对动作电位变化图的分析

对动作电位变化图的分析
对动作电位变化图的分析

对动作电位变化图的分析

1 各个阶段变化原因:

1.1 膜内外的离子分布

细胞内外离子分布不均匀是静息电位和动作电位形成的基础,这种分布不均匀与钠钾泵的作用密不可分。钠钾泵是一种普遍存在于动物各种细胞膜上的特异性蛋白质,这种载体蛋白每分解一个ATP分子,可以将3个Na+送出细胞外,同时将2个K+送入细胞内,从而使细胞内K+浓度高,细胞外Na+浓度高。除了Na+和K+分布不均匀以外,细胞内还存在着大量的带负电的有机大分子物质A-,细胞膜对他们是没有通透性的,同样在细胞膜外也存在着高浓度的Cl-。总的来看,细胞膜内:K+浓度高,同时存在大量的A-;细胞膜外:Na+浓度高,同时也存在着大量的Cl-。这种膜内外离子分布的不平衡是静息电位和动作电位形成的离子基础。

1.2 静息电位的形成

细胞处于静息状态时,细胞膜主要对K+有通透性,而对其他离子通透性很小甚至是没有通透性。这种对K+通透性的实质,是依赖于细胞膜上的漏K+通道来实现的,K+可以通过该通道被动外流,使得膜外的阳离子增多,膜内的阳离子减少,从而造成膜外电位高于膜内电位的状态,当K+的移动达到平衡时,细胞膜内外两侧就形成了一个相对稳定的电位差,这就是我们通常所说的静息电位,这个过程被称为极化。

1.3动作电位的形成

动作电位是膜电位的一次快速变化,随后恢复到静息膜电位状态,包括去极化、反极化和复极化三个连续变化的过程。受到一定的刺激时,细胞膜上的部分电压门控Na+通道开放,允许Na+流进细胞,膜内电位升高膜外电位降低,当膜内外电位相等时膜外仍为高Na+状态,该过程可称为去极化。Na+继续内流,膜内电位继续升高,直至Na+内流达到其平衡状态,膜内外两侧形成的电位差就是动作电位的最大值,这个过程可以称之为反极化。这两个过程也就是上图中所显示的动作电位的上升相。

当动作电位达到最大值时开放的电压门控Na+通道失活、关闭,而电压门控K+通道开放,少量的K+在细胞内强大的电动势和浓度梯度的作用下迅速外流,使细胞内电位降低,细胞外电位升高,这一变化也就是上图中所显示的动作电位的下降相。这个过程被称为复极化。在完全恢复到静息电位之前,钠钾泵的活动会增强,将进入细胞的Na+排出,将透出细胞的K+重新移入细胞内,恢复最开始的离子浓度梯度,为重建膜的静息电位做好准备。

2 关于该变化过程的几个疑问

2.1 钠钾泵的作用实质是什么?

细胞膜电位变化主要依赖于Na+、K+浓度梯度为基础而形成。用某些化学试剂(如氰化钠)使钠钾泵中毒失去作用,且神经细胞存在足够的离子浓度梯度,兴奋仍能传导多次。但每次冲动,钠离子进入细胞内不能泵出去,而钾离子穿出细胞后又不能泵回来。最后形成细胞内钠离子浓度太高而钾离子浓度太低以致没有足够的钾离子外流来维持静息电位,而只有处于静息电位的细胞膜才具有产生兴奋的能力。这时除非钠钾泵再开动,否则神经细胞将失去作用。也就是说若失去了膜内外的离子分布不平衡的状态,神经冲动是不能形成和传导的。因此,这种依赖于ATP的钠钾泵的活动,实质上是将细胞通过代谢产生的ATP中的能量转变为膜两侧的离子势能,细胞受到刺激后,再将这种离子势能转变为动能——动作电位而传播。

2.2 通过离子通道移动的离子何时会达到平衡?

静息状态时,细胞膜上的漏K+通道打开, K+外流既有动力又有阻力。动力来自于膜内的高浓度的K+,促使K+顺浓度梯度外流;K+的外流使膜外的电位逐渐升高,这种膜外的正电位形成的电场力又会阻止带正电荷的K+继续外流,这就是膜内K+外流的阻力。当这两种力达到

平衡时,膜对K+的静通透量为零,膜两侧的电位差也就稳定在一定的水平,形成静息电位。因此,可以看出如果开始时膜内K+浓度高,所达到的平衡电位的绝对值也就高,反之亦然。这种电位的平衡与K+关系密切与其他离子几乎无关。

同理,受刺激时,Na+流动的平衡也是受顺浓度梯度的动力和电位差形成的阻力的共同影响。由于Na+在膜外的浓度高导致这两种力的方向与K+有所不同,浓度梯度引起的动力方向是由膜外向膜内。Na+的内流使膜内的电位逐渐升高,这种膜内升高的电位形成的电场力又会阻止带正电荷的Na+继续内流,这种电位差形成的阻力方向是由膜内向膜外。同样是这两种力达到平衡时,膜对Na+的静通透量为零,电压门控Na+通道关闭。如果开始时膜外Na+浓度高,所达到的平衡电位的绝对值也就高。这种电位的平衡与Na+关系密切与其他离子几乎无关。

