量纲分析方法的基本原理是定理

量纲分析方法的基本原理是定理
量纲分析方法的基本原理是定理

量纲分析方法的基本原理是Π定理。

设所选取的单位制中基本量的数目为m,它们是,物理量Q的量纲式为

(1)

对上式取对数,则有

(2)

是m维空间的“正交基矢”,则

就是“矢量”ln[Q]

在基矢量上的投影,或者说是它的“分量”。于是,量纲式可以简写为

所谓几个物理量的量纲独立,是指无法用它们幂次的乘积组成无量纲量。用矢量语言表达,就是代表

它们量纲的“矢量”线性无关。在m维的空间内最多有m个彼此线性无关的矢量。m

个矢量

(i =1,2, …,m)线性无关的条件是它们组成的行列式不等于0:

(3)

P定理表述为设某物理问题内涉及n个物理量(包括物理常量

,而我们所选取的单位

制中有m个基本量(n>m),则由此可组成(n-m )个无量纲的量,在物理量之间存在的函数关系式

(4)

可表示成相应的无量纲形式

(5)

或者把

解出来:

(6)

n=m的情况下,有两种可能:若的量纲彼此独立,则不能由它们组成无量纲的量;若不独硫还可能组成无量纲的量。

运用P定理作量纲分析示范如下:

在力学问题中,选取质量(M)、长度(L)、和时间(T)作为基本物理量,故m=3。

例1:设一均匀细棒,长度为l,质量为m。求绕过中点O的转轴的转动惯量 J(如右图)。

解:转动惯量的量纲式为,任意形状的转动惯量可写为, 代表一组能确定其几何形状的无量纲参量,如长方形的两边长之比;三角形的底与高之比,对于几何形状相似的物体,函数是等同的,对于那些只用一个特征长度即可完全确定的几何形体,如正方体,长方体,立方体,圆,球……等,退化为一个未知常数,用k表示。所以,对细棒,转动惯量J可以写成

(7)

已知平行轴定理

(8)(这里是物体对通过其质心的某个特定轴的转动惯量,d是将此转轴平行移动距离。)

设式(7)中的J代表细棒的,即过质心o并垂直于棒的转轴的转动惯量。将转轴移至端点,则

, 按(8)式

(9)

设想棒平均分成两段,每段质量为,长度为 ,按(9)式, 两段绕同一

转轴的转动惯量之和应等于总转动惯量,即: ,∴

∴ 由(7)式得, 由(9)式得

例2.; 由开普勒第三定律推论万有引力的性质。

解:设万有引力具有的形式,并设半长轴a和周期t除随k变化外,还取决于行星本身的质量m,能量E和角动量。有关参量的量纲为

根据此量纲表可算出,由k/m、E、和组成的一个无量纲量

根据P定理式中P为与椭圆轨道形状有关的无量纲参量(如偏心率)。

开普勒第三定律宣称:常量(太阳系的常量),与行星的性质无关。故上式中

(平方反比律)和。即, 太阳系常数。

相似原理与量纲分析

对《粘性土地基强夯地面变形与应用的模型试验研究》的相似原理与量纲分析 包思远 摘要:实验研究是力学研究方法中的重要组成部分。量纲分析和相似原理是关于如何设计和组织实验,如何选择实验参数,如何处理实验数据等问题的指导性理论。相似原理与量纲分析的主要内容为物理方程的量纲齐次性,π定理与量纲分析法,流动相似与相似准则,相似准则的确定,常用的相似准则数、相似原理与模型实验。本文主要分析和学习例文中的相似模型的建立和量纲分析方法,用相似原理和量纲分析方法解决实验中遇到的问题。 关键字模型试验,相似原理,量纲分析 1 模型实验相似原理基础 模型顾名思义是把实际工程中的原型缩小N倍,进行相应的实验,得到相应的规律,来反映原型在现实工程中的状态,起到一个指导作用。 模型试验它的优点在于小巧,轻便,易于安装和拆卸,最重要的原因是它的经济性高能够从少量的实验经费中得到较好的实验规律。回归于模型试验的本质就是相似原理,而相似理论有三个,分别为相似第一、二、三三大定理,其中相似第一定律是:彼此相似的物理现象,单值条件相同,其相似准数的数值也相同;相似第二定律,也称为π定律,即:两个物体相似,无论采用哪种相似判据,某些情况下的相似判据均可写成为无量纲方程。第二相似定理表明现象的物理方程可以转化为相似准数方程。它告诉人们如何处理模型试验的结果,即以相似准数间的关系给定的形式处理试验数据,并将试验结果推广到其它相似现象上去;相似第三定律是相似现象的充要条件。现象相似的充分和必要条件是:现象的单值条件相似,并且由单值条件导出来的相似准数的数值相等。 实际应用时,相似条件都是由无量纲形式的π数来表示的。目前推导原型与模型相似条件的方法主要有方程分析法和量纲分析法。方程分析法是根据支配现象的微分方程来推导相似关系。在使用方程分析法推导相似关系时,首先要列出支配现象的微分方程,然后取项与项之比就可以求出无量纲的二数。这种方法对实验者知识的掌握程度要求较高。而且在计算机

