高三复习 高中数学复习讲义 第一课时函数概念及其性质

高三复习  高中数学复习讲义 第一课时函数概念及其性质
高三复习  高中数学复习讲义 第一课时函数概念及其性质

高中数学复习讲义 第一课时函数概念及其性质

第1课 函数的概念

【基础练习】

1. 设有函数组:①y x =

,y =

y x =

,y =

;③y

,y =

;④1(0),1

(0),

x y x >?=?-

y =.其中表示同一个函数的

2. 2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:

其中能表示为M 到N 的函数关系的有________. 3.写出下列函数定义域:

(1) ()13f x x =-的定义域为______________; (2) 2

1

()1

f x x =

-的定义_______; (3)

1

()f x x =的定义域为_________; (4)

0()f x =________.

4.已知三个函数:(1)()

()

P x y Q x =

(2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:

(1)___________________(2)______________________(3)______________________________. 5.写出下列函数值域:

(1) 2

()f x x x =+,{1,2,3}x ∈;值域是{2,6,12}. (2) 2()22f x x x =-+; 值域是[1,)+∞.

(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3].

【范例解析】

例 1.设有函数组:①21

()1

x f x x -=-,()1g x x =+;

②()f x =

()g x =

③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有 . 例2.求下列函数的定义域:①

12y x =+- ②

()f x =

例3.求下列函数的值域:

(1)242y x x =-+-,[0,3)x ∈;

(2)2

2

1

x y x =+()x R ∈; (3

)y x =-

【反馈演练】

1.函数f (x )=x 21-的定义域是___________. 2.函数)

34(log 1

)(2

2-+-=

x x x f 的定义域为_________________. 3. 函数2

1

()1y x R x =

∈+的值域为________________. 4.

函数23y x =-+_____________. 5.函数)34(log 25.0x x y -=

的定义域为_____________________.

6.记函数f (x )=1

3

2++-

x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ;

(2) 若B ?A ,求实数a 的取值范围.

第2课 函数的表示方法

【考点导读】

1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.

2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式. 【基础练习】

1.设函数()23f x x =+,()35g x x =-,则(())f g x =_________;(())g f x =__________.

2.设函数1

()1f x x

=

+,2()2g x x =+,则(1)g -=_________;[(2)]f g = ;[()]f g x = .

3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =_____.

4.设f (x )=2

|1|2,||1,

1, ||11x x x x

--≤??

?>?+?,则f [f (21)]=_____________.

5.如图所示的图象所表示的函数解析式为__________________________. 【范例解析】

例1.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式.

例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式.

第5题

【反馈演练】

1.若()2x x e e f x --=,()2

x x

e e g x -+=,则(2)

f x =(

A. 2()f x B.2[()()]f x g x + C.2()g x D. 2[()()]f x g x ? 2.已知1(1)232

f x x -=+,且()6f m =,则m 等于________.

3. 已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2

+2x .求函数g (x )的解析式.

第3课 函数的单调性

【考点导读】

1.理解函数单调性,最大(小)值及其几何意义;

2.会运用单调性的定义判断或证明一些函数的增减性. 【基础练习】 1.下列函数中: ①1()f x x

=

; ②()2

21f x x x =++; ③()f x x =-; ④()1f x x =-.

其中,在区间(0,2)上是递增函数的序号有______. 2.函数y x x =的递增区间是___ ___.

3.函数y =

的递减区间是__________.

4.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.

5.已知下列命题:

①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数;

②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数;

③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;

④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函数()f x 在R 上是增函数.

其中正确命题的序号有___________. 【范例解析】

例 . 求证:(1)函数2

()231f x x x =-+-在区间3

(,]4

-∞上是单调递增函数;

(2)函数21

()1

x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数.

例2.确定函数()

f x =

【反馈演练】

1.已知函数1

()21

x

f x =

+,则该函数在R 上单调递__ __,(填“增”“减”)值域为_________. 2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =_____.