由此我们能看出,当K+的静通透量为零时,仍然是细胞膜内的K+浓度高于细胞膜外;当Na+的静通透量为零时,仍然是细胞膜外的钠离子浓度高于细胞膜内。

其实,产生正常的静息电位所需K+的移出的数量是极小的,大约在每平方厘米的膜上移出约10-12mol的K+即可,这个量对膜两侧原有的K+浓度的影响很小。引起单个动作电位的离子运动也是很小的。据推算,在直径为1mm的枪乌贼轴突上,单个动作电位只引起膜内钠离子浓度1/100 000的变化。

2.3 漏K+通道与电压门控性K+通道是同一种通道吗?

这两种通道结构不同,作用的本质上也是不同的。从作用的对象来看,漏K+通道主要是在形成静息电位时发挥作用,其主要对K+有通透性,对Na+也有通透性,但通透性很小,在形成静息电位时会有少量的Na+从膜外进入膜内。而电压门控性K+通道是在动作电位恢复为静息电位过程中发挥作用,这种通道可以在短时间内迅速的将膜内的K+大量送出细胞,从而能在更短的时间内恢复为静息电位。

这样做有什么意义呢?如果动作电位产生以后不能迅速的恢复为静息电位,那么该部位就不能及时在下次刺激来到时再次产生动作电位,显然这是不利于动物体去适应复杂的外界环境。形成的动作电位要想在瞬间恢复为静息电位,依赖钠钾泵的作用是不够的。在去极化和反极化的过程中,虽然细胞内Na+增多了,但其量并不是太大,而这时膜内的电位高,K+浓度大,这两个方面的因素都能促进细胞内的K+迅速的流出细胞,因此通过K+快速流出细胞是降低细胞内电位的最有效的途径。由此可见电压门控性K+通道对于静息电位的恢复乃至整个兴奋的传导都有着极其重要的意义。

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果是 答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差是A点的膜内电位和B点的膜外电位的差值(A点的膜内电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都是静息电位,膜外都是正电位,所以A、B两处的电位差为0,知道答案在C和D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就是A、B两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始和结束是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是 答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样是刺激左侧,然后记录右侧两处的膜外电位变化,

和上海题相似之处是都是刺激两处的左侧,再记录两处的膜外电位,但不同的是,做上海题时能从已给的曲线图推测所测的值是左侧电位和右侧电位的差值,解题时可据曲线是应先向下还是应先向上,初定是哪几个选项正确。海南题没有给出两侧电位的变化曲线,推测不出所测的值是左侧电位和右侧电位的差值还是右侧电位和左侧电位的差值,所以不能从应先向下还是应先向上,但可以根据所得出的曲线除了开始和结束是0电位外,中间也要经历0电位直接选出D选项。 若细心观察这两年高考题的答案就会发现,09年上海题给的答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长,2010年海南给的答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。由于上海题时所测的值是左侧电位和右侧电位的差值,可见海南题所测的值是右侧电位和左侧电位的差值,这样就不难解释上海题曲线一开始是向下变化,海南题曲线一开始是向上变化。 按教材,刺激神经左侧某处时,记录右侧两处膜外电位的变化图应如下图所示 不难看出,图②和图③之间应还有一个图,应由五个图表示,这五个图只能由下图(一)或图(二)表示: 就09年上海题而言,若这五个图由图(一)所示,由于图(一)的①、③、⑤三处的A、B两处的电位变化完全相同,所以表示A的膜内电位和B的膜外电位差的曲线应有三处是负值,而题中的表示A的膜内电位和B的膜外电位差的曲线只有首末两处是负值,不符合,故这五个图由图(二)所示。 当两侧的兴奋传导如图(一)所示时,记录两处膜外电位变化的曲线中间是0的时间可以维持较长的时间,当两侧的兴奋传导如内(二)所示时,记录两处膜外电位变化的曲线中间是0的时间只可以维持较短的时间,有关09年上海题

动作电位微专题复习

动作电位微专题复习 教学反思:动作电位有关的知识是高考的高频考点,也是教学的重点和难点,需要进一步进行微专题复习。 1.动作电位产生的机制 (1)阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。 (2)Na+通道失活,而K+通道开放,K+外流,复极化形成动作电位的下降支。 2.动作电位的测量 静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧,由于内外两侧存在电势差,因此电流表指针会发生偏转。 在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B 处),来测定两个电极处是否有电位差。 3.动作电位产生的影响因素 主要是Na+的平衡电位,此外,其它离子如Ca2+和Cl-,离子通道阻断剂,细胞的代谢等因素。 4.动作电位的传导 动作电位的传导实际上就是兴奋膜向前移动的过程。在受到刺激产生兴奋的轴突与周围静息膜之间都可以产生局部电流,因此可以向两个方向传导,被称之为动作电位的双向传导。动作电位在传导过程中是不衰减的,其原因在于动作电位在传导时,实际上是去极化区域的移动和动作电位的逐次产生,每次产生的动作电位幅度都接近于钠离子的平衡电位,可见其传导距离与幅度是不相关的,因此动作电位幅度不会因传导距离的增加而发生变化。 神经纤维的传导速度极快,但不同的神经纤维的传导速度变化很大。例如,人体的一些较粗的有髓纤维传导速度可达100m/s,而某些较细的无髓纤维的传导速度甚至低于1m/s。 光在空气中的速度:

电流速度为什么就和光速相等 电流是以电场的方式传递的,就是光速.但导线中电子的速度却是很慢的. 在金属导线中,电能的传输速度是每秒三十万公里,与光速同,而我们在大型直线加速器中只能把电子加速到接近光速,其质量已达电子静止质量的四万倍以上,消耗的能量够一座小城镇的用量.从重力场理论中知道,光速是光能传导速度,是能量空间的调整速度,电流速度就是电能传导速度. “电”的传播过程大致是这样的:电路接通以前,金属导线中虽然各处都有自由电子,但导线内并无电场,整个导线处于静电平衡状态,自由电子只做无规则的热运动而没有定向运动,当然导线中也没有电流.当电路一接通,电场就会把场源变化的信息,以大约光速的速度传播出去,使电路各处的导线中迅速建立起电场,电场推动当地的自由电子做漂移运动,形成电流.那种认为开关接通后,自由电子从电源出发,以漂移速度定向运动,到达电灯之后,灯才能亮,完全是一种误解.

对动作电位变化图的分析

对动作电位变化图的分析 1 各个阶段变化原因: 1.1 膜内外的离子分布 细胞内外离子分布不均匀是静息电位和动作电位形成的基础,这种分布不均匀与钠钾泵的作用密不可分。钠钾泵是一种普遍存在于动物各种细胞膜上的特异性蛋白质,这种载体蛋白每分解一个ATP分子,可以将3个Na+送出细胞外,同时将2个K+送入细胞内,从而使细胞内K+浓度高,细胞外Na+浓度高。除了Na+和K+分布不均匀以外,细胞内还存在着大量的带负电的有机大分子物质A-,细胞膜对他们是没有通透性的,同样在细胞膜外也存在着高浓度的Cl-。总的来看,细胞膜内:K+浓度高,同时存在大量的A-;细胞膜外:Na+浓度高,同时也存在着大量的Cl-。这种膜内外离子分布的不平衡是静息电位和动作电位形成的离子基础。 1.2 静息电位的形成 细胞处于静息状态时,细胞膜主要对K+有通透性,而对其他离子通透性很小甚至是没有通透性。这种对K+通透性的实质,是依赖于细胞膜上的漏K+通道来实现的,K+可以通过该通道被动外流,使得膜外的阳离子增多,膜内的阳离子减少,从而造成膜外电位高于膜内电位的状态,当K+的移动达到平衡时,细胞膜内外两侧就形成了一个相对稳定的电位差,这就是我们通常所说的静息电位,这个过程被称为极化。 1.3动作电位的形成 动作电位是膜电位的一次快速变化,随后恢复到静息膜电位状态,包括去极化、反极化和复极化三个连续变化的过程。受到一定的刺激时,细胞膜上的部分电压门控Na+通道开放,允许Na+流进细胞,膜内电位升高膜外电位降低,当膜内外电位相等时膜外仍为高Na+状态,该过程可称为去极化。Na+继续内流,膜内电位继续升高,直至Na+内流达到其平衡状态,膜内外两侧形成的电位差就是动作电位的最大值,这个过程可以称之为反极化。这两个过程也就是上图中所显示的动作电位的上升相。 当动作电位达到最大值时开放的电压门控Na+通道失活、关闭,而电压门控K+通道开放,少量的K+在细胞内强大的电动势和浓度梯度的作用下迅速外流,使细胞内电位降低,细胞外电位升高,这一变化也就是上图中所显示的动作电位的下降相。这个过程被称为复极化。在完全恢复到静息电位之前,钠钾泵的活动会增强,将进入细胞的Na+排出,将透出细胞的K+重新移入细胞内,恢复最开始的离子浓度梯度,为重建膜的静息电位做好准备。 2 关于该变化过程的几个疑问 2.1 钠钾泵的作用实质是什么? 细胞膜电位变化主要依赖于Na+、K+浓度梯度为基础而形成。用某些化学试剂(如氰化钠)使钠钾泵中毒失去作用,且神经细胞存在足够的离子浓度梯度,兴奋仍能传导多次。但每次冲动,钠离子进入细胞内不能泵出去,而钾离子穿出细胞后又不能泵回来。最后形成细胞内钠离子浓度太高而钾离子浓度太低以致没有足够的钾离子外流来维持静息电位,而只有处于静息电位的细胞膜才具有产生兴奋的能力。这时除非钠钾泵再开动,否则神经细胞将失去作用。也就是说若失去了膜内外的离子分布不平衡的状态,神经冲动是不能形成和传导的。因此,这种依赖于ATP的钠钾泵的活动,实质上是将细胞通过代谢产生的ATP中的能量转变为膜两侧的离子势能,细胞受到刺激后,再将这种离子势能转变为动能——动作电位而传播。 2.2 通过离子通道移动的离子何时会达到平衡? 静息状态时,细胞膜上的漏K+通道打开, K+外流既有动力又有阻力。动力来自于膜内的高浓度的K+,促使K+顺浓度梯度外流;K+的外流使膜外的电位逐渐升高,这种膜外的正电位形成的电场力又会阻止带正电荷的K+继续外流,这就是膜内K+外流的阻力。当这两种力达到