第五章-相似原理与量纲分析

第五章 相似理论与量纲分析 5.1基本要求 本章简单阐述和实验有关的一些理论性的基本知识。其中,包括作为模型实验理论根 据的相似性原理,阐述原型和模型相互关系的模型律,以及有助于选择实验参数的量纲分析法。 5.1.1识记几何相似、运动相似、动力相似的定义,Re 、Fr 、Eu 等相似准则数的含义, 量纲的定义。 5.1.2领会流动的力学相似概念,各个相似准数的物理意义,量纲分析法的应用。 5.1.3应用量纲分析法推导物理公式,利用模型律安排模型实验。 重点:相似原理,相似准则,量纲分析法。 难点:量纲分析法,模型律。 5.2基本知识点 5.2.1相似的基本概念 为使模型流动能表现出原型流动的主要现象和特性,并从模型流动上预测出原型流动的结果,就必须使两者在流动上相似,即两个互为相似流动的对应部位上对应物理量都有一定的比例关系。具体来说,两相似流动应满足几何相似、运动相似和动力相似。原型流动用下标n 表示,模型流动用下标m 表示。 1. 几何相似 两流动的对应边长成同一比例,对应角相等。即 n n l m m L d C L d == n m θθ= 相应有 222n n A l m m A L C C A L === 333n n V l m m V L C C V L === 2. 运动相似 两流动的对应点上流体速度矢量成同一比例,即对应点上速度大小成同一比例,方向相同。 n n u m m u C u υυ== 相应有 t l l u t u C C C C C C ==或者 , 2 u u a t l C C C C C == 3. 动力相似 两流动的对应部位上同名力矢成同一比例,即对应的受同名力同时作用在两流动上,且各同名力方向一致,大小成比例。 Im pn n In n Gn En F m m Gm pm Em F F F F F F C F F F F F F υυ====== 4. 流动相似的含义 几何相似是运动相似和动力相似的前提与依据;动力相似是决定二个流动相似的主导因素;运动相似是几何相似和动力相似的表现;凡相似的流动,必是几何相似、运动相似和动力相似的流动。

量纲分析方法的基本原理是定理

量纲分析方法的基本原理是Π定理。 设所选取的单位制中基本量的数目为m,它们是,物理量Q的量纲式为 (1) 对上式取对数,则有 (2) 若 是m维空间的“正交基矢”,则 就是“矢量”ln[Q] 在基矢量上的投影,或者说是它的“分量”。于是,量纲式可以简写为 。 所谓几个物理量的量纲独立,是指无法用它们幂次的乘积组成无量纲量。用矢量语言表达,就是代表 它们量纲的“矢量”线性无关。在m维的空间内最多有m个彼此线性无关的矢量。m 个矢量 (i =1,2, …,m)线性无关的条件是它们组成的行列式不等于0: (3) P定理表述为设某物理问题内涉及n个物理量(包括物理常量 ,而我们所选取的单位 制中有m个基本量(n>m),则由此可组成(n-m )个无量纲的量,在物理量之间存在的函数关系式 (4) 可表示成相应的无量纲形式 (5) 或者把 解出来: (6)

n=m的情况下,有两种可能:若的量纲彼此独立,则不能由它们组成无量纲的量;若不独硫还可能组成无量纲的量。 运用P定理作量纲分析示范如下: 在力学问题中,选取质量(M)、长度(L)、和时间(T)作为基本物理量,故m=3。 例1:设一均匀细棒,长度为l,质量为m。求绕过中点O的转轴的转动惯量 J(如右图)。 解:转动惯量的量纲式为,任意形状的转动惯量可写为, 代表一组能确定其几何形状的无量纲参量,如长方形的两边长之比;三角形的底与高之比,对于几何形状相似的物体,函数是等同的,对于那些只用一个特征长度即可完全确定的几何形体,如正方体,长方体,立方体,圆,球……等,退化为一个未知常数,用k表示。所以,对细棒,转动惯量J可以写成 (7) 已知平行轴定理 (8)(这里是物体对通过其质心的某个特定轴的转动惯量,d是将此转轴平行移动距离。) 设式(7)中的J代表细棒的,即过质心o并垂直于棒的转轴的转动惯量。将转轴移至端点,则 , 按(8)式 (9)

