12分)已知集合 , ,且 ,求实数 的取值范围。 21.(本小题满分12分)已知集合 , , ,求实数的取值范围 22.(本小题满分14分)已知集合 , ,若 ,求实数的取值范围。 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ?, 求实数a 的取值范围. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求 实数a 的值.

高考数学必考知识点总结归纳

高考数学必考知识点总结归纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。?注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().? 若为真,当且仅当、均为真p q p q ∧

若为真,当且仅当、至少有一个为真 ∨ p q p q ?p p 若为真,当且仅当为假 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? [] 0义域是_。 >->=+- f x a b b a F(x f x f x 如:函数的定义域是,,,则函数的定 ())()() [] - a a (答:,) 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?

高考数学 公式 定理 经验总结

三角形的三条中线的交点叫三角形的重心. 如图,设O为三角形的重心,则有: 7.重心在向量中的重要结论:外心 二.外心

三.内心

四.旁心 1 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。 2旁心到三角形三边的距离相等。 3三角形有三个旁切圆,三个旁心。旁心一定在三角形外。 4直角三角形斜边上的旁切圆的半径等于三角形周长的一半。 五.垂心 三角形的垂心是三角形三边上的高的交点(通常用H表示)。 三角形的垂心的性质 1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外 2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 3. 垂心O关于三边的对称点,均在△ABC的外接圆上 4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF 5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。

1.常见的配方:a2+b2=(a+b)2-2ab=(a-b)2+2ab;

a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 BD AC CAD ∠ sin 4.共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 即 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°,

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考新课标大纲及解读:数学(文)

2019年高考新课标大纲及解读:数学(文) 2019年高考考试说明(课程标准实验版) 数学(文) I.考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度. Ⅱ.考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2019年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的

数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明 对知识的要求依次是了解、理解、掌握三个层次。 (1)了解:要求对所列知识的含义有初步的、感性的认识.知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。比较、判断,初步应用等。 (3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。这一层次所涉及的主要行为动词有:掌握、导出、分析.推导、证明.研究、讨论、运用、解决问题等. 2.能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

高三数学必考知识点汇总

高三数学必考知识点汇总 一 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+n-1d. 3.等差中项 如果A=a+b/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 1通项公式的推广:an=am+n-mdn,m∈N_. 2若{an}为等差数列,且m+n=p+q, 则am+an=ap+aqm,n,p,q∈N_. 3若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…k,m∈N_是公差为md的等差数列. 4数列Sm,S2m-Sm,S3m-S2m,…也是等差数列. 5S2n-1=2n-1an. 6若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中中间项. 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=na1+an/2

两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. 1若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. 2若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 1定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; 2等差中项法:验证2an-1=an+an-2n≥3,n∈N_都成立; 3通项公式法:验证an=pn+q; 4前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列. 二 1.不等式的定义 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.比较两个实数的大小 两个实数的大小是用实数的运算性质来定义的, 有a-b>0?;a-b=0?;a-b<0?. 另外,若b>0,则有>1?;=1?;<1?. 概括为:作差法,作商法,中间量法等. 3.不等式的性质 1对称性:a>b?; 2传递性:a>b,b>c?; 3可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

高中数学教学经验总结

经验总结 一眨眼,已经过了18个春秋的教学生涯,回想这18年,经历过困惑,也收获了成功的喜悦,深刻感受到了教学工作责任重大,教学生活的清苦,但是当一批批的学生满怀喜悦迈入高等学府继续深造,我们成功完成了自己的间断性使命的时候,又感觉我们的付出是多么的值得。自从大学毕业走上工作岗位,就一直从事高中数学教育,对这门学科有了深刻的了解和深厚的感情,也对数学教育做了深刻的思考。数学是基础学科,是自然科学,技术科学的基础,并在其他领域中也发挥出越来越大的作用,与计算机技术的结合,能直接为社会创造价值,所以,它是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。但是从初中迈入高中以后,感觉很多同学学习数学,越来越吃力,甚至说初中感觉数学还是优势科目的同学,到了高中以后,数学却成了差科,我深刻思考过这个问题,导致这个的原因是什么?除了学科抽象的特点,我们的教学似乎哪个地方不太对劲。 一:因材施教。 多少年以来,我们一直在说这个问题,课程标准明确指出,高中数学教育有基础性,其一:在义务教育以后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养。其二,为学生进一步学习提供必要的数学储备。两个方面很好的阐述了高中数学的教育目标。但是我们在实际操作中,往往就忽略了不同学生在这一科上的差异,只怕少讲一点,

学生就不会。记得1997年的课改,高一分班后,我带了两个文科班,因为当时也是课改第一批,对教材的难度把握不够,而且当时平时考试文理同卷,这样,对文科生是个严峻的考验。只怕学生学的简单,无法应付考试,就和理科一样去要求,我讲的很累,同学却听得一头雾水,有个别同学甚至有放弃数学的想法,前几次考试下来,一塌糊涂,难的不对能理解,但是感觉基础的题目做的也不好,就无法理解了,静下来细细反思,从教师角度想,是想去拔高同学,结果适得其反。经过深思熟虑以后,决定改变策略,第一是针对班内文科生特点,适当降低难度,抓基础,给同学更多练习的机会。高三复习时,根据内容,适当的抛开教学资料,自己出题,往往要加班到晚上12点多,然后在课堂上进行限时训练,及时点评,后来同学反映,这一招很管用,对同学的促进、触动都很大。其次,针对班内同学参差不齐,又做出了不同要求,在抓大局的同时,做好促优补差工作,具体做法是,每天布置的作业,学差生可以做其中的80%,难的放掉,但是要保证80%要彻底懂了,教师对这部分同学要专门对待,随时抽查,促进其不掉队。同时,对学优生要注意拔高,每天另外出两个综合度比较大的题目,一天后,就将标准答案给出,供同学参考。实践证明,这个办法很管用,全班都有所提高,半个学期过后的高考中,同学都感觉这一科比较理想,两个班在太原市学科排名第6,事实胜于雄辩,我更加坚信了这个做法的可行性,在以后的教学中,我敢于根据实际情况及时调整战略,该放的要放,该

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

相关文档
最新文档