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果就是 答案就是C,曲线一开始就是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差就是A点的膜内电位与B点的膜外电位的差值(A点的膜内电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都就是静息电位,膜外都就是正电位,所以A、B两处的电位差为0,知道答案在C与D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就就是A、B两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始与结束就是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)的两个电极置于某一条结构与功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线就是答案就是D,曲线一开始就是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样就是刺激左侧,然后记录右侧两处的膜外电位变化, 与上海题相似之处就是都就是刺激两处的左侧,再记录两处的膜外电位,但不同的就是,做上海题时能从已给的曲线图推测所测的值就是左侧电位与右侧电位的差值,解题时可据曲线

膜电位变化及其测量(优质教学)

膜电位变化及其测量 一、设计思路及依据 神经纤维受到刺激后,兴奋产生以及传导这部分内容在高三教学中是非常重要的内容之一,上海市在2003和2009年的高考试卷中考到这部分内容,学生的得分率很低。教师在教这部分内容时,也都觉得这部分内容不好处理,虽然教师绞尽脑汁设计教学,但还是无法真正让学生理解透彻甚至掌握,也就成为学生碰到此部分内容就无从下手。 本节课的主要目的,是针对神经纤维上兴奋的产生与传导这部分教学内容,探索一种有效地教学方法,通过绘图使学生能够理解并掌握这部分内容,学会解析这部分内容相关题目的步骤,从而提高解题的正确率。 二、教学目标: 通过对典型题目的分析,结合动手绘图,能够熟练运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目,感悟生命科学学习过程中的严谨的逻辑思维。 三、教学重点、难点: 运用神经纤维上兴奋的产生与传导内容解析有关膜电位变化曲线题目 四、教学过程: 复习提问: 1、神经纤维上受到刺激时膜电位会发生什么变化? 2、兴奋在神经纤维上的传到形式以及方向? 例1:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图: 分析一:指针偏转几次,方向如何? 测膜外电流,指针偏转2次且方向相反 例2:神经电位的测量装置如下图所示,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域,下图中指针所示电流方向,依次看到现象的顺序如图: 分析二:指针偏转几次,方向如何? 测膜内外电流,指针偏转3次且方向相同 例3:(2010年十三校联考)下图为神经电位的测量装置,其中箭头表示施加适宜刺激,涂黑区表示兴奋区域。用仪器记录a、b两电极之间的电位差,结果预期的电位测量结果是()

2019届二轮复习 动作电位的产生与传导图 教案(浙江专用)

重点题型4动作电位的产生与传导图 【规律方法】 (1)动作电位的产生示意图(神经纤维上某一位点不同时刻的电位变化图) ①a处:静息电位,K+外流,膜电位为外正内负,处于极化状态。 ②ac段:动作电位的形成过程,Na+内流。其中ab段膜电位为外正内负,仍处于极化状态;b点膜内、膜外电位差为零;bc段膜电位为外负内正,处于反极化状态;c点膜电位达到峰值。 ③cd段:静息电位的恢复过程,即复极化过程,恢复极化状态,K+外流。 ④de段:膜内外离子分布恢复到原来的静息水平。 (2)动作电位的传导示意图(某一时刻神经纤维上不同位点的电位大小图) 该图记录的是某一时刻神经纤维上不同位点的电位大小图,根据图示dc段K+外流和ca段Na+内流可判断兴奋传导方向为从左到右。 ①a处:静息电位,还未曾兴奋,K+外流,处于极化状态;对应(1)图的a处。 ②ac段:动作电位的形成过程,Na+内流,处于去极化和反极化过程,此时,c 点膜电位刚好达到峰值;对应(1)图的ac段。 ③cd段:静息电位的恢复过程,即复极化过程,K+外流;对应(1)图的cd段。 ④de段:膜内外离子分布恢复到原来的静息水平,e点刚好恢复静息电位;对应 (1)图的de段。