第一节 量纲分析方法

第一节量纲分析方法 量纲分析是物理学中常用的一种定性分析方法,也是在物理领域中建立数学模型的一个有力工具。利用这种方法可以从某些条件出发,对某一物理现象进行推断,可将这个物理现象表示为某些具有量纲的变量的方程,从而可以用此来分析个物理量之间的关系。 1.1量纲 当对一个物理概念进行定量描述时,总离不开它的一些特性,比如,时间、质量、密度、速度、力等等,这种表示不同物理特性的量,称之为具有不同的“量纲”。概括来说,将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)(量纲又称为因次)。它是在选定了单位制之后,由基本物理量单位表达的式子。在国际单位制(I)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是L、M、T、I、Q、N和J。按照国家标准(GB3101—93),物理量?的量纲记为dim?,国际物理学界沿用的习惯记为[?]。

实际中,有些物理量的量纲是基本的,成为基本量纲。系统因选定的基本单位不同,而分成绝对系统与工程系统两大类。工程系统的基本单位:质量、长度、时间、力。绝对系统的基本单位:质量、长度、时间。绝对系统以长度(length)、质量(mass)、时间(time)及温度(temperature)为基本量纲,各以符号L 、M 、T 、θ表示其量纲。其他可由基本量纲推导出的量纲称为导出量纲。但在工程系统中,除了长度L 、质量M 、时间T 及温度θ等基本量纲外,也将力定义为基本量纲,而以符号F 表示其量纲。此外在探讨热量 (heat)时,热量亦被定义为基本量纲,而以H 表示。而其他的物理量的量纲可以由这些基本量纲来表示,比如: 速度v = ds/dt 量纲:[]V =1 LT - 加速度a = dv/dt 量纲:2 []a LT -= 力F = ma 量纲:22[][][]F M LT MLT --== 压强P = F/S 量纲: 22[]P MLT L --= 21MT L --= 实际中,也有些量是无量纲的,比如,e π等,此 时记为[][]1e π==。 有量纲的物理量都可以进行无量纲化处理量纲有赖于基本量的选择,是外加的有关量的度量手段。模型所描述的规律应该独立于量纲的影响。机理模型的

相似原理与量纲分析

相似原理与量纲分析

对《粘性土地基强夯地面变形与应用的模型试验研究》的相似原理与量纲分析 包思远 摘要:实验研究是力学研究方法中的重要组成部分。量纲分析和相似原理是关于如何设计和组织实验,如何选择实验参数,如何处理实验数据等问题的指导性理论。相似原理与量纲分析的主要内容为物理方程的量纲齐次性, 定理与量纲分析法,流动相似与相似准则,相似准则的确定,常用的相似准则数、相似原理与模型实验。本文主要分析和学习例文中的相似模型的建立和量纲分析方法,用相似原理和量纲分析方法解决实验中遇到的问题。 关键字模型试验,相似原理,量纲分析 1 模型实验相似原理基础 模型顾名思义是把实际工程中的原型缩小N 倍,进行相应的实验,得到相应的规律, 来反映原型在现实工程中的状态,起到一个指导作用。 模型试验它的优点在于小巧,轻便,易于安

装和拆卸,最重要的原因是它的经济性高 能够从少量的实验经费中得到较好的实验规律。回归于模型试验的本质就是相似原理,而相似理论有三个,分别为相似第一、二、三三大定理,其中相似第一定律是:彼此相似的物理现象,单值条件相同,其相似准数的数值也相同;相似第二定律,也称为π定律,即:两个物体相似,无论采用哪种相似判据,某些情况下的相似判据均可写成为无量纲方程。第二相似定理表明现象的物理方程可以转化为相似准数方程。它告诉人们如何处理模型试验的结果,即以相似准数间的关系给定的形式处理试验数据,并将试验结果推广到其它相似现象上去;相似第三定律是相似现象的充要条件。现象相似的充分和必要条件是:现象的单值条件相似,并且由单值条件导出来的相似准数的数值相等。 实际应用时,相似条件都是由无量纲形式的π数来表示的。目前推导原型与模型相似条件的方法主要有方程分析法和量纲分析法。方程分析法是根据支配现象的微分方程来推导相似关系。在使用方程分析法推导相似关系时,首先要列出支配现象的微分方程,然后取项与项之比就可以