3. 函数y =的单调递增区间为 .

4. 函数2

()1f x x x =-+的单调递减区间为 .

5. 已知函数1

()2

ax f x x +=

+在区间(2,)-+∞上是增函数,求实数a 的取值范围.

第4课 函数的奇偶性

【考点导读】

1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;

2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数. 【基础练习】

1.给出4个函数:①5

()5f x x x =+;②42

1()x f x x -=;③()25f x x =-+;④

()x x f x e e -=-.

其中奇函数的有_____;偶函数的有_______;既不是奇函数也不是偶函数的有________. 2. 设函数()()()x

a x x x f ++=

1为奇函数,则实数

=a .

3.下列函数中,在其定义域内既是奇函数又是减函数的是( )

A .R x x y ∈-=,3

B .R x x y ∈=,sin

C .R x x y ∈=,

D .R x x y ∈=,)2

1( 【范例解析】

例1.判断下列函数的奇偶性:

(1)2(12)()2

x x

f x +=; (2)()lg(f x x =;

(3)2

21()lg lg

f x x x =+; (4)()(1f x x =- (5)2

()11f x x x =+-+; (6)2

2(0),()(0).x x x f x x x x

?-+≥?=?<+??

例2. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2

()22f x x x =-+,求函数

()f x 的解析式,并指出它的单调区间.

【反馈演练】

1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( )

A .()()76f f >

B .()()96f f >

C .()()97f f >

D .()()107f f > 2. 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( )

A.在区间[]1,2--上是增函数,区间[]4,3上是增函数

B.在区间[]1,2--上是增函数,区间[]4,3上是减函数

C.在区间[]1,2--上是减函数,区间[]4,3上是增函数

D.在区间[]1,2--上是减函数,区间[]4,3上是减函数 3. 设?

??

???-∈3,21,

1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为_____.

4.设函数))((R x x f ∈为奇函数,),2()()2(,2

1

)1(f x f x f f +=+=

则=)5(f ________. 5.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得

0)(

6. 已知函数21

()ax f x bx c

+=

+(,,)a b c Z ∈是奇函数.又(1)2f =,(2)3f <,求a ,b ,c 的值;

【真题演练】

1(2012福建7).设函数??

?=为无理数

为有理数x x x D ,0,1)(,则下列结论错误的是( )

A .)(x D 的值域为}1,0{

B .)(x D 是偶函数

C .)(x

D 不是周期函数 D .)(x D 不是单调函数 2.(2012广东4). 下列函数中,在区间(0,)+∞上为增函数的是( )

()A ln(2)y x =+ ()B y = ()C ()x y 1

=2

()D y x x

1

=+

3.陕西2. 下列函数中,既是奇函数又是增函数的为( )

A .1y x =+

B .3x y -=

C .1

y x

=

D .||y x x = 4.上海9.已知2

)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g .

5、(2012年高考江苏卷5) 函数()f x =的定义域为 ▲ .

6、(2012年高考上海卷理科7)已知函数|

|)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上

是增函数,则a 的取值范围是 .

7.(2012年高考上海卷理科9)已知2

)(x x f y +=是奇函数,且1)1(=f ,若

2)()(+=x f x g ,则=-)1(g .

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学函数常用函数图形及其基本性质

高中数学函数常用函数图形及其基本性质 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见函数性质汇总 常数函数f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴) 的直线 一次函数f (x )=kx +b (k ≠0,b ∈R)|k|越大,图象越陡;|k|越小,图象越平缓; 图象及其性质:直线型图象。b=0;k>0;k<0 定义域:R 值域:R 单调性:当k>0时,当k<0时 奇偶性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反函数:有反函数。K=±1、b=0的时候 周期性:无 补充:一次函数与其它函数之间的lianxi 1、与一元一次函数之间的联系 2、与曲线函数的联合运用 反比例函数f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第 一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定义域:),0()0,(+∞-∞ 值域:),0()0,(+∞-∞ 单调性:当k>0时;当k<0时 奇偶性:奇函数反函数:原函数本身周期性:无 x y b O f (x )=b x y O f (x )=kx +b x y O f (x )=x k