【技能提升】 1.某种有机磷农药能使突触间隙中的乙酰胆碱酯酶(分解乙酰胆碱)活性受抑制,某种蝎毒会抑制Na+通道的打开。下图表示动作电位传导的示意图,其中a为突触前膜,b为突触后膜。下列叙述正确的是() A.轴突膜处于②状态时,Na+内流且不需要消耗ATP B.处于③与④之间的轴突膜,Na十通道大量开放 C.若使用该种有机磷农药,则在a处不能释放乙酰胆碱 D.若使用该种蝎毒,则能引起b处去极化,形成一个动作电位 解析②状态时,处于复极化过程,K+外流,不需要消耗ATP,A错误;处于③与④之间的轴突膜处于反极化状态(未到峰值),此时的Na+通道大量打开,Na+内流,B正确;有机磷农药,不影响a处释放乙酰胆碱,而是影响突触间隙中的乙酰胆碱酯酶活性,C错误;由于该种蝎毒会抑制Na+通道的打开,所以不能引起b处去极化,形成一个动作电位,D错误。 答案 B 2.甲为神经元的动作电位产生图,乙中的Ⅰ、Ⅱ、Ⅲ是神经元质膜上与静息电位和动作电位有关的转运蛋白。下列叙述错误的是() A.AB段的出现是转运蛋白Ⅰ活动导致的 B.BC段的出现是转运蛋白Ⅱ开启导致的 C.CD的出现是转运蛋白Ⅲ开启导致的 D.AB段时的神经元质膜为外正内负状态 解析分析甲图曲线,AB段为膜静息电位,是由钾离子外流引起,需要转运蛋

膜电位变化曲线分析

膜电位变化曲线分析 1、(09年上海28)神经电位得测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图。若将记录仪得A、B两电极均置于膜外,其它实验条件不变,则测量结果就是 答案就是C,曲线一开始就是向下变化,中间显示两侧电位差为0得时期较长。 先需所给得条件“用记录仪记录A、B两电极之间得电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间得电位差就是A点得膜内电位与B点得膜外电位得差值(A点得膜内电位减去B点得膜外电位),可知若将记录仪得A、B两电极均置于膜外,一开始A、B两处都就是静息电位,膜外都就是正电位,所以A、B两处得电位差为0,知道答案在C与D中选。又因为若将记录仪得A、B两电极均置于膜外,记录仪记录得就就是A、B两处得膜外电位得差值,动物电位先传到A点,所以当A点得膜外先变成负电位,A、B两处得膜外电位得差值为负值,可知只有C符合。 做过这个上海题后,可做如下总结:当记录仪记录两处得膜外电位得差时,所得出得曲线除了开始与结束就是0电位外,中间也要经历0电位。 2、(2010年海南9)将记录仪(R)得两个电极置于某一条结构与功能完好得神经表面,如右图,给该神经一个适宜得刺激使其产生兴奋,可在R上记录到电位得变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化得曲线就是答案就是D,曲线一开始就是向上变化,中间显示两侧电位差为0得时期很短。 若细心观察这两年高考题得答案就会发现,同样就是刺激左侧,然后记录右侧两处得膜外电位变化, 与上海题相似之处就是都就是刺激两处得左侧,再记录两处得膜外电位,但不同得就是,做上海题时能从已给得曲线图推测所测得值就是左侧电位与右侧电位得差值,解题时可据曲线

神经干动作电位及其传导速度的测定

实验4 神经干动作电位不应期和传导速度的测定 【实验目的】 1.加深理解兴奋传导的概念并了解神经兴奋传导速度测定的基本原理和方法。 2.验证和加深理解神经干动作电位后兴奋性的规律性变化。 【实验原理】 1.神经纤维兴奋时产生一个可以传播的动作电位,动作电位依局部电流或跳跃传导的方式 沿神经纤维传导,其速度取决于神经纤维直径、内阻、有无髓鞘等。坐骨神经的动作电位是由一群不同兴奋阈值、传导速度(v)和幅值的峰形电位所总和而成,为复合动作电位。测定该复合动作电位传导的距离(s)和经过这些距离所需的时间(t),即可根据v=s/t计算出神经干兴奋的传导速度。 2.神经组织和其他可兴奋组织一样,在接受一次刺激产生兴奋后,其兴奋性将会发生规律 性的变化,一次经过绝对不应期、相对不应期、超常期和低常期,然后再回到正常的兴奋水平。为了测定坐骨神经发生一次兴奋后的兴奋性周期变化,可采用双脉冲刺激法。 即先给与一个一定强度的“条件刺激”,使神经产生兴奋,在神经发生兴奋后,按不同的时间间隔在给与一个“测试刺激”,观察测试刺激是否引起动作电位以及动作电位的大小,以此来反应神经兴奋性的变化,测出相对不应期和绝对不应期。 【实验对象】 蛙或蟾蜍。 【实验器材与药品】 微机生物信号采集处理系统、蛙类手术器械1套、神经标本屏蔽盒、滤纸片、棉球、任氏液。 【实验方法和步骤】 一、蛙或蟾蜍坐骨神经标本制备 标本制备方法参见实验“神经干动作电位的引导”。 二、仪器连接及参数选定 1.仪器连接:同实验3。 2.刺激器参数选定:刺激方式:单次;刺激波宽:0.1~0.2ms;刺激强度:数伏至数十伏。 通过显示器观察到方波位置,而后调节延时使之到适当位置。 3.前置放大器调节:增益:1000;高频滤波:10kHz;时间常数:0.01。 4.计算机调节:见有关计算机操作部分。 三、观察项目 1.神经干兴奋传导速度的测量 将坐骨神经干标本置于神经标本屏蔽盒内的电极上,神经干需与两对引导电极r1和r2以及刺激电极保持良好的接触。 1.1 将r1记录电极连于前置放大器输入端,调节刺激器刺激强度以产生最大动作电位。 1.2 根据计算机采样时间,可测量出从刺激伪迹前沿至动作电位起始转折处的时间间隔(毫