量纲分析法

第三节 量纲分析法 量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。 3.1 量纲齐次原则与Pi 定理 许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。例如在动力学中,把长度l , 质量m 和时间t 的量纲作为基本量纲,记为 [][][]T t M m L l ===,,; 而速度f v ,力的量纲可表示为[][]21,--==MLT f LT v . 在国际单位制中,有7个基本量:长度、质量、时间、电流、温度、光强度和物质的量,它们的量纲分别为L 、M 、T 、I 、Θ、J 、和N ;称为基本量纲。任一个物理量q 的量纲都可以表成基本量纲的幂次之积, []η ξ ε δ γ β α J N I T M L q Θ= 量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。 量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体的例子,再给出量纲分析的一般方法。 例3—1: 单摆运动,质量为m 的小球系在长度为l 的线的一端,线的另一端固定,小球偏离平衡位置后,在重力mg 作用下做往复摆动,忽略阻力,求摆动周期t 的表达式。 解:在这个问题中有关的物理量有g l m t ,,,设它们之间有关系式 3 211αααλg l m t = ---------------(3.1) 其中32,,ααα为待定常数,入为无量纲的比例系数,取(3.1)式的量纲表达式有 [][][][]3 2 1 α ααg l m t = 整理得:33 212αααα -+=T L M T --------------(3.2) 由量纲齐次原则应有 ?? ? ??=-=+=1 200 3321αααα ---------------(3.3) 解得:,2 1 ,2 1 ,0321- == =ααα 代入(3.1)得 g l t λ= -------(3.4) (3.4)式与单摆的周期公式是一致的 下面我们给出用于量纲分析建模的 Buckingham Pi 定理,

量纲分析法原理

量纲和谐原理 我们经常遇到许多物理量,如长度、时间、质量、力、速度、密度及动量等。它们的名称、记号和量纲如表所示。 表1 流体力学中常见物理量的量纲 速度v 表示单位时间内所经历的距离,它的单位是[米/秒]。距离是长度l ,它的量纲是[L ],而时间t 的量纲是[T ],故速度v 的量纲是[1LT -]。 动量是质量m 和速度v 之积。质量的量纲是[M ],故动量的量纲是[1MLT -]。 如果我们选定三个相对对立的,例如长度l 的量纲[L ]、时间t 的量纲[T ]、质量m 的量纲[M ]为基本量纲,那么其他物理量的量纲都可用这三个基本量纲来表示。如表5-1中所示,例如,加速度a 的量纲可表示为[2LT -],力F 的量纲可表示为[2LMT -]。当我们把一些物理量进行组合、分析或作比较时,用量纲表示就比较便利。 如果我们要写出一个流体微团的运动方程 F ma =∑v v 式子左边是作用在微团的各力和,它可以包括:重力W v 、压力P v 、粘滞τv 、力弹性力E v 等;右边是微团的惯性力ma v 。于是得到 +++W P E ma t =v v v v v (5-1) 上式中的每项都是力,所以各项的量纲都是[2 LMT -]。又如,关于理想流体的伯努利方程