补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个— —⑴直接带入,李永二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图)f (x )= d cx b ax ++(c ≠0且d ≠0) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为,顶点坐标为 ②当0>a 时,开口向上,有最低点当00时,函数图象与x 轴有两个交点();当<0时,函数图象与x 轴有一个交点();当=0时,函数图象与x 轴没有交点。 ④)0()(2≠++=a c bx ax x f 关系)0()(2≠=a ax x f 定义域:R 值域:当0>a 时,值域为();当0a 时;当0

高中数学函数概念

函数 1、 函数的概念 定义:一般地,给定非空数集A,B,按照某个对应法则f ,使得A 中任一元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数。记作:x→y=f(x),x ∈A.集合A 叫做函数的定义域,记为D,集合{y ∣y=f(x),x ∈A}叫做值域,记为C 。定义域,值域,对应法则称为函数的三要素。一般书写为y=f(x),x ∈D.若省略定义域,则指使函数有意义的一切实数所组成的集合。 两个函数相同只需两个要素:定义域和对应法则。 已学函数的定义域和值域 一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 二次函数 c bx ax x f ++=2 )() 0(≠a :定义域R ,值域:当 2、 函数图象 定义:对于一个函数y=f(x),如果把其中的自变量x 视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y 视为此点的纵坐标,那么,这个函数y=f(x),无论x 取何值,都同时确定了一个点,由于x 的取值范围是无穷大,同样y 也有无穷个,表示的点也就有无穷个。这些点在平面上组成的图形就是此函数的图象,简称图象。 常数函数f(x)=1 一次函数f(x)=-3x+1 二次函数f(x)=2x 2+3x+1 反比例函数f(x)=1/x 3、定义域的求法 已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。一般有以下几种情况: 分式中的分母不为零; 偶次根式下的数或式大于等于零; 实际问题中的函数,其定义域由自变量的实际意义确定; 定义域一般用集合或区间表示。 4、值域的求法 ①观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 ②反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 练习:求函数y=(10x+10-x)/(10x -10-x)的值域。 ③配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x 2+x+2)的值域。 练习:求函数y=2x -5+√15-4x 的值域. ④判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 ⑤图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域。 例4求函数y=∣x+1∣+√(x-2) 2的值域。 ⑥换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例5求函数y=x-3+√2x+1 的值域。 练习:求函数y=√x-1 –x 的值域。 ⑦不等式法 例6求函数y=(2x-1)/(x+1) (1≤x ≤2) 的值域。 5、复合函数 设y=f(u ),u=g(x ),当x 在u=g(x )的定义域Dg 中变化时,u=g(x )的值在y=f(u )的定义域D f 内变化,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f(u)=f[g(x)]称为复合函数,其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。 6、函数的表示方法:列表法,解析法,图像法 7、分段函数:对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集. 分段函数经常使用图像法 8、函数解析式的求法 ①代入法 例1已知f(x)=x 2-1,求f(x+x 2) ②待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。 例2已知f(x)是一次函数,f(f(x))=4x+3,求f(x) ③换元法 ④特殊值法 例4已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12 ()()(++=-+成立,且0)1(=f 。 (1)求 )0(f 的值;(2)求)(x f 的解析式。 ⑤方程组法 1、求下列函数的定义域: 2、求下列函数的值域 3 函数? ?? ??>+-≤<+≤+=1,51 0,30 ,32x x x x x x y 的最大值是 。 4已知:x x x f 2)1(2 += +,求)(x f 。 6已知()3()26,f x f x x --=+求()f x .