动作电位传导典型考试试题分析

动作电位传导典型试题分析在高中生物教学中,动作电位的传导始终是个难点,需要掌握传导的示意图,需要明确去极化和复极化产生的机理。如果采取曲线的绘制可以帮助解决相关的问题。 试题1:甲图所示为在枪乌賊一条巨大神经纤维上给予适当强度刺激后的 t 时刻, 处膜电位的情况,电位测量方式均按乙图所示。已知静息电位值为-70mv。下列相关说法正确的是() A.静息电位是由膜内钾离子经主动转运至膜外而导致的 B.①②之间有神经纤维膜正处于Na+通道打开的去极化过程 C.t 后的某一时刻,③处神经纤维膜可能处于反极化的状态 D.⑤处离刺激点距离未知,因此在刺激后的某时刻可能出现膜外Na+浓度低于膜内的现象 答案:B 解析:静息电位是由膜内钾离子经通道蛋白易化扩散至膜外而导致的,A错误;ld 因为是右侧刺激,动作电位向右传导,①②之间处于去极化,有神经纤维膜正处于Na+通道打开的去极化过程,B正确;t 时刻时,③处处于复极化过程,t 后的某一时刻,③处神经纤维膜应该可能处于极化的状态,C错误;由于钠-钾泵的主动转运,Na+始终膜外

浓度高,不管⑤处离刺激点距离是多少,因此在刺激后的某时刻不可能出现膜外Na+浓度低于膜内的现象,D正确。 试题可以通过动作电位的传导,绘制如下的图帮助理解(刺激点在左侧): 试题2:(2019年9月全能生试题)将枪鸟贼一条巨大神经纤维置于一定浓度的溶液中,图甲为在神经纤维上给予适当强度刺激后的t1时刻,处膜电位的情况,电位测量方式均按图乙所示。已知静息电位值为一70mV,下列相关说法正确的是() A.随着刺激强度的不断增强,动作电位大小不断增大 B.若提高神经纤维所处外界溶液的K+浓度,则静息电位绝对值增大 C.若刺激点在的①左侧,②③之间神经纤维膜处于Na+通道打开的去极化过程

电位变化曲线分析.

1、09年上海28.神经电位的测量装置如右上图所示,其中箭头表示施加适宜刺激,阴影表示兴奋区域。用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图。若将记录仪的A、B两电极均置于膜外,其它实验条件不变,则测量结果是学科网 答案是C,曲线一开始是向下变化,中间显示两侧电位差为0的时期较长。 先需所给的条件“用记录仪记录A、B两电极之间的电位差,结果如右侧曲线图”得出记录仪记录A、B两电极之间的电位差是A点的膜内电位和B点的膜外电位的差值(A点的膜内电位减去B点的膜外电位),可知若将记录仪的A、B两电极均置于膜外,一开始A、B两处都是静息电位,膜外都是正电位,所以A、B两处的电位差为0,知道答案在C和D中选。又因为若将记录仪的A、B两电极均置于膜外,记录仪记录的就是A、B 两处的膜外电位的差值,动物电位先传到A点,所以当A点的膜外先变成负电位,A、B两处的膜外电位的差值为负值,可知只有C符合。

做过这个上海题后,可做如下总结:当记录仪记录两处的膜外电位的差时,所得出的曲线除了开始和结束是0电位外,中间也要经历0电位。 2、2010年海南9.将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R 上记录到电位的变化。能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是 答案是D,曲线一开始是向上变化,中间显示两侧电位差为0的时期很短。 若细心观察这两年高考题的答案就会发现,同样是刺激左侧,然后记录右侧两处的膜外电位变化, 和上海题相似之处是都是刺激两处的左侧,再记录两处的膜外电位,但不同的是,做上海题时能从已给的曲线图推测所测的值是左侧电位和右侧电位的差值,解题时可据曲线是应先向下还是应先向上,初定是哪几个选项正确。海南题没有给出两侧电位的变化曲线,推测不出所测的值是左侧电位和右侧电位的差值还是右侧电位和左侧电位的差值,所以不能从应先向下还是应先向上,但可以根据所得出的曲线除了开始和结束是0电位

神经干动作电位传导速度的测定

神经干动作电位传导速度的测定 实验对象:蟾蜍 一实验目的 掌握坐骨神经标本的制备方法。 掌握引导神经干复合动作电位和测定其传导速度的基本原理。 二相关知识 (一)兴奋及兴奋性的概念 (二)动作电位的潜伏期、动作电位时程和幅值 1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础 上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。(三)、动作电位的传导 局部电流的形式 1、细胞外记录 2、神经干的动作电位 神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。 三实验原理 (一)、单根神经纤维动作电位的引导及其传导 1、记录出了一个先升后降的双相动作电位的原理 当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。 负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。 C. A点神经纤维多于B点(次要原因)。 (二)、神经干动作电位的引导及其传导 四实验步骤 (一)、制备蛙类坐骨神经-胫腓神经标本 通过观看录象让学生学习制作方法 (二)、连接实验装置 注意电极的安装,正负不要接反。 (三)、实验参数设置: (四)、实验观察、记录和测量