2 ++=2v p z H g g r 表示流管中三项能头之和保持常数,即等于总能头H 。每项的单位都是米,故它们的量纲都是[L]。不仅如此,在力学上任何有物理意义的方程或关系式,每一项的量纲必定相同。这称为力学方程的量纲和谐性原理,又称为“量纲齐次性规律”。量纲和谐原理是由傅里叶1822年提出来的,它是量纲分析法中具有基本重要性的一个概念,也是量纲分析法的理论基础,并可具体表达成:只有相同类型的物理量才能相加减,也就是相同量纲的物理量才可以相加减或比较大小;不同类型的物理量相加减没有任何意义。例如,速度可以和速度相加减,但绝不可以加上粘性系数或压力。当然,相同量纲和不同单位的物理量之间是可以相互加减和比较大小的,因为只要将其单位稍加换算即可完成。 一个量纲齐次性的方程,可以化为无量纲方程,只要用方程中的任意一项除其他各项。例如,在式(5-1)中,用惯性力项遍除其他各项,于是各项都变成无量纲量,而各无量纲量之和等于1,即 +++1W P E ma ma ma ma τ=v v v v v v v v 由以上讨论可见,运用量纲可以更明显地指出物理量的性质。 不同量纲的物理量不能相加减,但它们可以根据某种需要进行乘除,从而导出另一量纲的物理量。 量纲和谐原理可以用来检验新建方程或经验公式的正确性和完整性,也可以用来确定公式中物理量的未知指数,还可以用来建立有关方程式。对于量纲齐次的方程,只要用方程的任一项量纲去除其余各项,就可以使方程的每一项都变成无量纲量,方程变为无量纲方程。量纲分析就是基于物理方程具有和谐原理,通过量纲分析和计算,将原来含有较多物理量的方程转化为含有比原物理量少的无量纲方程,使得为研究这些变量关系而进行的实验大大简化。 量纲分析法原理 在量纲和谐原理基础上发展起来的量纲分析法分为瑞利法和p 定理白金汉定理法。 为了简单地说明量纲分析法,我们先来讨论理论力学中熟悉的单摆周期,其关系式为 =2t π (5-2) 假设,我们先前只见过单摆的物理现象,而还不知这个表明单摆周期的关系式时,可以

第五章 相似原理与量纲分析

第五章相似原理与量纲分析 (1)第三章是理论研究方法,但除了极少数问题外,很难得到理论解析解,而必须借助于实验方法。(2)实验研究方法有实物实验、比拟实验和模型实验三大类。(3)实物实验是用仪器实测原型系统的流动参数,它对于较小的模型系统比较合适,对大型系统就很难;比拟实验有水电比拟和水气比拟,是利用电磁场来模拟流场和用液体来模拟气体,实施起来也有诸多限制;模拟实验是最常用的实验方法,此法是在测试中把原型按一定比例缩小后的模型,此外还可能要变更流体的性质和流动条件等等。(4)模拟实验研究的理论指导基础是相似原理。具体实践方法是通过量纲分析。(5)流动相似是几何相似的推广。 §1 流动相似原理 几何相似——对应边成同一比例;对角边相等。当边上有粗糙度时还要求粗糙度相似。 运动相似——(1)几何相似的流动系统中,对应点的速度大小成同一比例,方向相同。即流线是相似的。(2)几何相似未必运动相似。如同一模型的亚超音速流动。(3)速度相似,和几何相似,则加速度相似。 动力相似——(1)几何相似和运动相似的两个流场中,对应点处的作用的性质相同的力,其大小成同一比例,方向相同。(2)力相似,则力矩和其他与力相关的物理量也相似。 时间相似——流体动力所对应的时间间隔成比例。这是对非定常问题而言的,意思是相应的非定常时间尺度成比例。 其他相似——热力相似;化学相似等。 §2 相似准则与量纲分析 相似原理说明两个流动系统相似必须在几何相似、运动相似和动力相似三个方面都得到满足,两者才可以比拟。但在实际应用中,并不能用这些定义来验证流动是否相似,因为通常原型流动的详情是未知的。这就产生一个问题:有什么其他办法能保证两个流动系统相似呢?有,这就是相似准则。利用相似准则,不必详细判断流场各点的几何、运动和动力量是否相似,而直接可判断流场是否相似。 (一)量纲

相似原理和量纲分析.