高一数学函数总结大全

一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

高中数学函数知识点总结

高中数学函数知识点总结 (1)高中函数公式的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 ,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。②当 =0时,称是的正比例函数。(3)高中函数的一次函数的图象及性质 ①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数 =的图象是经过原点的一条直线。 ③在一次函数中,当 0, O,则经2、3、4象限;当 0, 0时,则经1、 2、4象限;当 0, 0时,则经1、 3、4象限;当 0, 0时,则经1、2、3象限。 ④当 0时,的值随值的增大而增大,当 0时,的值随值的增大而减少。(4)高中函数的二次函数: ①一般式: ( ),对称轴是 顶点是; ②顶点式: ( ),对称轴是顶点是; ③交点式: ( ),其中(),()是抛物线与x轴的交点 (5)高中函数的二次函数的性质 ①函数的图象关于直线对称。 ②时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值随值的增大而增大。当时,取得最小值

③时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值随值的增大而减少。当时,取得最大值 9 高中函数的图形的对称 (1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。 (2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

高中数学对数函数及其性质(一)

课题:对数函数及其性质(一) 课 型:新授课 教学目标: 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能根据对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析问题. 教学重点:对数函数的图象和性质 教学难点:对数函数的图象和性质及应用 教学过程: 一、复习准备: 1. 画出2x y =、1 ()2 x y =的图像,并以这两个函数为例,说说指数函数的性质. 2. 讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系log P =, 生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数) 二、讲授新课: 1.教学对数函数的图象和性质: ① 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞) ② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数, 而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a . ③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. ④ 练习:同一坐标系中画出下列对数函数的图象 x y 2log =;0.5log y x = ⑤ 讨论:根据图象,你能归纳出对数函数的哪些性质? 列表归纳:分类 → 图象 → 由图象观察(定义域、值域、单调性、定点) 引申:图象的分布规律? 2、总结出的表格

高中数学-函数的概念及表示练习

高中数学-函数的概念及表示练习 【考情分析】 高考在本考点的常考题型为选择和填空,分值5分,中高等难度 【考纲研读】 1.了解构成函数的要素,了解映射的概念 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数 3.了解简单的分段函数,并能简单应用 一、选择题 1.(·全国卷Ⅱ)设函数f (x )=??? 1+log 2(2-x ),x <1,2x -1,x ≥1, 则f (-2)+f (log 212)=( ) A .3 B .6 C .9 D .12 2.(·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 3.(山东)设f (x )={√x ,0

高中数学必修系列函数基础知识

高中数学必修系列函数基础知识 初等函数的性质定义判定方法函数的奇偶性 函如果对一函数f(x)定义域内任意一个x,都有 f(-x)=-f(x),那么函数f(x)叫做奇函数; 函如果对一函数f(x)定义域内任意一个x,都有 f(-x)=f(x),那么函数f(x)叫做偶函数 (1)利用定义直接判断; (2)利用等价变形判断: f(x)是奇函数f(-x)+f(x)=0?f(x)是 数f(-x)-f(x)=0 函数的单调性 对于给定的区间上的函数f(x): (1)如果对于属于这个去件的任意两个自变的值 x1、x2,当x1

二次函数 y=ax2+bx+c(a、 b、c为常数,其中a ≠0) R a>0时,?[- ,+∞) a<0时,?(- ∞,] b=0时为偶函数 b≠0时为非奇非 偶函数 a>0时,?在(-∞,-]上是减函数 在(-,+∞]上是增函数 a<0时, 在(-∞,-]上是增函数 在(-,+∞]上是减函数角 一条射线绕着它的端点旋转所产生的图形叫做角。旋转开始时的射线叫角的始边,旋转终止时的射线叫 角的终边,射线的端点叫做角的顶点。 角的单 位制 关系弧长公式扇形面积公式 角度制10=弧度≈0.01745 弧度 l=S 扇形= 弧度制1弧度=≈57018'l=∣α∣·r S 扇形=∣α∣·r 2=lr 角的终 边 位置角的集合 在x轴正半轴上{α∣α=2kπ,k Z} 在x轴负半轴上{α∣α=2kπ+π,kZ} 在x轴上{α∣α=kπ,k Z} 在y轴上{α∣α=kπ+,k Z} 在第一象限内{α∣2kπ<α<2kπ+,kZ} 在第二象限内{α∣2kπ+<α<2kπ+π,k Z} 在第三象限内 {α∣2kπ+π<α<2kπ+,kZ} 在第四象限内 {α∣2kπ+<α<2kπ+2π,kZ} 特殊角 的三角 函数值 函数/角0 π2π sina 0 1 0 -1 0 cosa 10 -10 1