神经干动作电位及其传导速度的测定

实验3 神经干动作电位及其传导速度的测定 【目的】 应用微机生物信号采集处理系统和电生理实验方法,测定蛙类坐骨神经干的单相、双相动作电位和其中A类纤维冲动的传导速度,并观察机械损伤、药物对神经兴奋和传导的的影响。【原理】 用电刺激神经,在负刺激电极下的神经纤维膜内外产生去极化,当去极化达到阈电位时,膜产生一次在神经纤维上可传导的快速电位反转,此即为动作电位(action potential, AP)。神经纤维膜外,兴奋部位膜外电位相对静息部位呈负电性质,当神经冲动通过以后,膜外电位又恢复到静息时水平。 如果两个引导电极置于兴奋性正常的神经干表面,兴奋波先后通过两个电极处,便引导出两个方向相反的电位波形,称为双相动作电位。如果两个引导电极之间的神经纤维完全损伤,兴奋波只通过第一个引导电极,不能传至第二个引导电极,则只能引导出一个方向的电位偏转波形,称为单相动作电位。 神经干由许多神经纤维组成,故神经干动作电位与单根神经纤维的动作电位不同,神经干动作电位是由许多不同直径和类型的神经纤维动作电位叠加而成的综合性电位变化,称复合动作电位,神经干动作电位幅度在一定范围内可随刺激强度的变化而变化。 动作电位在神经干上传导有一定的速度。不同类型的神经纤维传导速度不同,神经纤维越粗则传导速度越快。蛙类坐骨神经干以Aa类纤维为主,传导速度大约30~40m/s。测定神经冲动在神经干上传导的距离(s)与通过这段距离所需时间(t),可根据n=s/t求出神经冲动的传导速度。 【预习要求】 1.仪器设备知识参见第二章第三节 RM6240微机生物信号采集处理系统(或第四节PcLab和MedLab微机生物信号采集处理系统)。 2.实验理论实验动物知识参见第三章第一节生理科学实验常用实验动物的种类,第四章第一节动物实验的基本操作;统计学知识参见第五章第四节常用统计指标和方法;生理学教材中兴奋性、兴奋的概念,静息电位和动作电位的形成机制,动作电位传导原理及神经纤维的分类。检索全文数据库中的相关研究论文,检索方法参见第五章第五节。 3.预绘制实验原始数据记录表格和统计表格。 4.预测结果预测刺激强度对神经干动作电位的影响及机械损伤、细胞外高钾、普鲁卡因(procaine)对神经干兴奋传导的影响。 【材料】 蟾蜍或蛙,神经标本屏蔽盒,任氏液,1~3mol/L KCl溶液,3%普鲁卡因,微机生物信号采集处理系统。 【方法】 1.系统连接和仪器参数设置

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定 一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。 熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第 一个引导电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的 距离,v= (s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.(见图) 2.计算 S=10mm, t=0.33ms, v=10mm/0.33ms=33m/s 分析讨论: 1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。如果采用潜峰法测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。 2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度. 实验结论:本实验中测出神经干动作电位的传导速度为33m/s。由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。 二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺

神经冲动的产生和传导

一、教学目标: 1、探究生物电的发现过程。 2、说明静息电位与动作电位的产生和传导的关系。 3.制作蛙的坐骨神经—腓肠肌标本,提高实验操作能力. 4通过”蛙腿论战”,养成严谨细致的科学作风. 二、教学重点: 生物电的发现过程与静息电位产生机理 三、教学难点: 静息电位产生机理 预备案 一、生物电的发现。 1、伽伐尼的实验设计及结论: 2、伏打的实验设计及结论: 3、“无金属实验”及结论: 二、膜电位的产生 膜电位是指存在于细胞膜内外的,它的产生是由于____,以及____造成的。 1.静息电位的产生 钠-钾泵:钠-钾泵的存在使神经细胞膜内外离子浓度不同,从而形成膜电位。 产生机制通常情况下,膜外离子浓度高,膜内离子浓度高。 离子通道:神经纤维膜上有两种离子通道,一种是通道,一种是通道。 当神经细胞处于静息状态时,通道开放(通道关闭),这时会 从向运动,使膜外带电,膜内带电。膜外电的产生阻 止了膜内的继续外流,使膜电位不再发生变化,此时的膜电位称为静息 电位。 2.动作电位的产生