水力学教学辅导 第10章 相似原理和量纲分析 【教学基本要求】 1、了解相似现象和流动相似的特征。 2、了解水力学模型设计的相似原理和重力相似准则、阻力相似准则,能进行模型比尺和对应物理量的计算。 3、了解量纲和谐原理的基本概念。 【内容提要和学习指导】 实际工程中的水流现象非常复杂,仅靠理论分析对工程中的水力学问题进行求解存在许多困难,模型试验和量纲分析就是解决复杂水力学问题的有效途径。因此要求我们对模型试验和量纲分析的原理和方法有初步的了解。通过本章学习,会根据不同的水流模型试验,依据重力相似准则和阻力相似准则进行相似比尺设计和原型与模型对应的物理量的计算。 这一章要求重点掌握重力相似准则、阻力相似准则以及模型比尺和对应物理量的计算。掌握正确组合无量纲量的组合方法。 10.1 相似现象和流动相似的特征 相似是人们常遇到的概念,最常见的是指图形的相似,即两个几何图形的对应边成比例,对应的角都相等。 流动相似是图形相似的推广。流动相似具有三个特征,或者说要满足三个条件,即:几何相似,运动相似,动力相似。其中几何相似是前提,动力相似是保证,才能实现运动相似这个目的。运动相似和动力相似是表示原型和模型两个流动对应的点速度、压强和所受的作用力都分别满足确定的比例关系。 10.2相似理论和牛顿相似准则 相似原理是进行水力学模型试验的基础,它是指实现流动相似所必需遵循的基本关系和准则。 在满足几何相似的前提下,动力相似是实现流动相似的必要条件,即要求模型和原型中作用在液体上的各种力都成比例。用数学式可以表达为: (Ne )P =(Ne )M (10—1) 式中牛顿数 表示某种力与惯性力的比值,F 可以是任何种类的力,下 标P 和M 分别表示是原型和模型的物理量。这就是实现流动动力相似的牛顿相似准则。 22Ne υρL F =

第五章 相似原理与量纲分析

第五章相似原理与量纲分析 对于复杂的实际工程问题,直接应用基本方程求解,在数学上极其困难,因此需有赖于实验研究来解决。本章主要阐述有关实验研究的基本理论和方法,包括流动相似原理,相似准则,量纲和谐原理及量纲分析方法等。 第一节流动相似 原型:天然水流和实际建筑物称为原型。 模型:通常把原型(实物)按一定比例关系缩小(或放大)的代表物,称为模型。 水力学模型试验:是依据相似原理把水工建筑物或其它建筑物的原型按一定比例缩小制成模型,模拟与天然情况相似的水流进行观测和分析研究,然后将模型试验的成果换算和应用到原型中,分析判断原型的情况。 水力学模型试验的目的:利用模型水流来模拟和研究原型水流问题。 关键问题:模型水流和原型水流保持流动相似。 流动相似:两个流动的相应点上的同名物理量(如速度、压强、各种作用力等)具有各自的固定比例关系,则这两个流动就是相似的。 模型和原型保证流动相似,应满足: 几何相似 运动相似 动力相似 初始条件和边界条件相似 1.几何相似 几何相似:指原型和模型两个流场的几何形状相似,即原型和模型及其流动所有相应的线性变量的比值均相等。 长度比尺:(5-1) 面积比尺:(5-2) 体积比尺:(5-3)

2. 运动相似 运动相似:是指流体运动的速度场相似,也即两流场各相应点(包括边界上各点)的速度u及加速度a方向相同,且大小各具有同一比值。 速度比尺:(5-4) 加速度比尺:(5-5) 3.动力相似 动力相似:是指两流动各相应点上流体质点所受的同名力方向相同,其大小比值相等。 力的比尺: (5-6) 4.初始条件和边界条件的相似 初始条件:适用于非恒定流。 边界条件:有几何、运动和动力三个方面的因素。如固体边界上的法线流速为零,自由液面上的压强为大气压强等。 流动相似的含义: 几何相似是运动相似和动力相似的前提与依据; 动力相似是决定二个液流运动相似的主导因素; 运动相似是几何相似和动力相似的表现; 凡流动相似的流动,必是几何相似、运动相似和动力相似的流动。 想一想:两恒定流流动相似应满足哪些条件?答:应满足几何相似,动力相似,运动相似及边界条件相似。 第二节动力相似准则 动力相似准则:在两相似的流动中,各种力之间保持固定不变的比例关系。