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

高中数学必修一函数的概念及其表示

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设 A 、B 是非空的数集,如果按照某种确定的关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 f (x )和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数。 例 1. 下列从集合 A 到集合 B 的对应关系中,能确定 y 是 x 的函数的是( ) x ① A={x x ∈Z},B={y y ∈ Z} ,对应法则 f :x →y= ; 3 ② A={x x>0,x ∈R}, B={y y ∈ R} ,对应法则 f :x → y 2 =3x; A=R,B=R, 对应法则 f :x →y= x 2; A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例 2. 下列哪个函数与 y=x 相同( ) 变式 1. 列图像中,是函数图像的是( ② 变式 2. 已知函数 y=f ( x ),则对于直线 x=a (a 为常数) A. y=f ( x )图像与直线 x=a 必有一个交点 C.y=f ( x )图像与直线 x=a 最少有一个交点 变式 4. 对于函数 y =f (x ) ,以下说法正确的有? ( ①y 是 x 的函数 ②对于不同的 x ,y 的值也不同 ③f (a ) 表示当 x = a 时函数 f (x ) 的值,是一个常量 A .1 个 B .2 个 C .3 个 D 变式 5.设集合 M ={x|0 ≤x ≤ 2} ,N = {y|0 ≤y ≤2},那么下面的 4 个图形中,能表示集合 M 到集合 N 的函 ,以下说法正确的是( B.y=f ( x )图像与直线 x=a 没有交点 D.y=f ( x )图像与直线 x=a 最多有一个交点 ④ f (x ) 一定可以用一个具体的式子表示出来 . 4 个 y 2x 1,x ∈ Z 与 y 2x 1, x ∈Z

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高中数学必修-函数性质

高中数学必修 第二章 函数 1.函数的有关概念 (1)函数的三要素:定义域、对应关系和值域. (2)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (3)函数的表示法:表示函数的常用方法有解析法、图象法和列表法. 2. 求给出解析式的函数定义域的基本方法: (1))(x f 为整式型函数时,定义域为R ; (2))(x f 为分式型函数时,定义域为使分母不为零的实数的集合; (3))(x f 为偶次根式型函数时,定义域为使被开方数非负的实数的集合; (4))(x f 为零次幂型函数时,定义域为底数不为零的实数的集合; (5)若)(x f 是由上述几部分式子构成,则定义域为各个简单函数定义域的交集。 3.增函数、减函数 一般地,设函数f (x )的定义域为I ,区间D ?I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有: (1)f (x )在区间D 上是增函数?f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数?f (x 1)>f (x 2). 4.利用定义法判断函数单调性的步骤: (1)取值:在指定区间上任取)(,,122121x x x x x x <<或且令; (2)作差:将)]()()[()(1221x f x f x f x f --或进行化简变形,变形的方向应有利于判断)()(21x f x f - )]()([12x f x f -或的符号,主要的变形方法有因式分解、配方、有理化等; (3)定号:对变形后盾额差进行判断,确定)]()()[()(1221x f x f x f x f --或的符号; (4)判断:判断函数符合增函数还是减函数的定义,从而得出结论。 复合函数单调性的确定: “同增异减”. 5.函数的奇偶性 (1)一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f --=,那么函数)(x f 就叫做奇函数;奇函数的图象关于)0,0(对称;0)0(=f

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

相关文档
最新文档