当神经细胞受到刺激后,通道会开放,在很短的时间内会大量涌入细胞,造成 膜内带电,膜外相对带电的兴奋状况。此时的膜电位称为动作电位。 三.动作电位的传导 1.动作电位的传导 受刺激部位(兴奋区)的电荷为内外,邻近未受刺激的部位(静息区)仍为外内,两者之间会形成。作用的结果使静息区的膜电位上升而产生动作电位,该动作电位又按同样的方式作用于它相邻的区域,一直传遍整个细胞。 2、动作电位(神经冲动)在神经纤维上传导的特征:、、、、。 自我检测 1、关于蛙腿论战中不正确的论述是() A.使人们弄清了生物电存在的事实B.科学辩论常会加速科学的发展 C.伽伐尼的实验设计科学合理D.伏打的解释科学确切 2、在静息电位时,神经细胞内含有大量的() A.钠离子B.钾离子C.铁离子D.镁离子 3、当神经纤维在某一部位受到刺激产生兴奋时,兴奋部位的膜发生的电位变化是() A.膜外由正电位变成负电位B.膜内由正电位变成负电位 C.膜外由负电位变成正电位D.膜的内外电位不会发生变化 4、产生动作电位时() A .Na+通道开放,Na+进入细胞 B . Na+通道开放,Na+运出细胞外 C. K+通道开放,K+进入细胞 D . Na+通道关闭 K+运出细胞外 5、哪项不是动作电位在神经纤维上传导的特征() A.双向传导 B.相对不疲劳性 C.药物可阻断传导 D.离刺激处越远,传导速度越慢

医学基础知识:动作电位的传导原理

医学基础知识:动作电位的传导原理 在细胞膜上任何一点产生的动作电位会不衰减地传播到整个细胞膜上,这称之为动作电位的传导。如果是发生在神经纤维上,传导的动作电位又称为神经冲动。为了让各位同学掌握该部分的知识点,专门给各位同学整理了相关的知识点帮助大家了解。 以神经元为例,动作电位沿轴突的传导是通过跨膜的局部电流实现的。给轴突的某一位点以足够强的刺激,可使其产生动作电位。此时该段膜内外两侧的电位差发生暂时的翻转,即由安静时膜内为负、膜外为正的状态转化为兴奋时的膜内为正、膜外为负的状态,称其为兴奋膜。兴奋膜与周围的静息膜(未兴奋的膜)无论在膜内还是膜外均存在有电位差,同时细胞膜的两侧的溶液都是导电的,所以兴奋膜与静息膜之间可发生电荷移动,这种电荷移动就是局部电流。在膜外侧,电流从静息膜流向兴奋膜;在膜内侧,电流由兴奋膜流向静息膜。结果使静息膜膜内侧电位升高而膜外侧降低,即发生了去极化。当去极化使静息膜的膜电位达到阈电位水平时,大量钠通道被激活,引起动作电位。此时,原来的静息膜转变为兴奋膜,继续向周围的静息膜传导。因此,所谓动作电位的传导实际上就是兴奋膜向前移动的过程。在受到刺激产生兴奋的轴突与周围静息膜之间都可以产生局部电流,因此可以向两个方向传导,被称之为动作电位的双向传导。 动作电位在传导过程中是不衰减的,其原因在于动作电位在传导时,实际上是去极化区域的移动和动作电位的逐次产生,每次产生的动作电位幅度都接近于钠离子的平衡电位,可见其传导距离与幅度是不相关的,因此动作电位幅度不会因传导距离的增加而发生变化。 神经纤维的传导速度极快,但不同的神经纤维的传导速度变化很大。例如,人体的一些较粗的骨髓纤维传导速度可达100m/s,而某些较细的无髓纤维的传导速度甚至低于1m/s。

神经电位变化

神经电位的相关高考试题归类解读 一、有关电位变化机理的背景知识 1.静息电位由于神经细胞膜内外各种电解质离子浓度不同,膜外钠离子浓度高,膜内钾离子浓度高,而神经细胞膜对不同离子的通透性各不相同。神经细胞膜在静息时对钾离子的通透性大,对钠离子的通透性小,膜内的钾离子扩散到膜外,而膜内的负离子却不能扩散出去,膜外的钠离子也不能扩散进来。所以,膜内为负,膜外为正(极化状态)。 2.动作电位在神经纤维膜上有两种离子通道,一种是钠离子通道,一种是钾离子通道。当神经某处受到刺激时会使钠通道开放,于是膜外的钠离子在短期内大量涌入膜内,该处极化状态被破坏,变成了内正外负(反极化)。但在很短的时期内钠通道又重新关闭,钾通道随之开放,钾离子又很快涌出膜外,使得膜电位又恢复到原来外正内负的状态。右图即为整个过程的电位变化曲线。接着,在短时间内,神经纤维膜又恢复到原来的外正内负状态──极化状态。 去极化、反极化和复极化的过程,也就是动作电位──负电位的形成和恢复的过程,全部过程只需数毫秒的时间。 3.测定电位的方法科学家发现了一种枪乌贼大神经,具有的粗大的神经纤维。又发现了一种玻璃管微电极,很细到尖端直径<1μm(只有0.5μm),管内充以KCl溶液,插入神经纤维膜内,另一个电极放在膜外为参考电极,两电极连接到电位仪测定极间电位差。发现未受刺激时的外正内负为静息电位,此状态时神经纤维膜内的电位低于膜外的电位。也就是说,膜属于极化状态(有极性的状态)。受刺激后形成的外负内正为动作电位。不管是静息电位还是动作电位均为跨膜电势差。 二、几种高考典型试题的分类解读 题型一:神经细胞膜内外电位变化──

相关文档
最新文档