相似原理及量纲分析

第十三章相似原理及量纲分析 实际工程中,有时流动现象极为复杂,即使经过简化,也难以通过解析的方法求解。在这种情况下,就必须通过实验的方法来解决。 而工程原型有时尺寸巨大,在工程原型上进行实验,会耗费大量的人力与物力,有时则完全是不可能的(例如:水坝,水工建筑物中抗特大洪水的试验)。所以,通常利用缩小的模型进行实验。当然,如果原型尺寸很小,也可利用放大的模型进行实验。而进行模型实验,首先必须解决两类问题。 (1) 如何正确地设计和布置模型实验,例如,模型形状与尺寸的确定,介质的选取。 (2) 如何整理模型实验所得的结果,例如,实验数据的整理,以及如何将实验的结果推广到与实验相似的流动现象上。 相似原理就是解决上述问题的基础。本节的内容也适用于叶轮机械的模型研究、热力设备的模型研究以及工程传热学等有关学科。 §13-1 相似的概念 相似的概念最早出现在几何学中,如两个相似三角形,应具有对应夹角相等,对应边互成比例,那么,这两个三角形便是几何相似的。 在流体力学的研究中,所谓相似,主要是指流动的力学相似,而构成力学相似的两个流动,一个是指实际的流动现象,称为原型;另一个是在实验室中进行重演或预演的流动现象,称为模型。所谓力学相似是指原型流动与模型流动在对应物理量之间应互应平行(指矢量物理量如力,加速度等)并保持一定的比例关系(指矢量与标量物理量的数值,如力的数值,时间与压力的数值等)。对一般的流体运动,力学相似应包括以下三个方面。 一、几何相似 几何相似又叫空间相似。即要求模型的边界形状与原型的边界形状相似,且对应的线性尺寸成相同的比例。 如果以下标1表示原型流动,下标2表示模型流动,则几何相似包括:

第四章 量纲分析和相似原理

第四章 相似原理与量纲分析 量纲分析法是用于寻求一定物理过程中,相关物理量之间规律性联系的一种方法。它对于正确地分析、科学地表达物理过程是十分有益的。两个规模不同的流动相似是流体力学试验时必须面对的问题。本章在量纲分析法的基础上探讨流动的相似理论,对流体力学试验研究有重要的指导意义。 §6—1 量纲分析 一、量纲、无量纲量 量纲(因次):表征各种物理量性质和类别的标志。 是指物理量所包含的基本物理要素及其结合形式,表示物理量的类别,是物理量的质的特征。 ● 在量度物理量数值大小的标准(单位)确定之后,一个具体的物理量就对应于一个数 值,有了比较意义上的大小,这是物理量的量的特征。 ● 量纲可分为基本量纲和诱导量纲 基本量纲(dim ):互不依赖,互相独立的量纲。 基本量纲具有独立性,比如与温度无关的动力学问题可选取长度[L]、时间[T]和质量[M]为基本量纲。 诱导量纲可由量纲公式通过基本量纲导出,如][][γβαM T L x =,γβα,, 称为量纲指数。1) 1) 若0,0,0==≠γβα,则x 为几何学的量; 2)若0,0,0=≠≠γβα,则x 为运动学的量,如运动粘性系数][][12-=T L ν; 3)若0,0,0≠≠≠γβα,则x 为动力学的量,如动力粘性系数][][11M T L --=μ. ● 纯数 如果一个物理量的所有量纲指数为零,就称为无量纲(量纲为一)量。 无量纲量可以是相同量纲量的比值(如角度,三角函数),也可以是几个有量纲量通过乘除组合而成(如压力系数22 1∞∞-=U p p C p ρ). 二、量纲和谐原理 一个正确、完整的反映客观规律的物理方程式中,各项的量纲是一致的,这就是量纲一致性原理。 ● 正确反映客观物理规律的函数关系式或方程式,其各项的量纲指数都分别相同。

相似原理和量纲分析习题

第三节流动相似条件 流动相似:在对应点上、对应瞬时,所有物理量 都成比例。 相似流动必然满足以下条件: 1.任何相似的流动都是属于同一类的流动,相似流场对应 点上的各种物理量,都应为相同的微分方程所描述; 2.相似流场对应点上的各种物理量都有唯一确定的解,即 流动满足单值条件; 3.由单值条件中的物理量所确定的相似准则数相等是流动 相似也必须满足的条件。 模型实验主要解决的问题: 1.根据物理量所组成的相似准则数相等的原则去设计模 型,选择流动介质; 2.在实验过程中应测定各相似准则数中包含的一切物理量; 3.用数学方法找出相似准则数之间的函数关系,即准则方程 式。该方程式便可推广应用到原型及其他相似流动中去。 第四节近似模拟试验 完全相似和不完全相似 动力相似可以用相似准则数表示,若原型和模型流动动力相似,各同名相似准数应均相等,如果满足则称为完全的动力相似。但是事实上,不是所有的相似准数之间都是相容的,满足了甲,不一定就能满足乙。所以通常考虑主要因素忽略次要因素,只能做近似的模型实验。 例如: 粘滞力相似:由得 重力相似:由得 由此可以看出,有时要想做到完全相似是不可能的,只能考虑主要因素做近似模型实验。以相似原理为基础的模型实验方法,按照流体流动相似的条件,可设计模型和安排试验。这些条件是几何相似、运动相似和动力相似。 前两个相似是第三个相似的充要条件,同时满足以上条件为流动相似,模型试验的结果方可用到原型设备中去。 在工程实际中的模型试验,好多只能满足部分相似准则,即称之为局部相似。如上面的粘性不可压定常流动的问题,不考虑自由面的作用及重力的作用,只考虑粘性的影响,则定性准则只考虑雷诺数Re,因而模型尺寸和介质的选择就自由了。 有压粘性管流中,当雷诺数大到一定数值时,继续提高雷诺数,管内流体的紊乱程度及速度剖面几乎不再变化,沿程能量损失系数也不再变化,雷诺准则已失去判别相似的作用。称这种状态为自模化状态,称自模化状态的雷诺数范围为自模化区。 一、物理方程量纲一致性原则 第五节量纲分析 1、量纲 量纲是物理量的一种本质属性,是同一物理量各种不同单位的集中抽象。 如:

第六讲 相似原理与量纲分析(练习题)

5-1、想一想:两恒定流流动相似应满足哪些条件? 答:应满足几何相似,动力相似,运动相似及边界条件相似。 5-2、判断:惯性力是所有外力的矢量和。你的回答:B A对; B错 5-3、想一想:牛顿相似准则说明了完全的什么相似。动力 5-4、算一算:如模型比尺为1:20,考虑粘滞力占主要因素,采用的模型中流体与原型中相同,模型中流速为50m/s,则原型中的流速为m/s。 2.5 5-5、进行水力模型实验,要实现有压管流的动力相似,应选的相似准则是:A A.雷诺准则; B.弗劳德准则; C.欧拉准则; D.其他准则。 5-6、雷诺数的物理意义表示:C A. 粘滞力与重力之比; B.重力与惯性力之比; C.惯性力与粘滞力之比; D.压力与粘滞力之比。5-7、压力输水管模型实验,长度比尺为8,模型水管的流量应为原型输水管流量的:C A.1/2; B.1/4; C.1/8; D.1/16。 5-9、进行水力模型实验,要实现明渠水流的动力相似,应选的相似准则是:B A.雷诺准则; B.弗劳德准则; C.欧拉准则; D. 其它准则。 5-10、明渠水流模型实验,长度比尺为4,模型流量应为原型流量的: D A.1/2; B.1/4; C.1/8; D. 1/32。 5-11、长度比尺λL=50的船舶模型,在水池中以1m/s的速度牵引前进,测得波浪阻力为0.02N,则原型中需要的功率N p为:B A.2.17kW; B.32.4kW; C.17.8kW; D.13.8kW。 5-12、设模型比尺为1:100,符合重力相似准则,如果模型流量为100cm3/s,则原型流量为多少cm3/s? C A.0.01; B.108; C.10; D.10000。 5-13、进行水力模型实验,要实现有压管流的动力相似,应选择的相似准则是:A A.雷诺准则; B.弗劳德准则; C.欧拉准则。 5-14、判断:当运动流体主要受粘滞力和压力作用时,若满足雷诺准则,则欧拉相似准则会自动满足。你的回答:A A对;B错 5-15、想一想:欧拉数与韦伯数的物理意义是什么? 答:欧拉数是压力为主要作用力的时候的相似准数,表征压力与惯性力之比,两流动欧拉数相等则压力相似。韦伯数是表明张力为主导作用力时的相似准数,表征惯性力与表面张力之比,两流动韦伯数相等则表面张力相似。 5-16、判断:对于恒定流也应考虑斯特哈罗数准则。你的回答:B A对;B错 5-17、想一想:马赫数与斯特哈罗数的物理意义是什么? 答案:马赫数为弹性力为主导作用力时的相似准数,表征惯性力与弹性力之比,马赫数相等则弹性力相似。斯特哈罗数是在非恒定流体流动中,因当地加速度不为零,这个加速度所产生的惯性作用与迁移加速度的惯性作用之比。 5-18、为什么每个相似准则都要表征惯性力? 答案: 作用在流体上的力除惯性力是企图维持流体原来运动状态的力外,其他力都是企图改变运动状态的力。如果把作用在流体上的各力组成一个力多边形的话,那么惯性力则是这个力多边形

相关文档
最新文档